Accelerated failure time models with error-prone response and nonlinear covariates

As a specific application of survival analysis, one of main interests in medical studies aims to analyze the patients’ survival time of a specific cancer. Typically, gene expressions are treated as covariates to characterize the survival time. In the framework of survival analysis, the accelerated f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Statistics and computing Ročník 34; číslo 6
Hlavný autor: Chen, Li-Pang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.12.2024
Springer Nature B.V
Predmet:
ISSN:0960-3174, 1573-1375
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As a specific application of survival analysis, one of main interests in medical studies aims to analyze the patients’ survival time of a specific cancer. Typically, gene expressions are treated as covariates to characterize the survival time. In the framework of survival analysis, the accelerated failure time model in the parametric form is perhaps a common approach. However, gene expressions are possibly nonlinear and the survival time as well as censoring status are subject to measurement error. In this paper, we aim to tackle those complex features simultaneously. We first correct for measurement error in survival time and censoring status, and use them to develop a corrected Buckley–James estimator. After that, we use the boosting algorithm with the cubic spline estimation method to iteratively recover nonlinear relationship between covariates and survival time. Theoretically, we justify the validity of measurement error correction and estimation procedure. Numerical studies show that the proposed method improves the performance of estimation and is able to capture informative covariates. The methodology is primarily used to analyze the breast cancer data provided by the Netherlands Cancer Institute for research.
AbstractList As a specific application of survival analysis, one of main interests in medical studies aims to analyze the patients’ survival time of a specific cancer. Typically, gene expressions are treated as covariates to characterize the survival time. In the framework of survival analysis, the accelerated failure time model in the parametric form is perhaps a common approach. However, gene expressions are possibly nonlinear and the survival time as well as censoring status are subject to measurement error. In this paper, we aim to tackle those complex features simultaneously. We first correct for measurement error in survival time and censoring status, and use them to develop a corrected Buckley–James estimator. After that, we use the boosting algorithm with the cubic spline estimation method to iteratively recover nonlinear relationship between covariates and survival time. Theoretically, we justify the validity of measurement error correction and estimation procedure. Numerical studies show that the proposed method improves the performance of estimation and is able to capture informative covariates. The methodology is primarily used to analyze the breast cancer data provided by the Netherlands Cancer Institute for research.
ArticleNumber 183
Author Chen, Li-Pang
Author_xml – sequence: 1
  givenname: Li-Pang
  surname: Chen
  fullname: Chen, Li-Pang
  email: lchen723@nccu.edu.tw
  organization: Department of Statistics, National Chengchi University
BookMark eNp9kE1LAzEURYNUsK3-AVcB19G8yUxmsizFLygIouuQSV40ZTpTk6nivzdaQXDR1du8c-_lzMikH3ok5Bz4JXBeXyWAoigYL0oGvFTA1BGZQlULBqKuJmTKleRMQF2ekFlKa84BpCin5HFhLXYYzYiOehO6XUQ6hg3SzeCwS_QjjK8UYxwi28ZcSiOm7dAnpKZ3NM_oQo8mUju8mxhyTDolx950Cc9-75w831w_Le_Y6uH2frlYMStAjcxJ16pWYiuE8c42FXJUlfRlAYLLUhW2tg5az8G1vvRC1K21wjllG9P4Soo5udjn5l1vO0yjXg-72OdKLYDLGkqQVf4q9l82DilF9Hobw8bETw1cf7vTe3c6u9M_7rTKUPMPsmE0Yxj6MWZHh1GxR1Pu6V8w_q06QH0BjaGG8Q
CitedBy_id crossref_primary_10_61186_jss_19_1_12
crossref_primary_10_1186_s12885_025_14040_z
crossref_primary_10_1093_biostatistics_kxaf014
crossref_primary_10_1080_00949655_2025_2494139
crossref_primary_10_1109_ACCESS_2025_3568196
Cites_doi 10.1093/bioinformatics/bti324
10.2202/1544-6115.1550
10.1080/01621459.2000.10474321
10.1177/1471082X14565526
10.3390/cancers14225538
10.4236/pp.2012.32021
10.4048/jbc.2017.20.3.246
10.1214/aos/1013203451
10.18632/oncotarget.13716
10.1080/10618600.2022.2067548
10.1186/s13690-021-00617-0
10.3389/fonc.2020.00865
10.1093/bioinformatics/bth469
10.1201/b14978
10.1186/s12859-024-05831-5
10.1093/bioinformatics/bti422
10.1201/9781420010138
10.1093/ije/dyp392
10.1080/01621459.1958.10501452
10.1002/sta4.209
10.1093/biomet/66.3.429
10.1177/1740774510382801
10.1093/biomet/90.2.341
10.1111/biom.13898
10.1198/016214503000125
10.1111/j.1541-0420.2006.00562.x
10.1214/20-AOS2028
10.1093/biostatistics/kxn005
10.1093/biomet/63.3.449
10.1093/biomet/62.2.269
10.1002/sim.8793
10.1056/NEJMoa021967
10.1111/biom.13331
10.1002/sim.8786
10.1007/s10463-020-00755-2
10.1177/09622802211041759
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11222-024-10491-9
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
ExternalDocumentID 10_1007_s11222_024_10491_9
GrantInformation_xml – fundername: National Science and Technology Council
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-d6db9b6eb33afdc85e0e956f421306492c7cd1bf01dbf4f337bcc3dd9c8a8f563
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001315743000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-3174
IngestDate Sun Nov 09 08:21:25 EST 2025
Sat Nov 29 03:32:46 EST 2025
Tue Nov 18 21:37:28 EST 2025
Fri Feb 21 02:38:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Boosting
Regression calibration
Misclassification
Measurement error
Cubic spline
Variable selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d6db9b6eb33afdc85e0e956f421306492c7cd1bf01dbf4f337bcc3dd9c8a8f563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3106714165
PQPubID 2043829
ParticipantIDs proquest_journals_3106714165
crossref_primary_10_1007_s11222_024_10491_9
crossref_citationtrail_10_1007_s11222_024_10491_9
springer_journals_10_1007_s11222_024_10491_9
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chen, Qiu (CR8) 2023; 79
Friedman (CR18) 2001; 29
Lu, Li (CR32) 2008; 9
Miller (CR33) 1976; 63
Gui, Li (CR20) 2005; 21
Korn, Dodd, Freidlin (CR27) 2010; 7
CR38
Mustefa, Chen (CR35) 2021; 79
CR37
Huang, Wang (CR21) 2000; 95
Bühlmann, Yu (CR3) 2003; 98
Jin, Lin, Wei, Ying (CR23) 2003; 90
CR10
Li, Ma (CR30) 2013
Huang, Ma, Xie (CR22) 2006; 62
Kalbfleisch, Prentice (CR25) 1980
Ein-Dor, Kela, Getz, Givol, Domany (CR16) 2005; 21
Kaplan, Meier (CR26) 1958; 53
Fatima, Tariq, Malik, Qasim, Haq (CR17) 2017; 20
Cleophas, Zwinderman (CR13) 2012; 3
Cox (CR14) 1975; 62
Li, Luan (CR29) 2005; 21
Buckley, James (CR2) 1979; 66
van de Vijver, He, van’t Veer, Dai, Hart, Voskuil (CR40) 2002; 347
Cao, Yan, Bai, Tang, Si, Bai, Tuoheti, Guo, Yisha, Liu (CR4) 2022; 14
Chen, Jia, Mercola, Xie (CR12) 2013; 2013
CR9
Carroll, Ruppert, Stefanski, Crainiceanu (CR5) 2006
Gellar, Colantuoni, Needham, Crainiceanu (CR19) 2015; 15
JingSong, Hong, Yang, Duo, Li, WeiCai, XueYing, YouSheng, YiWen, Yue, Zou (CR24) 2017; 8
Barnwal, Cho, Hocking (CR1) 2022; 31
Chen (CR6) 2018; 7
Ding, Ma, Wu, Liu (CR15) 2018; 40
Lee, Chen, Ishwaran (CR28) 2021; 49
Oh, Shepherd, Lumley, Shaw (CR36) 2021; 40
Chen, Huang (CR7) 2024; 25
Chen, Yi (CR11) 2024; 34
Sarfati, Blakely, Pearce (CR39) 2010; 39
Liu, Song, Wang, Ouyang (CR31) 2020; 10
Miller (CR34) 1981
Wang, Wang (CR41) 2010; 9
10491_CR9
DK Lee (10491_CR28) 2021; 49
RJ Carroll (10491_CR5) 2006
Y Huang (10491_CR21) 2000; 95
JD Kalbfleisch (10491_CR25) 1980
JE Gellar (10491_CR19) 2015; 15
Y Cao (10491_CR4) 2022; 14
L Ein-Dor (10491_CR16) 2005; 21
D Sarfati (10491_CR39) 2010; 39
MJ van de Vijver (10491_CR40) 2002; 347
J Huang (10491_CR22) 2006; 62
EL Kaplan (10491_CR26) 1958; 53
L-P Chen (10491_CR7) 2024; 25
DR Cox (10491_CR14) 1975; 62
W Lu (10491_CR32) 2008; 9
YA Mustefa (10491_CR35) 2021; 79
A Fatima (10491_CR17) 2017; 20
H Li (10491_CR29) 2005; 21
10491_CR10
Z Wang (10491_CR41) 2010; 9
EJ Oh (10491_CR36) 2021; 40
10491_CR38
10491_CR37
Y Chen (10491_CR12) 2013; 2013
RG Miller (10491_CR33) 1976; 63
JH Friedman (10491_CR18) 2001; 29
L-P Chen (10491_CR6) 2018; 7
P Bühlmann (10491_CR3) 2003; 98
J Gui (10491_CR20) 2005; 21
J Buckley (10491_CR2) 1979; 66
TJ Cleophas (10491_CR13) 2012; 3
F Ding (10491_CR15) 2018; 40
J Li (10491_CR30) 2013
A Barnwal (10491_CR1) 2022; 31
RG Miller (10491_CR34) 1981
EL Korn (10491_CR27) 2010; 7
L-P Chen (10491_CR11) 2024; 34
L-P Chen (10491_CR8) 2023; 79
H JingSong (10491_CR24) 2017; 8
Z Jin (10491_CR23) 2003; 90
D Liu (10491_CR31) 2020; 10
References_xml – volume: 21
  start-page: 2403
  issue: 10
  year: 2005
  end-page: 2409
  ident: CR29
  article-title: Boosting proportional hazards models using smoothing splines, with applications to high-dimensional microarray data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti324
– volume: 9
  issue: 1
  year: 2010
  ident: CR41
  article-title: Buckley–James boosting for survival analysis with high-dimensional biomarker data
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1550
– volume: 95
  start-page: 1209
  year: 2000
  end-page: 1219
  ident: CR21
  article-title: Cox regression with accurate covariates unascertainable: a nonparametric correction approach
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2000.10474321
– volume: 15
  start-page: 256
  issue: 3
  year: 2015
  end-page: 278
  ident: CR19
  article-title: Cox regression models with functional covariates for survival data
  publication-title: Stat. Model.
  doi: 10.1177/1471082X14565526
– volume: 14
  start-page: 5538
  year: 2022
  ident: CR4
  article-title: UCHL5 promotes proliferation and migration of bladder cancer cells by activating c-Myc via AKT/mTOR signaling
  publication-title: Cancers
  doi: 10.3390/cancers14225538
– year: 1980
  ident: CR25
  publication-title: The Statistical Analysis of Failure Time Data
– volume: 3
  start-page: 139
  year: 2012
  end-page: 147
  ident: CR13
  article-title: The assessment of non-linear effects in clinical research
  publication-title: Pharmacol. Pharm.
  doi: 10.4236/pp.2012.32021
– volume: 20
  start-page: 246
  year: 2017
  end-page: 253
  ident: CR17
  article-title: Copy number profiling of mammaprint genes reveals association with the prognosis of breast cancer patients
  publication-title: J. Breast Cancer
  doi: 10.4048/jbc.2017.20.3.246
– ident: CR37
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: CR18
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 8
  start-page: 2585
  year: 2017
  end-page: 2593
  ident: CR24
  article-title: siRNA-mediated suppression of collagen type iv alpha 2 (COL4A2) mRNA inhibits triple-negative breast cancer cell proliferation and migration
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.13716
– ident: CR10
– volume: 40
  start-page: 900
  year: 2018
  end-page: 904
  ident: CR15
  article-title: Influence of UCHL5 on proliferation and apoptosis of SW527 breast cancer cells
  publication-title: Chin. J. Oncol.
– volume: 31
  start-page: 1292
  issue: 4
  year: 2022
  end-page: 1302
  ident: CR1
  article-title: Survival regression with accelerated failure time model in XGBoost
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2022.2067548
– volume: 34
  start-page: 439
  year: 2024
  end-page: 458
  ident: CR11
  article-title: Unbiased boosting estimation for censored survival data
  publication-title: Stat. Sin.
– volume: 79
  start-page: 88
  issue: 1
  year: 2021
  ident: CR35
  article-title: Accelerated failure-time model with weighted least-squares estimation: application on survival of HIV positives
  publication-title: Arch. Public Health
  doi: 10.1186/s13690-021-00617-0
– volume: 10
  start-page: 865
  year: 2020
  ident: CR31
  article-title: Ubiquitin C-Terminal Hydrolase L5 (UCHL5) accelerates the growth of endometrial cancer via activating the Wnt/ -catenin signaling pathway
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.00865
– volume: 21
  start-page: 171
  issue: 2
  year: 2005
  end-page: 178
  ident: CR16
  article-title: Outcome signature genes in breast cancer: is there a unique set?
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth469
– year: 2013
  ident: CR30
  publication-title: Survival Analysis in Medicine and Genetics
  doi: 10.1201/b14978
– volume: 25
  start-page: 265
  year: 2024
  ident: CR7
  article-title: AFFECT: an R package for accelerated functional failure time model with error contaminated survival times and applications to gene expression data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-024-05831-5
– volume: 21
  start-page: 3001
  year: 2005
  end-page: 3008
  ident: CR20
  article-title: Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti422
– year: 2006
  ident: CR5
  publication-title: Measurement Error in Nonlinear Model
  doi: 10.1201/9781420010138
– year: 1981
  ident: CR34
  publication-title: Survival Analysis
– volume: 39
  start-page: 598
  year: 2010
  end-page: 610
  ident: CR39
  article-title: Measuring cancer survival in populations: relative survival vs cancer-specific survival
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyp392
– ident: CR38
– volume: 53
  start-page: 457
  year: 1958
  end-page: 481
  ident: CR26
  article-title: Nonparametric estimation from incomplete observations
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1958.10501452
– volume: 7
  year: 2018
  ident: CR6
  article-title: Semeparametric estimation for the accelerated failure time model with length-biased sampling and covariate measurement error
  publication-title: Stat
  doi: 10.1002/sta4.209
– ident: CR9
– volume: 66
  start-page: 429
  year: 1979
  end-page: 436
  ident: CR2
  article-title: Linear regression with censored data
  publication-title: Biometrika
  doi: 10.1093/biomet/66.3.429
– volume: 7
  start-page: 626
  year: 2010
  end-page: 633
  ident: CR27
  article-title: Measurement error in the timing of events: effect on survival analyses in randomized clinical trials
  publication-title: Clin. Trials
  doi: 10.1177/1740774510382801
– volume: 90
  start-page: 341
  issue: 2
  year: 2003
  end-page: 353
  ident: CR23
  article-title: Rank-based inference for the accelerated failure time model
  publication-title: Biometrika
  doi: 10.1093/biomet/90.2.341
– volume: 79
  start-page: 3929
  year: 2023
  end-page: 3940
  ident: CR8
  article-title: Analysis of length-biased and partly interval-censored survival data with mismeasured covariates
  publication-title: Biometrics
  doi: 10.1111/biom.13898
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 8
  ident: CR12
  article-title: A gradient boosting algorithm for survival analysis via direct optimization of concordance index
  publication-title: Comput. Math. Methods Med.
– volume: 98
  start-page: 324
  issue: 462
  year: 2003
  end-page: 339
  ident: CR3
  article-title: Boosting with the L2 loss: regression and classification
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214503000125
– volume: 62
  start-page: 813
  issue: 3
  year: 2006
  end-page: 820
  ident: CR22
  article-title: Regularized estimation in the accelerated failure time model with high-dimensional covariates
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00562.x
– volume: 49
  start-page: 2101
  issue: 4
  year: 2021
  end-page: 2128
  ident: CR28
  article-title: Boosted nonparametric hazards with time-dependent covariates
  publication-title: Ann. Stat.
  doi: 10.1214/20-AOS2028
– volume: 9
  start-page: 658
  issue: 4
  year: 2008
  end-page: 667
  ident: CR32
  article-title: Boosting method for nonlinear transformation models with censored survival data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxn005
– volume: 63
  start-page: 449
  year: 1976
  end-page: 64
  ident: CR33
  article-title: Least squares regression with censored data
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.449
– volume: 62
  start-page: 269
  year: 1975
  end-page: 276
  ident: CR14
  article-title: Partial likelihood
  publication-title: Biometrika
  doi: 10.1093/biomet/62.2.269
– volume: 40
  start-page: 631
  issue: 3
  year: 2021
  end-page: 649
  ident: CR36
  article-title: Raking and regression calibration: Methods to address bias from correlated covariate and time-to-event error
  publication-title: Stat. Med.
  doi: 10.1002/sim.8793
– volume: 347
  start-page: 1999
  year: 2002
  end-page: 2009
  ident: CR40
  article-title: A gene-expression signature as a predictor of survival in breast cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa021967
– volume: 40
  start-page: 900
  year: 2018
  ident: 10491_CR15
  publication-title: Chin. J. Oncol.
– volume: 8
  start-page: 2585
  year: 2017
  ident: 10491_CR24
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.13716
– volume: 20
  start-page: 246
  year: 2017
  ident: 10491_CR17
  publication-title: J. Breast Cancer
  doi: 10.4048/jbc.2017.20.3.246
– volume: 49
  start-page: 2101
  issue: 4
  year: 2021
  ident: 10491_CR28
  publication-title: Ann. Stat.
  doi: 10.1214/20-AOS2028
– volume: 31
  start-page: 1292
  issue: 4
  year: 2022
  ident: 10491_CR1
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2022.2067548
– volume-title: The Statistical Analysis of Failure Time Data
  year: 1980
  ident: 10491_CR25
– ident: 10491_CR9
  doi: 10.1111/biom.13331
– volume: 95
  start-page: 1209
  year: 2000
  ident: 10491_CR21
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2000.10474321
– volume-title: Survival Analysis in Medicine and Genetics
  year: 2013
  ident: 10491_CR30
  doi: 10.1201/b14978
– volume: 79
  start-page: 88
  issue: 1
  year: 2021
  ident: 10491_CR35
  publication-title: Arch. Public Health
  doi: 10.1186/s13690-021-00617-0
– ident: 10491_CR38
  doi: 10.1002/sim.8786
– ident: 10491_CR10
  doi: 10.1007/s10463-020-00755-2
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10491_CR12
  publication-title: Comput. Math. Methods Med.
– volume: 9
  issue: 1
  year: 2010
  ident: 10491_CR41
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1550
– volume-title: Survival Analysis
  year: 1981
  ident: 10491_CR34
– volume: 98
  start-page: 324
  issue: 462
  year: 2003
  ident: 10491_CR3
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214503000125
– volume: 34
  start-page: 439
  year: 2024
  ident: 10491_CR11
  publication-title: Stat. Sin.
– volume: 25
  start-page: 265
  year: 2024
  ident: 10491_CR7
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-024-05831-5
– ident: 10491_CR37
  doi: 10.1177/09622802211041759
– volume: 7
  year: 2018
  ident: 10491_CR6
  publication-title: Stat
  doi: 10.1002/sta4.209
– volume: 62
  start-page: 269
  year: 1975
  ident: 10491_CR14
  publication-title: Biometrika
  doi: 10.1093/biomet/62.2.269
– volume: 66
  start-page: 429
  year: 1979
  ident: 10491_CR2
  publication-title: Biometrika
  doi: 10.1093/biomet/66.3.429
– volume: 90
  start-page: 341
  issue: 2
  year: 2003
  ident: 10491_CR23
  publication-title: Biometrika
  doi: 10.1093/biomet/90.2.341
– volume: 39
  start-page: 598
  year: 2010
  ident: 10491_CR39
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyp392
– volume: 53
  start-page: 457
  year: 1958
  ident: 10491_CR26
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1958.10501452
– volume: 7
  start-page: 626
  year: 2010
  ident: 10491_CR27
  publication-title: Clin. Trials
  doi: 10.1177/1740774510382801
– volume-title: Measurement Error in Nonlinear Model
  year: 2006
  ident: 10491_CR5
  doi: 10.1201/9781420010138
– volume: 10
  start-page: 865
  year: 2020
  ident: 10491_CR31
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.00865
– volume: 40
  start-page: 631
  issue: 3
  year: 2021
  ident: 10491_CR36
  publication-title: Stat. Med.
  doi: 10.1002/sim.8793
– volume: 347
  start-page: 1999
  year: 2002
  ident: 10491_CR40
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa021967
– volume: 62
  start-page: 813
  issue: 3
  year: 2006
  ident: 10491_CR22
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00562.x
– volume: 15
  start-page: 256
  issue: 3
  year: 2015
  ident: 10491_CR19
  publication-title: Stat. Model.
  doi: 10.1177/1471082X14565526
– volume: 21
  start-page: 171
  issue: 2
  year: 2005
  ident: 10491_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth469
– volume: 3
  start-page: 139
  year: 2012
  ident: 10491_CR13
  publication-title: Pharmacol. Pharm.
  doi: 10.4236/pp.2012.32021
– volume: 21
  start-page: 3001
  year: 2005
  ident: 10491_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti422
– volume: 9
  start-page: 658
  issue: 4
  year: 2008
  ident: 10491_CR32
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxn005
– volume: 29
  start-page: 1189
  year: 2001
  ident: 10491_CR18
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 79
  start-page: 3929
  year: 2023
  ident: 10491_CR8
  publication-title: Biometrics
  doi: 10.1111/biom.13898
– volume: 21
  start-page: 2403
  issue: 10
  year: 2005
  ident: 10491_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti324
– volume: 63
  start-page: 449
  year: 1976
  ident: 10491_CR33
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.449
– volume: 14
  start-page: 5538
  year: 2022
  ident: 10491_CR4
  publication-title: Cancers
  doi: 10.3390/cancers14225538
SSID ssj0011634
Score 2.406762
Snippet As a specific application of survival analysis, one of main interests in medical studies aims to analyze the patients’ survival time of a specific cancer....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial Intelligence
Cancer
Computer Science
Error analysis
Error correction
Failure times
Nonlinear response
Original Paper
Probability and Statistics in Computer Science
Statistical Theory and Methods
Statistics and Computing/Statistics Programs
Survival
Survival analysis
Time measurement
Title Accelerated failure time models with error-prone response and nonlinear covariates
URI https://link.springer.com/article/10.1007/s11222-024-10491-9
https://www.proquest.com/docview/3106714165
Volume 34
WOSCitedRecordID wos001315743000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcBgHBgPEYKAcuEGkpsna5jghJi5MaDy0W9XmISGhDrVjvx-nj1UgQIJzk7R17Phz4nwGuHAkllrwgKLvFVTowNBEW48yboTxFZOJEWWxiXA6jeZzeV9fCiuabPfmSLJcqdvLbgx9GUWfgkuHkIzKTdhCdxc5c5w9PK_PDhBhlKRRiM1xhQlFfVXm-zE-u6MWY345Fi29zaT3v-_cg90aXZJxpQ77sGGyPvSayg2kNuQ-7Nyt2VqLPnQd4qwImw9gNlYKXZFjkNDEJi8ubZ24CvSkLJpTELdzS0yeL3KKP5IZkldptoYkmSZZRb2R5EQtVhiHOyh7CE-Tm8frW1oXXqAKLXJJXZEpmQYYZ_PEahWNjGcwjrLCZy5gkb4KlWap9ZhOrbCch6lSXGupoiSyo4AfQQdfZ46BhKgjnKuUY2CEsZiX-tz4XqBSBHqJF8oBsEb-sapZyV1xjNe45VN28oxRnnEpzxj7XK77vFWcHL-2HjbTGtf2WcTcMecxBKOjAVw109g-_nm0k781P4WuX2qCy38ZQmeZv5sz2FYrnNX8vNTbD4BW5nA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CtaD1apYrboHb7qQZLd5HIsoFdsitUpvIdkHCJJKUvv7nc2jQVFBz9lsktnZ_b7Jzn4DcGFELCVnLkXs5ZRLV9FIaovaTHHlCDuIFM-LTXjjsT-bBQ_lobCsynavtiTzlbo-7GYjllHEFFw6eGDTYB02OCKWSeSbPD6v9g6QYeSiUcjNcYXxeHlU5vs-PsNRzTG_bIvmaHPb-t977sJOyS5Jv3CHPVhTSRtaVeUGUk7kNmyPVmqtWRuahnEWgs37MOkLgVBkFCQk0dGLSVsnpgI9yYvmZMT8uSUqTecpxQ9JFEmLNFtFokSSpJDeiFIi5kuMww2VPYCn25vp9YCWhReowBm5oKbIVBC7GGezSEvh95SlMI7SaG0TsASO8IS0Y23ZMtZcM-bFQjApA-FHvu657BAa-Dh1BMRDH2FMxAwDI4zFrNhhyrFcESPRiywv6IBd2T8UpSq5KY7xGtZ6ysaeIdozzO0Z4j2Xq3veCk2OX1t3q2ENy_mZhcwo59lIRnsduKqGsb78c2_Hf2t-DluD6WgYDu_G9yfQdHKvMLkwXWgs0nd1CptiiSOcnuU-_AFV0OlU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFJkPTqfidGoefNOwpsna9XGoQ1HH8MbeSpsLCNKNbu73e9LLpqKC-Nw0bXNOcr7TnHwfwIklsVSCexRjr6BCeZpGyjiUcS20K1kQaZGJTfj9fmc4DAYfTvFn1e7llmR-psGyNCXT1liZ1uLgG8O4RjG-4DIiAkaDZVgRVjTI5usPz_N9BEQbGYEU4nRcbXxRHJv5vo_PoWmBN79skWaRp1f7_ztvwkaBOkk3d5MtWNJJHWqlogMpJngd1u_mLK6TOlQtEs2JnLfhvislhijLLKGIiV5sOTuxyvQkE9OZEPtHl-g0HaUUPyrRJM3LbzWJEkWSnJIjSokczTA_txB3B556l4_nV7QQZKASZ-qUWvGpIPYw_-aRUbLT1o7G_MoIl9lEJnClLxWLjcNUbITh3I-l5EoFshN1TNvju1DBx-k9ID76Ducy5pgwYY7mxC7XruPJGAFg5PhBA1hpi1AWbOVWNOM1XPAs2_EMcTzDbDxDvOd0fs845-r4tXWzNHFYzNtJyC2jHkOQ2m7AWWnSxeWfe9v_W_NjWBtc9MLb6_7NAVTdzClsiUwTKtP0TR_CqpyhgdOjzJ3fAby68jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+failure+time+models+with+error-prone+response+and+nonlinear+covariates&rft.jtitle=Statistics+and+computing&rft.au=Li-Pang%2C+Chen&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=34&rft.issue=6&rft_id=info:doi/10.1007%2Fs11222-024-10491-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon