Generalized Differentiation and Duality in Infinite Dimensions under Polyhedral Convexity

This paper addresses the study and applications of polyhedral duality in locally convex topological vector (LCTV) spaces. We first revisit the classical Rockafellar’s proper separation theorem for two convex sets one of which is polyhedral and then present its LCTV extension replacing the relative i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Set-valued and variational analysis Ročník 30; číslo 4; s. 1503 - 1526
Hlavní autoři: Cuong, D. V., Mordukhovich, B. S., Nam, N. M., Sandine, G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.12.2022
Springer Nature B.V
Témata:
ISSN:1877-0533, 1877-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper addresses the study and applications of polyhedral duality in locally convex topological vector (LCTV) spaces. We first revisit the classical Rockafellar’s proper separation theorem for two convex sets one of which is polyhedral and then present its LCTV extension replacing the relative interior by its quasi-relative interior counterpart. Then we apply this result to derive enhanced calculus rules for normals to convex sets, coderivatives of convex set-valued mappings, and subgradients of extended-real-valued functions under certain polyhedrality requirements in LCTV spaces by developing a geometric approach. We also establish in this way new results on conjugate calculus and duality in convex optimization with relaxed qualification conditions in polyhedral settings. Our developments contain significant improvements to a number of existing results obtained by Ng and Song (Nonlinear Anal. 55 , 845–858, 12 ).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-022-00647-y