Generalized Differentiation and Duality in Infinite Dimensions under Polyhedral Convexity

This paper addresses the study and applications of polyhedral duality in locally convex topological vector (LCTV) spaces. We first revisit the classical Rockafellar’s proper separation theorem for two convex sets one of which is polyhedral and then present its LCTV extension replacing the relative i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Set-valued and variational analysis Jg. 30; H. 4; S. 1503 - 1526
Hauptverfasser: Cuong, D. V., Mordukhovich, B. S., Nam, N. M., Sandine, G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.12.2022
Springer Nature B.V
Schlagworte:
ISSN:1877-0533, 1877-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the study and applications of polyhedral duality in locally convex topological vector (LCTV) spaces. We first revisit the classical Rockafellar’s proper separation theorem for two convex sets one of which is polyhedral and then present its LCTV extension replacing the relative interior by its quasi-relative interior counterpart. Then we apply this result to derive enhanced calculus rules for normals to convex sets, coderivatives of convex set-valued mappings, and subgradients of extended-real-valued functions under certain polyhedrality requirements in LCTV spaces by developing a geometric approach. We also establish in this way new results on conjugate calculus and duality in convex optimization with relaxed qualification conditions in polyhedral settings. Our developments contain significant improvements to a number of existing results obtained by Ng and Song (Nonlinear Anal. 55 , 845–858, 12 ).
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-022-00647-y