Brain Tumor Detection and Segmentation in MR Images Using Deep Learning

Gliomas are the most infiltrative and life-threatening brain tumors with exceptionally quick development. Gliomas segmentation using computer-aided diagnosis is a challenging task, due to irregular shape and diffused boundaries of tumor with the surrounding area. Magnetic resonance imaging (MRI) is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Arabian journal for science and engineering (2011) Ročník 44; číslo 11; s. 9249 - 9261
Hlavní autoři: Sajid, Sidra, Hussain, Saddam, Sarwar, Amna
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2019
Springer Nature B.V
Témata:
ISSN:2193-567X, 1319-8025, 2191-4281
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Gliomas are the most infiltrative and life-threatening brain tumors with exceptionally quick development. Gliomas segmentation using computer-aided diagnosis is a challenging task, due to irregular shape and diffused boundaries of tumor with the surrounding area. Magnetic resonance imaging (MRI) is the most widely used method for imaging structures of interest in human brain. In this study, a deep learning-based method that uses different modalities of MRI is presented for the segmentation of brain tumor. The proposed hybrid convolutional neural network architecture uses patch-based approach and takes both local and contextual information into account, while predicting output label. The proposed network deals with over-fitting problem by utilizing dropout regularizer alongside batch normalization, whereas data imbalance problem is dealt with by using two-phase training procedure. The proposed method contains a preprocessing step, in which images are normalized and bias field corrected, a feed-forward pass through a CNN and a post-processing step, which is used to remove small false positives around the skull portion. The proposed method is validated on BRATS 2013 dataset, where it achieves scores of 0.86, 0.86 and 0.91 in terms of dice score, sensitivity and specificity for whole tumor region, improving results compared to the state-of-the-art techniques.
AbstractList Gliomas are the most infiltrative and life-threatening brain tumors with exceptionally quick development. Gliomas segmentation using computer-aided diagnosis is a challenging task, due to irregular shape and diffused boundaries of tumor with the surrounding area. Magnetic resonance imaging (MRI) is the most widely used method for imaging structures of interest in human brain. In this study, a deep learning-based method that uses different modalities of MRI is presented for the segmentation of brain tumor. The proposed hybrid convolutional neural network architecture uses patch-based approach and takes both local and contextual information into account, while predicting output label. The proposed network deals with over-fitting problem by utilizing dropout regularizer alongside batch normalization, whereas data imbalance problem is dealt with by using two-phase training procedure. The proposed method contains a preprocessing step, in which images are normalized and bias field corrected, a feed-forward pass through a CNN and a post-processing step, which is used to remove small false positives around the skull portion. The proposed method is validated on BRATS 2013 dataset, where it achieves scores of 0.86, 0.86 and 0.91 in terms of dice score, sensitivity and specificity for whole tumor region, improving results compared to the state-of-the-art techniques.
Author Hussain, Saddam
Sajid, Sidra
Sarwar, Amna
Author_xml – sequence: 1
  givenname: Sidra
  surname: Sajid
  fullname: Sajid, Sidra
  organization: Department of Software Engineering, University of Engineering and Technology Taxila
– sequence: 2
  givenname: Saddam
  surname: Hussain
  fullname: Hussain, Saddam
  email: saddam.hussain@cs.uol.edu.pk
  organization: Department of Computer Science and IT, University of Lahore
– sequence: 3
  givenname: Amna
  surname: Sarwar
  fullname: Sarwar, Amna
  organization: Department of Software Engineering, University of Engineering and Technology Taxila
BookMark eNp9kEFLwzAUx4NMcM59AU8Fz9W8pG2So06dg4mgE7yFtH0plS2dSXfw25utguBhh5Dk8f-9l_zOych1Dgm5BHoNlIqbAJwXKqUQF1eFSOUJGTNQkGZMwuhw5mleiI8zMg2hLWkmucoB-JjM77xpXbLabTqf3GOPVd92LjGuTt6w2aDrzaEQM8-vyWJjGgzJe2hdE9O4TZZovIu3C3JqzTrg9HefkNXjw2r2lC5f5ovZ7TKtOKg-rUtgkpWlrGuKlAuLNq_yTBac8xqyWMvrwjJRWmWFAolAUSnOLYgKhOETcjW03frua4eh15_dzrs4UTOmcppLyWRMsSFV-S4Ej1Zvfbsx_lsD1XtlelCmozJ9UKb3kPwHVe3w-T4qWh9H-YCGOMc16P9edYT6Ac0pgQY
CitedBy_id crossref_primary_10_1038_s41598_024_71893_3
crossref_primary_10_3390_jpm12020275
crossref_primary_10_4108_eetpht_9_4337
crossref_primary_10_1155_2022_1519198
crossref_primary_10_3390_s25092746
crossref_primary_10_1109_ACCESS_2024_3359418
crossref_primary_10_1038_s41598_025_06455_2
crossref_primary_10_1080_07391102_2024_2311343
crossref_primary_10_1080_21681163_2023_2189487
crossref_primary_10_1016_j_bspc_2022_104424
crossref_primary_10_7717_peerj_cs_2920
crossref_primary_10_1038_s41598_025_14901_4
crossref_primary_10_1155_2024_1622294
crossref_primary_10_3390_app12147282
crossref_primary_10_1002_cpe_7850
crossref_primary_10_1016_j_compmedimag_2024_102343
crossref_primary_10_1109_ACCESS_2024_3480271
crossref_primary_10_1002_ima_23056
crossref_primary_10_1007_s13198_025_02944_9
crossref_primary_10_3390_sym12081256
crossref_primary_10_1016_j_jneumeth_2025_110424
crossref_primary_10_1002_mp_14517
crossref_primary_10_1016_j_ultras_2023_107017
crossref_primary_10_1016_j_compeleceng_2022_107960
crossref_primary_10_3390_a16040176
crossref_primary_10_1016_j_bspc_2024_106618
crossref_primary_10_3390_bioengineering11030266
crossref_primary_10_1007_s11831_025_10238_3
crossref_primary_10_1007_s11042_022_12162_1
crossref_primary_10_1007_s40747_021_00318_9
crossref_primary_10_21518_ms2025_116
crossref_primary_10_1007_s00530_022_00952_4
crossref_primary_10_1109_TPAMI_2023_3289667
crossref_primary_10_1109_ACCESS_2023_3325883
crossref_primary_10_1016_j_procs_2025_04_229
crossref_primary_10_1016_j_procs_2025_04_471
crossref_primary_10_1080_21681163_2023_2274411
crossref_primary_10_1016_j_eswa_2023_122347
crossref_primary_10_3390_app10103429
crossref_primary_10_1109_ACCESS_2023_3289224
crossref_primary_10_1186_s12859_022_04794_9
crossref_primary_10_1007_s11042_023_14970_5
crossref_primary_10_3233_JIFS_221990
crossref_primary_10_1016_j_compbiomed_2024_108971
crossref_primary_10_3390_jimaging6110121
crossref_primary_10_1080_00051144_2024_2315405
crossref_primary_10_32604_cmc_2021_014404
crossref_primary_10_1007_s00500_023_08542_w
crossref_primary_10_21015_vtse_v12i1_1698
crossref_primary_10_1016_j_bspc_2022_103644
crossref_primary_10_1007_s13755_022_00193_9
crossref_primary_10_3390_jimaging7120269
crossref_primary_10_1088_1402_4896_ad591b
crossref_primary_10_3390_computation12030044
crossref_primary_10_1007_s11042_020_09810_9
crossref_primary_10_1002_cpe_7541
crossref_primary_10_1007_s11042_024_19333_2
crossref_primary_10_1142_S0219519425300029
crossref_primary_10_3390_electronics14010040
crossref_primary_10_1155_2021_9025470
crossref_primary_10_1002_jemt_23597
crossref_primary_10_1155_2023_1224619
crossref_primary_10_1155_2021_3365043
crossref_primary_10_1007_s11042_023_17233_5
crossref_primary_10_1080_13682199_2023_2166805
crossref_primary_10_1109_ACCESS_2020_3016319
crossref_primary_10_1007_s11042_021_11591_8
crossref_primary_10_1016_j_eswa_2020_114545
crossref_primary_10_1016_j_compbiomed_2024_108910
crossref_primary_10_1007_s00500_023_08319_1
crossref_primary_10_1007_s11042_025_20706_4
crossref_primary_10_1002_jmri_28877
crossref_primary_10_1038_s41598_025_13155_4
crossref_primary_10_1016_j_gep_2022_119248
crossref_primary_10_32604_jai_2022_032974
crossref_primary_10_1016_j_sigpro_2021_108273
crossref_primary_10_1007_s42979_024_03526_5
crossref_primary_10_1088_1742_6596_1921_1_012080
crossref_primary_10_1109_ACCESS_2023_3242666
crossref_primary_10_3390_brainsci11081055
crossref_primary_10_1007_s11042_021_11098_2
crossref_primary_10_1007_s42600_023_00301_y
crossref_primary_10_3390_diagnostics13040668
crossref_primary_10_1109_ACCESS_2023_3306961
crossref_primary_10_3390_math13152393
crossref_primary_10_1016_j_compbiomed_2025_110242
crossref_primary_10_32604_cmc_2021_016698
crossref_primary_10_1155_2022_7028717
crossref_primary_10_3233_JIFS_211879
crossref_primary_10_32604_cmc_2022_030923
crossref_primary_10_1007_s11042_022_13016_6
crossref_primary_10_1007_s11042_024_20386_6
crossref_primary_10_1016_j_measen_2023_100691
crossref_primary_10_1109_ACCESS_2023_3340443
crossref_primary_10_1002_mp_14901
crossref_primary_10_1007_s10462_022_10245_x
crossref_primary_10_1038_s41598_024_73803_z
crossref_primary_10_1007_s11063_023_11276_3
crossref_primary_10_3103_S8756699024700146
crossref_primary_10_1109_ACCESS_2024_3523330
crossref_primary_10_1007_s11831_023_09898_w
crossref_primary_10_1007_s11042_025_21068_7
crossref_primary_10_1007_s12672_025_03501_3
crossref_primary_10_1109_ACCESS_2025_3552593
crossref_primary_10_3390_diagnostics14161714
crossref_primary_10_1038_s41598_025_87934_4
crossref_primary_10_1016_j_eswa_2022_118833
crossref_primary_10_1016_j_bspc_2022_104017
crossref_primary_10_1109_ACCESS_2023_3257722
crossref_primary_10_1007_s41870_023_01572_5
crossref_primary_10_4103_jmp_jmp_149_24
Cites_doi 10.1016/j.fss.2008.11.016
10.1088/0031-9155/58/13/R97
10.1016/j.media.2016.05.004
10.1016/0893-6080(92)90008-7
10.1109/TMI.2016.2538465
10.1007/s11548-011-0649-2
10.1109/TPAMI.2004.1261097
10.1016/j.neucom.2017.12.032
10.1007/s10107-012-0629-5
10.1109/TMI.2014.2377694
10.1016/j.neuroimage.2006.02.024
10.1016/j.artmed.2018.08.008
10.1016/j.mri.2009.01.024
10.1007/s00401-010-0750-6
10.1016/j.cmpb.2018.09.007
10.1016/j.media.2017.10.002
10.1016/j.compmedimag.2013.05.007
10.1109/TMI.2011.2181857
10.1016/j.media.2016.10.004
10.1016/S0730-725X(99)00044-2
10.1109/TMI.2010.2046908
10.1016/j.media.2004.06.007
10.1097/WCO.0b013e328312c3a7
10.1109/ICBME.2014.7043934
10.1007/978-3-642-33418-4_80
10.1109/CVPR.2014.58
10.1109/CVPR.2016.266
10.5220/0005068501520157
10.1007/978-3-540-39903-2_65
10.1109/EMBC.2017.8037243
10.1007/978-3-642-33454-2_46
10.1109/EMBC.2015.7319032
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s13369-019-03967-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 9261
ExternalDocumentID 10_1007_s13369_019_03967_8
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c319t-db1282bb8dd0e037fef5c5486333d140e05d6f27bf9f7918e10e9933f17c17a3
IEDL.DBID RSV
ISICitedReferencesCount 122
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487119100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 09:01:14 EDT 2025
Tue Nov 18 20:26:21 EST 2025
Sat Nov 29 02:51:28 EST 2025
Fri Feb 21 02:40:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Deep learning
Gliomas segmentation
CNN
Brain tumor segmentation
MRI
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-db1282bb8dd0e037fef5c5486333d140e05d6f27bf9f7918e10e9933f17c17a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2295058828
PQPubID 2044268
PageCount 13
ParticipantIDs proquest_journals_2295058828
crossref_primary_10_1007_s13369_019_03967_8
crossref_citationtrail_10_1007_s13369_019_03967_8
springer_journals_10_1007_s13369_019_03967_8
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Tabatabai, Stupp, van den Bent, Hegi, Tonn, Wick, Weller (CR4) 2010; 120
Pereira, Pinto, Alves, Silva (CR1) 2016; 35
CR38
CR37
Prastawa, Bullitt, Ho, Gerig (CR15) 2004; 8
CR36
CR35
CR34
CR33
Sikka, Sinha, Singh, Mishra (CR27) 2009; 27
CR31
Jiang, Yao, Huang, Yang, Chen, Feng (CR39) 2013; 37
Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (CR45) 2017; 36
Bernal, Kushibar, Asfaw, Valverde, Oliver, Martí, Lladó (CR12) 2018; 95
Doyle, Vasseur, Dojat, Forbes (CR14) 2013; 1
Webb, Guimond, Eldridge, Chadwick, Meunier, Thirion, Roberts (CR24) 1999; 17
Yang, Zhang, Frangi, Yang (CR32) 2004; 26
Rousseau, Mokhtari, Duyckaerts (CR3) 2008; 21
Saouli, Akil, Kachouri (CR41) 2018; 166
Zhao, Yihong, Song, Li, Zhang, Fan (CR5) 2018; 43
CR8
CR7
Smith, Jenkinson, Johansen-Berg, Rueckert, Nichols, Mackay, Watkins, Ciccarelli, Cader, Matthews (CR25) 2006; 31
CR9
CR48
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (CR42) 2010; 29
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR46) 2014; 15
CR47
CR43
CR40
Hamamci, Kucuk, Karaman, Engin, Unal (CR21) 2012; 31
CR19
CR16
CR13
CR11
CR10
Nesterov (CR49) 2013; 140
Khotanlou, Colliot, Atif, Bloch (CR17) 2009; 160
CR29
CR28
Popuri, Cobzas, Murtha, Jägersand (CR18) 2012; 7
CR26
Bauer, Wiest, Nolte, Reyes (CR2) 2013; 58
CR23
CR22
CR20
Hussain, Anwar, Majid (CR50) 2018; 282
Van Ooyen, Nienhuis (CR44) 1992; 5
Havaei, Davy, Warde-Farley, Biard, Courville, Bengio, Pal, Jodoin, Larochelle (CR6) 2017; 35
Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby, Burren, Porz, Slotboom, Wiest (CR30) 2015; 34
3967_CR26
3967_CR23
R Saouli (3967_CR41) 2018; 166
J Jiang (3967_CR39) 2013; 37
3967_CR29
3967_CR28
BH Menze (3967_CR30) 2015; 34
M Prastawa (3967_CR15) 2004; 8
SM Smith (3967_CR25) 2006; 31
3967_CR22
3967_CR20
J Webb (3967_CR24) 1999; 17
G Tabatabai (3967_CR4) 2010; 120
M Havaei (3967_CR6) 2017; 35
3967_CR36
3967_CR37
3967_CR34
K Sikka (3967_CR27) 2009; 27
3967_CR35
A Hamamci (3967_CR21) 2012; 31
3967_CR38
Y Nesterov (3967_CR49) 2013; 140
3967_CR33
3967_CR31
J Bernal (3967_CR12) 2018; 95
3967_CR47
3967_CR48
3967_CR40
3967_CR43
K Kamnitsas (3967_CR45) 2017; 36
A Van Ooyen (3967_CR44) 1992; 5
NJ Tustison (3967_CR42) 2010; 29
K Popuri (3967_CR18) 2012; 7
J Yang (3967_CR32) 2004; 26
S Pereira (3967_CR1) 2016; 35
S Bauer (3967_CR2) 2013; 58
3967_CR13
A Rousseau (3967_CR3) 2008; 21
3967_CR19
3967_CR16
3967_CR7
S Doyle (3967_CR14) 2013; 1
3967_CR8
3967_CR9
H Khotanlou (3967_CR17) 2009; 160
X Zhao (3967_CR5) 2018; 43
3967_CR10
3967_CR11
N Srivastava (3967_CR46) 2014; 15
S Hussain (3967_CR50) 2018; 282
References_xml – volume: 160
  start-page: 1457
  issue: 10
  year: 2009
  end-page: 1473
  ident: CR17
  article-title: 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2008.11.016
– ident: CR22
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  end-page: 1958
  ident: CR46
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: CR16
– volume: 58
  start-page: R97
  issue: 13
  year: 2013
  ident: CR2
  article-title: A survey of MRI-based medical image analysis for brain tumor studies
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/13/R97
– volume: 35
  start-page: 18
  year: 2017
  end-page: 31
  ident: CR6
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.05.004
– volume: 5
  start-page: 465
  issue: 3
  year: 1992
  end-page: 471
  ident: CR44
  article-title: Improving the convergence of the back-propagation algorithm
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(92)90008-7
– ident: CR35
– ident: CR29
– ident: CR8
– volume: 35
  start-page: 1240
  issue: 5
  year: 2016
  end-page: 1251
  ident: CR1
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2538465
– volume: 7
  start-page: 493
  issue: 4
  year: 2012
  end-page: 506
  ident: CR18
  article-title: 3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-011-0649-2
– ident: CR19
– ident: CR11
– ident: CR9
– volume: 26
  start-page: 131
  issue: 1
  year: 2004
  end-page: 137
  ident: CR32
  article-title: Two-dimensional PCA: a new approach to appearance-based face representation and recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.1261097
– ident: CR36
– volume: 1
  start-page: 18
  year: 2013
  end-page: 22
  ident: CR14
  article-title: Fully automatic brain tumor segmentation from multiple MR sequences using hidden Markov fields and variational EM
  publication-title: Proc. NCI-MICCAI BRATS
– volume: 282
  start-page: 248
  year: 2018
  end-page: 261
  ident: CR50
  article-title: Segmentation of glioma tumors in brain using deep convolutional neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.12.032
– volume: 140
  start-page: 125
  issue: 1
  year: 2013
  end-page: 161
  ident: CR49
  article-title: Gradient methods for minimizing composite functions
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0629-5
– ident: CR26
– ident: CR43
– ident: CR47
– volume: 34
  start-page: 1993
  issue: 10
  year: 2015
  end-page: 2024
  ident: CR30
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 31
  start-page: 1487
  issue: 4
  year: 2006
  end-page: 1505
  ident: CR25
  article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.02.024
– ident: CR37
– ident: CR10
– volume: 95
  start-page: 64
  year: 2018
  end-page: 81
  ident: CR12
  article-title: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2018.08.008
– ident: CR33
– volume: 27
  start-page: 994
  issue: 7
  year: 2009
  end-page: 1004
  ident: CR27
  article-title: A fully automated algorithm under modified FCM framework for improved brain MR image segmentation
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2009.01.024
– volume: 120
  start-page: 585
  issue: 5
  year: 2010
  end-page: 592
  ident: CR4
  article-title: Molecular diagnostics of gliomas: the clinical perspective
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-010-0750-6
– ident: CR40
– volume: 166
  start-page: 39
  year: 2018
  end-page: 49
  ident: CR41
  article-title: Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.09.007
– ident: CR23
– volume: 43
  start-page: 98
  year: 2018
  end-page: 111
  ident: CR5
  article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.10.002
– volume: 37
  start-page: 512
  issue: 7
  year: 2013
  end-page: 521
  ident: CR39
  article-title: 3D brain tumor segmentation in multimodal MR images based on learning population- and patient-specific feature sets
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2013.05.007
– ident: CR48
– volume: 31
  start-page: 790
  issue: 3
  year: 2012
  end-page: 804
  ident: CR21
  article-title: Tumor-cut: segmentation of brain tumors on contrast enhanced mr images for radiosurgery applications
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2181857
– ident: CR38
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: CR45
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– ident: CR31
– ident: CR13
– volume: 17
  start-page: 1149
  issue: 8
  year: 1999
  end-page: 1161
  ident: CR24
  article-title: Automatic detection of hippocampal atrophy on magnetic resonance images
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(99)00044-2
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  end-page: 1320
  ident: CR42
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 8
  start-page: 275
  issue: 3
  year: 2004
  end-page: 283
  ident: CR15
  article-title: A brain tumor segmentation framework based on outlier detection
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.06.007
– ident: CR34
– ident: CR7
– ident: CR28
– volume: 21
  start-page: 720
  issue: 6
  year: 2008
  end-page: 727
  ident: CR3
  article-title: The 2007 who classification of tumors of the central nervous system—what has changed?
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e328312c3a7
– ident: CR20
– ident: 3967_CR35
– volume: 35
  start-page: 1240
  issue: 5
  year: 2016
  ident: 3967_CR1
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2538465
– ident: 3967_CR7
  doi: 10.1109/ICBME.2014.7043934
– volume: 31
  start-page: 1487
  issue: 4
  year: 2006
  ident: 3967_CR25
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.02.024
– ident: 3967_CR29
– ident: 3967_CR20
  doi: 10.1007/978-3-642-33418-4_80
– ident: 3967_CR22
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 3967_CR46
  publication-title: J. Mach. Learn. Res.
– ident: 3967_CR8
– ident: 3967_CR31
– volume: 37
  start-page: 512
  issue: 7
  year: 2013
  ident: 3967_CR39
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2013.05.007
– ident: 3967_CR23
  doi: 10.1109/CVPR.2014.58
– ident: 3967_CR37
  doi: 10.1109/CVPR.2016.266
– volume: 17
  start-page: 1149
  issue: 8
  year: 1999
  ident: 3967_CR24
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(99)00044-2
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 3967_CR42
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– ident: 3967_CR36
– ident: 3967_CR26
  doi: 10.5220/0005068501520157
– volume: 282
  start-page: 248
  year: 2018
  ident: 3967_CR50
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.12.032
– volume: 35
  start-page: 18
  year: 2017
  ident: 3967_CR6
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.05.004
– volume: 1
  start-page: 18
  year: 2013
  ident: 3967_CR14
  publication-title: Proc. NCI-MICCAI BRATS
– ident: 3967_CR19
– volume: 26
  start-page: 131
  issue: 1
  year: 2004
  ident: 3967_CR32
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.1261097
– volume: 140
  start-page: 125
  issue: 1
  year: 2013
  ident: 3967_CR49
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0629-5
– ident: 3967_CR11
  doi: 10.1109/TMI.2014.2377694
– volume: 27
  start-page: 994
  issue: 7
  year: 2009
  ident: 3967_CR27
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2009.01.024
– ident: 3967_CR9
– volume: 5
  start-page: 465
  issue: 3
  year: 1992
  ident: 3967_CR44
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(92)90008-7
– ident: 3967_CR33
– volume: 31
  start-page: 790
  issue: 3
  year: 2012
  ident: 3967_CR21
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2181857
– volume: 8
  start-page: 275
  issue: 3
  year: 2004
  ident: 3967_CR15
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.06.007
– volume: 36
  start-page: 61
  year: 2017
  ident: 3967_CR45
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– volume: 7
  start-page: 493
  issue: 4
  year: 2012
  ident: 3967_CR18
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-011-0649-2
– volume: 166
  start-page: 39
  year: 2018
  ident: 3967_CR41
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.09.007
– volume: 43
  start-page: 98
  year: 2018
  ident: 3967_CR5
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.10.002
– ident: 3967_CR47
– volume: 58
  start-page: R97
  issue: 13
  year: 2013
  ident: 3967_CR2
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/13/R97
– ident: 3967_CR43
– volume: 34
  start-page: 1993
  issue: 10
  year: 2015
  ident: 3967_CR30
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 120
  start-page: 585
  issue: 5
  year: 2010
  ident: 3967_CR4
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-010-0750-6
– ident: 3967_CR16
  doi: 10.1007/978-3-540-39903-2_65
– ident: 3967_CR10
  doi: 10.1109/EMBC.2017.8037243
– ident: 3967_CR38
– ident: 3967_CR28
  doi: 10.1007/978-3-642-33454-2_46
– ident: 3967_CR34
– ident: 3967_CR40
– ident: 3967_CR13
  doi: 10.1109/EMBC.2015.7319032
– ident: 3967_CR48
– volume: 160
  start-page: 1457
  issue: 10
  year: 2009
  ident: 3967_CR17
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2008.11.016
– volume: 21
  start-page: 720
  issue: 6
  year: 2008
  ident: 3967_CR3
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e328312c3a7
– volume: 95
  start-page: 64
  year: 2018
  ident: 3967_CR12
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2018.08.008
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.508253
Snippet Gliomas are the most infiltrative and life-threatening brain tumors with exceptionally quick development. Gliomas segmentation using computer-aided diagnosis...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9249
SubjectTerms Artificial neural networks
Brain
Brain cancer
Deep learning
Engineering
Humanities and Social Sciences
Image detection
Image segmentation
Machine learning
Magnetic resonance imaging
Medical imaging
multidisciplinary
NMR
Nuclear magnetic resonance
Post-production processing
Research Article - Computer Engineering and Computer Science
Science
Tumors
Title Brain Tumor Detection and Segmentation in MR Images Using Deep Learning
URI https://link.springer.com/article/10.1007/s13369-019-03967-8
https://www.proquest.com/docview/2295058828
Volume 44
WOSCitedRecordID wos000487119100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001916267
  issn: 2193-567X
  databaseCode: RSV
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbREriJrZHXgUGKtRWqFvkZ4VE06pJ-f1c3IQAAiQYMvliRffw3cV39yF0aq1llhZj9gPITdoqFB4LVNtTlAc6FiFnmjmwCdrtsuGQP5ZNYVlV7V5dSbqTum52IyQuanvgIRzMmy2jFXB3rDDHXv-p0qI2uHyIIkj9pwUioNBByYJ1Ei-K6bDsnvl-288eqg47v9yUOgfU2fzfp2-hjTLgxBcLDdlGSybdQesfxhDuotvLAicCD-bjyQxfm9xVZ6VYpBr3zWhcdielGGgeevh-DEdQhl2tAVCbKS5ntI720KBzM7i680qABU-B5eWeluCdQimZ1r7xCbXGRgpSmJgQoiHzMn6kYxtSabkF2TET-AbiGWIDqgIqyD5qpJPUHCAsA60jEcYMzLstQskkMVxILmLFhYp0EwUVTxNVDh8vMDBeknpscsGjBHiUOB4lrInO3t-ZLkZv_ErdqkSVlGaYJQVWuR9BEgHL55Vo6uWfdzv8G_kRWgsL6boexRZq5LO5OUar6jV_zmYnTj3fAFqG2rs
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60CurBt1itugdvGkiyeWyOvmqLbZE2SG9hs48i2LQ0qb_fyTYxKiroIaedLGEeOzPZmfkQOldKUeXnY_YtyE0cbjODWtwxuB9YwmN2QAXVYBN-r0eHw-CxaApLy2r38kpSn9RVsxshXl7bAw8JwLzpMlpxwGPlhXz9wVOpRQ64fIgiSPWnBSIgW0PJgnUSw_X8YdE98_22nz1UFXZ-uSnVDqi59b9P30abRcCJrxYasoOWZLKLNj6MIdxD99c5TgQO5-PJDN_KTFdnJZglAg_kaFx0JyUYaLp93B7DEZRiXWsA1HKKixmto30UNu_Cm5ZRACwYHCwvM0QM3smOYyqEKU3iK6lcDimMRwgRkHlJ0xWesv1YBQpkR6VlSohniLJ8bvmMHKBaMknkIcKxJYTLbI-CeTvMjmlMZMDigHk8YNwVdWSVPI14MXw8x8B4iaqxyTmPIuBRpHkU0Tq6eH9nuhi98St1oxRVVJhhGuVY5aYLSQQsX5aiqZZ_3u3ob-RnaK0VdjtRp917OEbrdi5p3a_YQLVsNpcnaJW_Zs_p7FSr6huj592f
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gIAQH3ojBgBy4QUXb9JEegTGYgGliE9qtSvOYkFg3bR2_Hydr6UCAhDj0VDdS7bi2G_v7EDpVSlEVaph9B2oTj7vMog73LB5GjgiYG1FBDdlE2GrRXi9qz03xm2734khyNtOgUZrS7GIk1EU5-EZIoPt84CIRuDpdREueJg3S9XrnudhRHoR_yChI-dcFsiHX0MqCpxLLD8JePknz_bKfo1WZgn45NTXBqLHx_9fYROt5IoovZztnCy3IdButzcET7qDbK80fgbvTwXCM6zIzXVspZqnAHdkf5FNLKQaZxyfcHMCnaYJNDwJIyxHOsVv7u6jbuOle31k58YLFwSMzSyQQtdwkoULY0iahksrnUNoEhBABFZm0fREoN0xUpMCmVDq2hDyHKCfkTsjIHqqkw1TuI5w4QvjMDSi4vcfchCZERiyJWMAjxn1RRU6h35jnoOSaG-M1LuGUtY5i0FFsdBTTKjr7eGY0g-T4VbpWmC3O3XMSaw5z24fiAm6fF2Yqb_-82sHfxE_QSrveiB-arftDtOpqQ5sxxhqqZOOpPELL_C17mYyPza59BxCs5oM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Tumor+Detection+and+Segmentation+in+MR+Images+Using+Deep+Learning&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Sajid%2C+Sidra&rft.au=Hussain%2C+Saddam&rft.au=Sarwar%2C+Amna&rft.date=2019-11-01&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=44&rft.issue=11&rft.spage=9249&rft.epage=9261&rft_id=info:doi/10.1007%2Fs13369-019-03967-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13369_019_03967_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon