Categories of two-colored pair partitions part I: categories indexed by cyclic groups
We classify certain categories of partitions of finite sets subject to specific rules on the coloring of points and the sizes of blocks. More precisely, we consider pair partitions such that each block contains exactly one white and one black point when rotated to one line; however, crossings are al...
Saved in:
| Published in: | The Ramanujan journal Vol. 53; no. 1; pp. 181 - 208 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.10.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1382-4090, 1572-9303 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We classify certain categories of partitions of finite sets subject to specific rules on the coloring of points and the sizes of blocks. More precisely, we consider pair partitions such that each block contains exactly one white and one black point when rotated to one line; however, crossings are allowed. There are two families of such categories, the first of which is indexed by cyclic groups and is covered in the present article; the second family will be the content of a follow-up article. Via a Tannaka–Krein result, the categories in the two families correspond to easy quantum groups interpolating the classical unitary group
U
n
and Wang’s free unitary quantum group
U
n
+
. In fact, they are all half-liberated in some sense and our results imply that there are many more half-liberation procedures than previously expected. However, we focus on a purely combinatorial approach leaving quantum group aspects aside. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1382-4090 1572-9303 |
| DOI: | 10.1007/s11139-019-00149-w |