Isolation of Cycles
For any graph G , let ι c ( G ) denote the size of a smallest set D of vertices of G such that the graph obtained from G by deleting the closed neighbourhood of D contains no cycle. We prove that if G is a connected n -vertex graph that is not a triangle, then ι c ( G ) ≤ n / 4 . We also show that t...
Uložené v:
| Vydané v: | Graphs and combinatorics Ročník 36; číslo 3; s. 631 - 637 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Tokyo
Springer Japan
01.05.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0911-0119, 1435-5914 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | For any graph
G
, let
ι
c
(
G
)
denote the size of a smallest set
D
of vertices of
G
such that the graph obtained from
G
by deleting the closed neighbourhood of
D
contains no cycle. We prove that if
G
is a connected
n
-vertex graph that is not a triangle, then
ι
c
(
G
)
≤
n
/
4
. We also show that the bound is sharp. Consequently, this settles a problem of Caro and Hansberg. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0911-0119 1435-5914 |
| DOI: | 10.1007/s00373-020-02143-2 |