Generalized Differentiation and Duality in Infinite Dimensions under Polyhedral Convexity
This paper addresses the study and applications of polyhedral duality in locally convex topological vector (LCTV) spaces. We first revisit the classical Rockafellar’s proper separation theorem for two convex sets one of which is polyhedral and then present its LCTV extension replacing the relative i...
Uloženo v:
| Vydáno v: | Set-valued and variational analysis Ročník 30; číslo 4; s. 1503 - 1526 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.12.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 1877-0533, 1877-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper addresses the study and applications of polyhedral duality in locally convex topological vector (LCTV) spaces. We first revisit the classical Rockafellar’s proper separation theorem for two convex sets one of which is polyhedral and then present its LCTV extension replacing the relative interior by its quasi-relative interior counterpart. Then we apply this result to derive enhanced calculus rules for normals to convex sets, coderivatives of convex set-valued mappings, and subgradients of extended-real-valued functions under certain polyhedrality requirements in LCTV spaces by developing a geometric approach. We also establish in this way new results on conjugate calculus and duality in convex optimization with relaxed qualification conditions in polyhedral settings. Our developments contain significant improvements to a number of existing results obtained by Ng and Song (Nonlinear Anal.
55
, 845–858,
12
). |
|---|---|
| AbstractList | This paper addresses the study and applications of polyhedral duality in locally convex topological vector (LCTV) spaces. We first revisit the classical Rockafellar’s proper separation theorem for two convex sets one of which is polyhedral and then present its LCTV extension replacing the relative interior by its quasi-relative interior counterpart. Then we apply this result to derive enhanced calculus rules for normals to convex sets, coderivatives of convex set-valued mappings, and subgradients of extended-real-valued functions under certain polyhedrality requirements in LCTV spaces by developing a geometric approach. We also establish in this way new results on conjugate calculus and duality in convex optimization with relaxed qualification conditions in polyhedral settings. Our developments contain significant improvements to a number of existing results obtained by Ng and Song (Nonlinear Anal.
55
, 845–858,
12
). This paper addresses the study and applications of polyhedral duality in locally convex topological vector (LCTV) spaces. We first revisit the classical Rockafellar’s proper separation theorem for two convex sets one of which is polyhedral and then present its LCTV extension replacing the relative interior by its quasi-relative interior counterpart. Then we apply this result to derive enhanced calculus rules for normals to convex sets, coderivatives of convex set-valued mappings, and subgradients of extended-real-valued functions under certain polyhedrality requirements in LCTV spaces by developing a geometric approach. We also establish in this way new results on conjugate calculus and duality in convex optimization with relaxed qualification conditions in polyhedral settings. Our developments contain significant improvements to a number of existing results obtained by Ng and Song (Nonlinear Anal. 55, 845–858, 12). |
| Author | Cuong, D. V. Mordukhovich, B. S. Sandine, G. Nam, N. M. |
| Author_xml | – sequence: 1 givenname: D. V. surname: Cuong fullname: Cuong, D. V. organization: Department of Mathematics, Faculty of Natural Sciences, Duy Tan University, American Degree Program, Duy Tan University – sequence: 2 givenname: B. S. surname: Mordukhovich fullname: Mordukhovich, B. S. email: boris@math.wayne.edu organization: Department of Mathematics, Wayne State University – sequence: 3 givenname: N. M. surname: Nam fullname: Nam, N. M. organization: Fariborz Maseeh Department of Mathematics and Statistics, Portland State University – sequence: 4 givenname: G. surname: Sandine fullname: Sandine, G. organization: Fariborz Maseeh Department of Mathematics and Statistics, Portland State University |
| BookMark | eNp9kD1PwzAQhi1UJNrCH2CKxBzwV5pkRAVKpUowdGGyHOcMrlKn2A4i_PqaBoHE0Mkn3_vcnZ4JGtnWAkKXBF8TjPMbTwilRYopTTGe8TztT9CYFHme4oyT0W_N2BmaeL-JDMYlGaOXBVhwsjFfUCd3RmtwYIORwbQ2kTb-dbEZ-sTYZGm1sSZAzG3B-pjwSWdrcMlz2_RvUMc5yby1H_AZiXN0qmXj4eLnnaL1w_16_piunhbL-e0qVYyUIa2lzjNNykpTRSHTknGlQGaqLmhVcZwRWkFRM6ILTLiCUmrJecFnmOeY1WyKroaxO9e-d-CD2LSds3GjoHlWMswpy2KKDinlWu8daLFzZitdLwgW3wbFYFBEg-JgUPQRKv5ByoSDmeCkaY6jbEB93GNfwf1ddYTaA8XIie0 |
| CitedBy_id | crossref_primary_10_1007_s10957_023_02269_2 crossref_primary_10_1007_s10957_024_02455_w |
| Cites_doi | 10.1142/5021 10.1017/S033427000001095X 10.1007/BF02192248 10.1137/120861400 10.1515/9781400873173 10.1016/j.na.2003.07.008 10.1080/02331934.2022.2048383 10.1080/02331934.2015.1105225 10.1007/978-1-4612-1394-9 10.1023/A:1022988116044 10.1007/s11590-019-01447-4 10.1007/BF01581072 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022 The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11228-022-00647-y |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1877-0541 |
| EndPage | 1526 |
| ExternalDocumentID | 10_1007_s11228_022_00647_y |
| GrantInformation_xml | – fundername: national foundation for science and technology development grantid: 101.02-2020.20 funderid: https://doi.org/10.13039/100007224 – fundername: air force office of scientific research grantid: 15RT04 funderid: https://doi.org/10.13039/100000181 – fundername: directorate for mathematical and physical sciences grantid: DMS-1512846 funderid: https://doi.org/10.13039/100000086 – fundername: directorate for mathematical and physical sciences grantid: DMS-1808978 funderid: https://doi.org/10.13039/100000086 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 203 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AYJHY AZFZN B-. BAPOH BDATZ BGNMA BSONS CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 H13 HF~ HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IZIGR I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9J P9R PF0 PT4 QOS R89 R9I ROL RSV S16 S3B SAP SCLPG SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TSG TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c319t-daf75f19bf2c2e5fa34ccea5cd82bb40512be8d31f8014ce9afa4484604703d3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000837575100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1877-0533 |
| IngestDate | Thu Sep 25 00:37:42 EDT 2025 Tue Nov 18 22:42:42 EST 2025 Sat Nov 29 01:59:32 EST 2025 Fri Feb 21 02:45:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Geometric approach 90C31 Calculus rules Solution maps 49J53 Normal cone 49J52 Coderivative Relative interior Generalized differentiation Convex analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-daf75f19bf2c2e5fa34ccea5cd82bb40512be8d31f8014ce9afa4484604703d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2759304235 |
| PQPubID | 2044238 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_2759304235 crossref_primary_10_1007_s11228_022_00647_y crossref_citationtrail_10_1007_s11228_022_00647_y springer_journals_10_1007_s11228_022_00647_y |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | Theory and Applications |
| PublicationTitle | Set-valued and variational analysis |
| PublicationTitleAbbrev | Set-Valued Var. Anal |
| PublicationYear | 2022 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | RockafellarRTConvex Analysis1970Princeton, NJPrinceton University Press10.1515/97814008731730193.18401 CuongDVMordukhovichBSNamNMQuasi-relative interiors for graphs of convex set-valued mappingsOptim. Lett.202115933952423829010.1007/s11590-019-01447-41471.90165 Flores-BazánFMastroeniGStrong duality in cone constrained nonconvex optimizationSIAM J. Optim.201323153169303310210.1137/1208614001285.90077 BertsekasDPNedićAOzdaglarAEConvex Analysis and Optimization2003Belmont, MAAthena Scientific1140.90001 BorweinJMLewisASPartially finite convex programming, Part I: quasi-relative interiors and duality theoryMath. Program.199257154810.1007/BF015810720778.90049 ZălinescuCA comparision of constraint qualifications in infinite-dimensional convex programing revisitedJ. Austral. Math. Soc., Sen B19994035337810.1017/S033427000001095X0926.90077 LuanNNYaoJYenNDOn some generalized polyhedral convex constructionsNumer. Funct. Anal. Optim.2017295375703763473 NgKFSongWFenchel duality in infnite-dimensional setting and its applicationsNonlinear Anal.200355845858201723110.1016/j.na.2003.07.0081045.90080 BonnansJFShapiroAPerturbation Analysis of Optimization Problems2000New YorkSpringer-Verlag10.1007/978-1-4612-1394-90966.49001 BorweinJMGoebelRNotions of relative interior in Banach spacesJ. Math. Sci.200311525422553199299110.1023/A:10229881160441136.49307 MordukhovichBSVariational Analysis and Generalized Differentiation I: Basic Theory, II: Applications2006BerlinSpringer RudinWFunctional Analysis19912nd edn.New YorkMcGraw-Hill0867.46001 HadjisavvasNSchaibleSQuasimonotone variational inequalities in Banach spacesJ. Optim. Theory Appl.19969095111139764810.1007/BF021922480904.49005 MordukhovichBSNamNMGeometric approach to convex subdifferential calculusOptimization201766839873364963110.1080/02331934.2015.11052251402.49014 Cuong, D.V., Mordukhovich, B.S., Nam, N.M., Sandine, G: Fenchel-Rockafellar theorem in infinite dimensions via generalized relative interiors. arXiv:2104.13510 (2021) ZălinescuCConvex Analysis in General Vector Spaces2002SingaporeWorld Scientific10.1142/50211023.46003 JF Bonnans (647_CR2) 2000 F Flores-Bazán (647_CR7) 2013; 23 NN Luan (647_CR9) 2017; 29 RT Rockafellar (647_CR13) 1970 DP Bertsekas (647_CR1) 2003 C Zălinescu (647_CR15) 1999; 40 BS Mordukhovich (647_CR11) 2017; 66 KF Ng (647_CR12) 2003; 55 JM Borwein (647_CR4) 1992; 57 N Hadjisavvas (647_CR8) 1996; 90 C Zălinescu (647_CR16) 2002 DV Cuong (647_CR5) 2021; 15 JM Borwein (647_CR3) 2003; 115 W Rudin (647_CR14) 1991 BS Mordukhovich (647_CR10) 2006 647_CR6 |
| References_xml | – reference: HadjisavvasNSchaibleSQuasimonotone variational inequalities in Banach spacesJ. Optim. Theory Appl.19969095111139764810.1007/BF021922480904.49005 – reference: CuongDVMordukhovichBSNamNMQuasi-relative interiors for graphs of convex set-valued mappingsOptim. Lett.202115933952423829010.1007/s11590-019-01447-41471.90165 – reference: MordukhovichBSNamNMGeometric approach to convex subdifferential calculusOptimization201766839873364963110.1080/02331934.2015.11052251402.49014 – reference: BorweinJMGoebelRNotions of relative interior in Banach spacesJ. Math. Sci.200311525422553199299110.1023/A:10229881160441136.49307 – reference: ZălinescuCA comparision of constraint qualifications in infinite-dimensional convex programing revisitedJ. Austral. Math. Soc., Sen B19994035337810.1017/S033427000001095X0926.90077 – reference: BertsekasDPNedićAOzdaglarAEConvex Analysis and Optimization2003Belmont, MAAthena Scientific1140.90001 – reference: Cuong, D.V., Mordukhovich, B.S., Nam, N.M., Sandine, G: Fenchel-Rockafellar theorem in infinite dimensions via generalized relative interiors. arXiv:2104.13510 (2021) – reference: ZălinescuCConvex Analysis in General Vector Spaces2002SingaporeWorld Scientific10.1142/50211023.46003 – reference: LuanNNYaoJYenNDOn some generalized polyhedral convex constructionsNumer. Funct. Anal. Optim.2017295375703763473 – reference: MordukhovichBSVariational Analysis and Generalized Differentiation I: Basic Theory, II: Applications2006BerlinSpringer – reference: BonnansJFShapiroAPerturbation Analysis of Optimization Problems2000New YorkSpringer-Verlag10.1007/978-1-4612-1394-90966.49001 – reference: NgKFSongWFenchel duality in infnite-dimensional setting and its applicationsNonlinear Anal.200355845858201723110.1016/j.na.2003.07.0081045.90080 – reference: Flores-BazánFMastroeniGStrong duality in cone constrained nonconvex optimizationSIAM J. Optim.201323153169303310210.1137/1208614001285.90077 – reference: RockafellarRTConvex Analysis1970Princeton, NJPrinceton University Press10.1515/97814008731730193.18401 – reference: BorweinJMLewisASPartially finite convex programming, Part I: quasi-relative interiors and duality theoryMath. Program.199257154810.1007/BF015810720778.90049 – reference: RudinWFunctional Analysis19912nd edn.New YorkMcGraw-Hill0867.46001 – volume: 29 start-page: 537 year: 2017 ident: 647_CR9 publication-title: Numer. Funct. Anal. Optim. – volume-title: Convex Analysis in General Vector Spaces year: 2002 ident: 647_CR16 doi: 10.1142/5021 – volume: 40 start-page: 353 year: 1999 ident: 647_CR15 publication-title: J. Austral. Math. Soc., Sen B doi: 10.1017/S033427000001095X – volume: 90 start-page: 95 year: 1996 ident: 647_CR8 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF02192248 – volume: 23 start-page: 153 year: 2013 ident: 647_CR7 publication-title: SIAM J. Optim. doi: 10.1137/120861400 – volume-title: Convex Analysis and Optimization year: 2003 ident: 647_CR1 – volume-title: Variational Analysis and Generalized Differentiation I: Basic Theory, II: Applications year: 2006 ident: 647_CR10 – volume-title: Convex Analysis year: 1970 ident: 647_CR13 doi: 10.1515/9781400873173 – volume: 55 start-page: 845 year: 2003 ident: 647_CR12 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2003.07.008 – ident: 647_CR6 doi: 10.1080/02331934.2022.2048383 – volume: 66 start-page: 839 year: 2017 ident: 647_CR11 publication-title: Optimization doi: 10.1080/02331934.2015.1105225 – volume-title: Perturbation Analysis of Optimization Problems year: 2000 ident: 647_CR2 doi: 10.1007/978-1-4612-1394-9 – volume-title: Functional Analysis year: 1991 ident: 647_CR14 – volume: 115 start-page: 2542 year: 2003 ident: 647_CR3 publication-title: J. Math. Sci. doi: 10.1023/A:1022988116044 – volume: 15 start-page: 933 year: 2021 ident: 647_CR5 publication-title: Optim. Lett. doi: 10.1007/s11590-019-01447-4 – volume: 57 start-page: 15 year: 1992 ident: 647_CR4 publication-title: Math. Program. doi: 10.1007/BF01581072 |
| SSID | ssj0070091 |
| Score | 2.3036623 |
| Snippet | This paper addresses the study and applications of polyhedral duality in locally convex topological vector (LCTV) spaces. We first revisit the classical... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1503 |
| SubjectTerms | Analysis Convexity Mathematics Mathematics and Statistics Optimization |
| Title | Generalized Differentiation and Duality in Infinite Dimensions under Polyhedral Convexity |
| URI | https://link.springer.com/article/10.1007/s11228-022-00647-y https://www.proquest.com/docview/2759304235 |
| Volume | 30 |
| WOSCitedRecordID | wos000837575100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1877-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0070091 issn: 1877-0533 databaseCode: RSV dateStart: 20090601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66etCDb3F9kYM3LfSRbJqjrC56cFl0kfVUkjTBwtqVbRXrrzfJplsUFfTaJkOZSSYzzXzfAHBCAiwR84UnJMEeUsj3qKFwjVngM8Q5jySyzSZIvx-PRnTgQGFFXe1eX0laT92A3YLQsCnr5MkiJL1qESzp4y422_H27r72v0RHDTbNignxDNLUQWW-l_H5OGpizC_Xova06a3_7zs3wJqLLuH5bDlsggWZb4HVmzk1a7ENHhzRdPYuU3jh2qOUMwNBlutnFmZZwSyH17nKTEyqxz2ZQne9QqEBnU3hYDKuHmWq5cCuqVt_0zN2wLB3Oexeea6_gif0xiu9lCmCVUC5CkUosWIREkIyQxcQcq4juSDkMk6jQBmKGSEpU0xnc6jjI-0n0mgXtPJJLvcATDklWFCBuY5IsGSMxyavTIM0Uox1aBsEtZYT4bjHTQuMcdKwJhutJVpridVaUrXB6XzO84x549fRh7XxErcLiyQkmJrfNRFug7PaWM3rn6Xt_234AVgJjb1tlcshaJXTF3kElsVrmRXTY7s6PwAnceCh |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oFNSD3-J0ag7etLC2ydIeZTocbmPokHkqSZrgYHayTrH-9SZZu6GooNc2CeW95H007_d7AKfUJRKzqnCEpMTBCled0FC4BsytMsw59yW2zSZopxP0-2E3B4WlRbV7cSVpLfUc7OZ6hk1ZJ08WIelki7CEtccyhXy3d_eF_aU6arBpVkCpY5CmOVTm-zU-u6N5jPnlWtR6m8bG_75zE9bz6BJdTLfDFizIZBvW2jNq1nQHHnKi6cG7jNFl3h5lMlUQYol-ZmGWGRokqJmogYlJ9bgnU-iudygyoLMx6o6G2aOM9TqoburW3_SMXeg1rnr1ayfvr-AIffAmTswUJcoNufKEJ4liPhZCMkMX4HGuIznX4zKIfVcZihkhQ6aYzuZwrYq1nYj9PSglo0TuA4p5SIkIBeE6IiGSMR6YvDJ2Y18xVgvL4BZSjkTOPW5aYAyjOWuykVqkpRZZqUVZGc5mc56nzBu_jq4UyovyU5hGHiWh-V3jkzKcF8qav_55tYO_DT-BleteuxW1mp2bQ1j1jO5txUsFSpPxizyCZfE6GaTjY7tTPwC33OOF |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLa7PHLxpcdsmpj2KuijqsqCInkqeuLBW2a3i-uvNZFtXRQXx2iZDmZkkM8183wBs85AZKuoqUIazgFpaD1KkcE1EWBdUShkb6ptN8GYzublJWx9Q_L7avbqSHGAakKUpL_Yetd0bAt_CCJmVXSLl0ZJBfxTGKTYNwnz98rrai7mLIHzKlXAeIOq0hM18L-Pz0TSMN79ckfqTpzH7_2-eg5ky6iQHAzeZhxGTL8D0xTtla28RbksC6var0eSobJtSDAxHRO6eefhln7RzcprbNsaqbtw9FsA7zyUIRuuS1kOnf2e0k0MOsZ79xc1YgqvG8dXhSVD2XQiUW5BFoIXlzIaptJGKDLMipkoZgTQCkZQuwgsjaRIdhxapZ5RJhRUuy6P7der2Dx0vw1j-kJsVIFqmnKlUMekiFWaEkAnmmzrUsRViP61BWGk8UyUnObbG6GRDNmXUWua0lnmtZf0a7LzPeRwwcvw6er0yZFauzl4WcZbib5yY1WC3Mtzw9c_SVv82fAsmW0eN7Py0ebYGUxGa3hfCrMNY0X0yGzChnot2r7vpnfYNP4PsaQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Differentiation+and+Duality+in+Infinite+Dimensions+under+Polyhedral+Convexity&rft.jtitle=Set-valued+and+variational+analysis&rft.au=Cuong%2C+D.+V.&rft.au=Mordukhovich%2C+B.+S.&rft.au=Nam%2C+N.+M.&rft.au=Sandine%2C+G.&rft.date=2022-12-01&rft.pub=Springer+Netherlands&rft.issn=1877-0533&rft.eissn=1877-0541&rft.volume=30&rft.issue=4&rft.spage=1503&rft.epage=1526&rft_id=info:doi/10.1007%2Fs11228-022-00647-y&rft.externalDocID=10_1007_s11228_022_00647_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0533&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0533&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0533&client=summon |