Next-generation antivirus for JavaScript malware detection based on dynamic features

There are many kinds of Exploit Kits, each one being built with several vulnerabilities, but almost all of them are written in JavaScript. So, we created an antivirus, endowed with machine learning, expert in detecting JavaScript malware based on Runtime Behaviors. In our methodology, JavaScript is...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge and information systems Vol. 66; no. 2; pp. 1337 - 1370
Main Authors: de Lima, Sidney M. L., Souza, Danilo M., Pinheiro, Ricardo P., Silva, Sthéfano H. M. T., Lopes, Petrônio G., de Lima, Rafael D. T., de Oliveira, Jemerson R., Monteiro, Thyago de A., Fernandes, Sérgio M. M., Albuquerque, Edison de Q., da Silva, Washington W. A., dos Santos, Wellington P.
Format: Journal Article
Language:English
Published: London Springer London 01.02.2024
Springer Nature B.V
Subjects:
ISSN:0219-1377, 0219-3116
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract There are many kinds of Exploit Kits, each one being built with several vulnerabilities, but almost all of them are written in JavaScript. So, we created an antivirus, endowed with machine learning, expert in detecting JavaScript malware based on Runtime Behaviors. In our methodology, JavaScript is executed, in a controlled environment. The goal was to investigate suspicious file behavior. Our antivirus, as a whole, dynamically monitors and ponders 7690 suspicious behaviors that the JavaScript file can do in Windows 7. As experiments, the authorial antivirus is compared to antiviruses based on deep as based on shallow networks. Our antivirus achieves an average accuracy of 99.75% in the distinction between benign and malware, accompanied by a training time of 8.92 s. Establishing the relationship between accuracy and training time is essential in information security. Eight (8) new malware are released every second. An antivirus with excessive training time can become obsolete even when released. As our proposed model can overcome the limitations of state-of-the-art, our antivirus combines high accuracy and fast training. In addition, the authorial antivirus is able to detect JavaScript malware, endowed with digital antiforense, such as obfuscates, polymorphic and fileless attacks.
AbstractList There are many kinds of Exploit Kits, each one being built with several vulnerabilities, but almost all of them are written in JavaScript. So, we created an antivirus, endowed with machine learning, expert in detecting JavaScript malware based on Runtime Behaviors. In our methodology, JavaScript is executed, in a controlled environment. The goal was to investigate suspicious file behavior. Our antivirus, as a whole, dynamically monitors and ponders 7690 suspicious behaviors that the JavaScript file can do in Windows 7. As experiments, the authorial antivirus is compared to antiviruses based on deep as based on shallow networks. Our antivirus achieves an average accuracy of 99.75% in the distinction between benign and malware, accompanied by a training time of 8.92 s. Establishing the relationship between accuracy and training time is essential in information security. Eight (8) new malware are released every second. An antivirus with excessive training time can become obsolete even when released. As our proposed model can overcome the limitations of state-of-the-art, our antivirus combines high accuracy and fast training. In addition, the authorial antivirus is able to detect JavaScript malware, endowed with digital antiforense, such as obfuscates, polymorphic and fileless attacks.
There are many kinds of Exploit Kits, each one being built with several vulnerabilities, but almost all of them are written in JavaScript. So, we created an antivirus, endowed with machine learning, expert in detecting JavaScript malware based on Runtime Behaviors. In our methodology, JavaScript is executed, in a controlled environment. The goal was to investigate suspicious file behavior. Our antivirus, as a whole, dynamically monitors and ponders 7690 suspicious behaviors that the JavaScript file can do in Windows 7. As experiments, the authorial antivirus is compared to antiviruses based on deep as based on shallow networks. Our antivirus achieves an average accuracy of 99.75% in the distinction between benign and malware, accompanied by a training time of 8.92 s. Establishing the relationship between accuracy and training time is essential in information security. Eight (8) new malware are released every second. An antivirus with excessive training time can become obsolete even when released. As our proposed model can overcome the limitations of state-of-the-art, our antivirus combines high accuracy and fast training. In addition, the authorial antivirus is able to detect JavaScript malware, endowed with digital antiforense, such as obfuscates, polymorphic and fileless attacks.
Author de Lima, Rafael D. T.
dos Santos, Wellington P.
da Silva, Washington W. A.
Souza, Danilo M.
Pinheiro, Ricardo P.
Monteiro, Thyago de A.
Fernandes, Sérgio M. M.
Lopes, Petrônio G.
de Oliveira, Jemerson R.
de Lima, Sidney M. L.
Silva, Sthéfano H. M. T.
Albuquerque, Edison de Q.
Author_xml – sequence: 1
  givenname: Sidney M. L.
  orcidid: 0000-0002-4350-9689
  surname: de Lima
  fullname: de Lima, Sidney M. L.
  email: sidney.lima@ufpe.br, smll@ecomp.poli.br
  organization: Electronics and Systems Department, Federal University of Pernambuco
– sequence: 2
  givenname: Danilo M.
  surname: Souza
  fullname: Souza, Danilo M.
  organization: Computing Department, University of Pernambuco
– sequence: 3
  givenname: Ricardo P.
  surname: Pinheiro
  fullname: Pinheiro, Ricardo P.
  organization: Computing Department, University of Pernambuco
– sequence: 4
  givenname: Sthéfano H. M. T.
  surname: Silva
  fullname: Silva, Sthéfano H. M. T.
  organization: Computing Department, University of Pernambuco
– sequence: 5
  givenname: Petrônio G.
  surname: Lopes
  fullname: Lopes, Petrônio G.
  organization: Computing Department, University of Pernambuco
– sequence: 6
  givenname: Rafael D. T.
  surname: de Lima
  fullname: de Lima, Rafael D. T.
  organization: Computing Department, University of Pernambuco
– sequence: 7
  givenname: Jemerson R.
  surname: de Oliveira
  fullname: de Oliveira, Jemerson R.
  organization: Computing Department, University of Pernambuco
– sequence: 8
  givenname: Thyago de A.
  surname: Monteiro
  fullname: Monteiro, Thyago de A.
  organization: Computing Department, University of Pernambuco
– sequence: 9
  givenname: Sérgio M. M.
  surname: Fernandes
  fullname: Fernandes, Sérgio M. M.
  organization: Computing Department, University of Pernambuco
– sequence: 10
  givenname: Edison de Q.
  surname: Albuquerque
  fullname: Albuquerque, Edison de Q.
  organization: Computing Department, University of Pernambuco
– sequence: 11
  givenname: Washington W. A.
  surname: da Silva
  fullname: da Silva, Washington W. A.
  organization: Biomedical Engineering Department, Federal University of Pernambuco
– sequence: 12
  givenname: Wellington P.
  surname: dos Santos
  fullname: dos Santos, Wellington P.
  organization: Biomedical Engineering Department, Federal University of Pernambuco
BookMark eNp9kD1PwzAQhi1UJErhDzBFYg744iSOR1TxqQoGymw5zqVy1TrFdgr995imEhJDp7vhfe7jOScj21kk5AroDVDKbz1QgCKlGUspCF6l-QkZ0wxEygDK0aEHxvkZOfd-SSnwEmBM5q_4HdIFWnQqmM4mygazNa73Sdu55EVt1bt2ZhOStVp9KYdJgwH1Plorj00Sm2Zn1dropEUVeof-gpy2auXx8lAn5OPhfj59Smdvj8_Tu1mqGYiQNqUqMS-oaJFjQTVyKGqma6ACMUfFG8Cc1U0tmviFZmUpqiZDyPIiBnXFJuR6mLtx3WePPshl1zsbV8pMQFFRDgJiKhtS2nXeO2zlxpm1cjsJVP7ak4M9Ge3JvT2ZR6j6B2kT9oaCU2Z1HGUD6uMeu0D3d9UR6gcXpYbk
CitedBy_id crossref_primary_10_1016_j_asoc_2025_113537
crossref_primary_10_1007_s11416_024_00526_0
crossref_primary_10_1007_s11227_024_06551_6
crossref_primary_10_3389_fphy_2024_1349463
Cites_doi 10.1007/s10115-022-01707-3
10.1016/j.neucom.2018.10.063
10.1109/ICCWS53234.2021.9703021
10.1016/S1361-3723(14)70531-7
10.1016/j.ins.2011.09.016
10.1016/j.cmpb.2016.04.029
10.1007/s10115-022-01672-x
10.1007/s10115-023-01906-6
10.1007/s10115-023-01860-3
10.1007/978-981-13-7561-3_10
10.1109/RDCAPE.2017.8358312
10.1016/j.jnca.2012.10.004
10.1007/s13748-020-00220-4
10.1109/TSMCB.2011.2168604
10.1007/s10115-022-01753-x
10.1109/72.846750
10.1109/SYNASC.2014.39
10.4018/978-1-7998-5728-0.ch020
10.1109/SMC.2014.6974041
10.1109/IJCNN.2015.7280774
10.1016/B978-0-12-819295-5.00003-2
10.1007/978-3-319-47121-1_5
10.1109/COMPSAC.2018.10315
10.1109/CVPR.2017.195
10.1109/FUZZ-IEEE.2015.7337975
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10115-023-01978-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0219-3116
EndPage 1370
ExternalDocumentID 10_1007_s10115_023_01978_4
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6KP
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAS
LLZTM
M0C
M0N
M4Y
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-d6a6e4509fe7e50ce715b3cb109ee4ea7d1e43bdb9d311c36698d2e124515bc83
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001080559500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0219-1377
IngestDate Sat Nov 08 15:45:58 EST 2025
Sat Nov 29 02:29:26 EST 2025
Tue Nov 18 22:41:14 EST 2025
Fri Feb 21 02:41:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Computer forensics
Dynamic features
JavaScript
Machine learning
Malware
Antivirus
Sandbox
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d6a6e4509fe7e50ce715b3cb109ee4ea7d1e43bdb9d311c36698d2e124515bc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4350-9689
PQID 2915807191
PQPubID 43394
PageCount 34
ParticipantIDs proquest_journals_2915807191
crossref_primary_10_1007_s10115_023_01978_4
crossref_citationtrail_10_1007_s10115_023_01978_4
springer_journals_10_1007_s10115_023_01978_4
PublicationCentury 2000
PublicationDate 20240200
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 2
  year: 2024
  text: 20240200
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle An International Journal
PublicationTitle Knowledge and information systems
PublicationTitleAbbrev Knowl Inf Syst
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Salehi, Sami, Ghiasi (CR26) 2014; 9
Shahzad, Shahzad (CR30) 2013; 231
Huang (CR15) 2012; 42
Santos, Silva Filho, Santos (CR29) 2019; 329
CR19
CR18
Faruki, Buddhadev (CR10) 2019
CR16
Santos (CR28) 2011
Ferreira, Silva, Itzazelaia (CR11) 2023
CR13
Maniath, Ashok (CR23) 2017
CR12
Huang (CR14) 2000; 11
CR34
CR33
CR32
Alam, Akram, Saeed, Arshad (CR1) 2021; 2021
Lima, Silva-Filho, Santos (CR21) 2016; 134
CR2
CR4
CR3
CR8
CR7
Lima, Silva, Luz (CR22) 2020
CR9
CR27
CR25
SIKOS (CR31) 2023; 65
CR24
Challapalli, Devarakonda (CR6) 2022; 64
CR20
Wang, Zhang, Guo, Zhao (CR35) 2023; 65
Islam, Tian, Batten, Versteeg (CR17) 2013; 36
Catal, Giray, Tekinerdogan, Kumar, SHUKLA (CR5) 2022; 64
Z Salehi (1978_CR26) 2014; 9
P Faruki (1978_CR10) 2019
GB Huang (1978_CR15) 2012; 42
1978_CR7
S Lima (1978_CR22) 2020
1978_CR8
WP Santos (1978_CR28) 2011
1978_CR9
L SIKOS (1978_CR31) 2023; 65
1978_CR18
1978_CR19
1978_CR2
1978_CR3
1978_CR16
S Maniath (1978_CR23) 2017
1978_CR4
1978_CR32
MM Santos (1978_CR29) 2019; 329
1978_CR33
J Challapalli (1978_CR6) 2022; 64
1978_CR12
1978_CR34
1978_CR13
F Shahzad (1978_CR30) 2013; 231
X Wang (1978_CR35) 2023; 65
C Catal (1978_CR5) 2022; 64
S Lima (1978_CR21) 2016; 134
M Alam (1978_CR1) 2021; 2021
GB Huang (1978_CR14) 2000; 11
L Ferreira (1978_CR11) 2023
1978_CR25
1978_CR27
1978_CR24
R Islam (1978_CR17) 2013; 36
1978_CR20
References_xml – ident: CR18
– ident: CR4
– ident: CR2
– ident: CR16
– ident: CR12
– volume: 64
  start-page: 2411
  year: 2022
  end-page: 2434
  ident: CR6
  article-title: A novel approach for optimization of convolution neural network with hybrid particle swarm and grey wolf algorithm for classification of indian classical dances
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-022-01707-3
– volume: 329
  start-page: 359
  year: 2019
  end-page: 369
  ident: CR29
  article-title: Deep convolutional extreme learning machines: filters combination and error model validation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.063
– volume: 2021
  start-page: 93
  year: 2021
  end-page: 99
  ident: CR1
  article-title: Deepmalware: a deep learning based malware images classification
  publication-title: Int Conf Cyber Warfare Secur
  doi: 10.1109/ICCWS53234.2021.9703021
– ident: CR33
– ident: CR8
– volume: 9
  start-page: 9
  year: 2014
  end-page: 18
  ident: CR26
  article-title: Using features generation from API calls form malware detection
  publication-title: Comput Fraud Secur
  doi: 10.1016/S1361-3723(14)70531-7
– ident: CR25
– ident: CR27
– volume: 231
  start-page: 45
  year: 2013
  end-page: 63
  ident: CR30
  article-title: In-execution dynamic malware analysis and detection by mining information in process control blocks of linux os
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2011.09.016
– volume: 134
  start-page: 11
  year: 2016
  end-page: 29
  ident: CR21
  article-title: Detection and classification of masses in mammographic images in a multi-kernel approach
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2016.04.029
– volume: 64
  start-page: 1457
  year: 2022
  end-page: 1500
  ident: CR5
  article-title: Applications of deep learning for phishing detection: a systematic literature review
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-022-01672-x
– ident: CR19
– year: 2023
  ident: CR11
  article-title: Recommender systems in cybersecurity
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-023-01906-6
– volume: 65
  start-page: 3511
  year: 2023
  end-page: 3531
  ident: CR31
  article-title: Cybersecurity knowledge graphs
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-023-01860-3
– ident: CR3
– ident: CR13
– year: 2019
  ident: CR10
  article-title: Droiddivesdeep: android malware classification via low level monitorable features with deep neural networks
  publication-title: Int Conf Secur Priv
  doi: 10.1007/978-981-13-7561-3_10
– ident: CR9
– year: 2017
  ident: CR23
  article-title: Deep learning lstm based ransomware detection
  publication-title: Recent Dev Contr Autom Power Eng
  doi: 10.1109/RDCAPE.2017.8358312
– volume: 36
  start-page: 646
  year: 2013
  end-page: 656
  ident: CR17
  article-title: Classification of malware based on integrated static and dynamic features
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2012.10.004
– ident: CR32
– ident: CR34
– year: 2020
  ident: CR22
  article-title: Artificial intelligence-based antivirus in order to detect malware preventively
  publication-title: Progr Artif Intelli
  doi: 10.1007/s13748-020-00220-4
– ident: CR7
– year: 2011
  ident: CR28
  publication-title: Mathematical morphology in digital document analysis and processing
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  end-page: 519
  ident: CR15
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMCB.2011.2168604
– volume: 65
  start-page: 945
  year: 2023
  end-page: 989
  ident: CR35
  article-title: A survey of continuous subgraph matching for dynamic graphs
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-022-01753-x
– ident: CR24
– volume: 11
  start-page: 799
  issue: 3
  year: 2000
  end-page: 801
  ident: CR14
  article-title: Classification ability of single hidden layer feedforward neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/72.846750
– ident: CR20
– volume: 134
  start-page: 11
  year: 2016
  ident: 1978_CR21
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2016.04.029
– volume: 9
  start-page: 9
  year: 2014
  ident: 1978_CR26
  publication-title: Comput Fraud Secur
  doi: 10.1016/S1361-3723(14)70531-7
– ident: 1978_CR27
– ident: 1978_CR9
  doi: 10.1109/SYNASC.2014.39
– ident: 1978_CR18
  doi: 10.4018/978-1-7998-5728-0.ch020
– ident: 1978_CR25
– ident: 1978_CR33
– volume: 36
  start-page: 646
  year: 2013
  ident: 1978_CR17
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2012.10.004
– ident: 1978_CR19
  doi: 10.1109/SMC.2014.6974041
– volume-title: Mathematical morphology in digital document analysis and processing
  year: 2011
  ident: 1978_CR28
– ident: 1978_CR3
  doi: 10.1109/IJCNN.2015.7280774
– ident: 1978_CR4
  doi: 10.1016/B978-0-12-819295-5.00003-2
– volume: 64
  start-page: 1457
  year: 2022
  ident: 1978_CR5
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-022-01672-x
– ident: 1978_CR16
– volume: 11
  start-page: 799
  issue: 3
  year: 2000
  ident: 1978_CR14
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/72.846750
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 1978_CR15
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMCB.2011.2168604
– ident: 1978_CR12
– ident: 1978_CR13
  doi: 10.1007/978-3-319-47121-1_5
– ident: 1978_CR32
  doi: 10.1109/COMPSAC.2018.10315
– ident: 1978_CR8
– volume: 65
  start-page: 945
  year: 2023
  ident: 1978_CR35
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-022-01753-x
– year: 2019
  ident: 1978_CR10
  publication-title: Int Conf Secur Priv
  doi: 10.1007/978-981-13-7561-3_10
– volume: 329
  start-page: 359
  year: 2019
  ident: 1978_CR29
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.063
– ident: 1978_CR24
– year: 2023
  ident: 1978_CR11
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-023-01906-6
– volume: 64
  start-page: 2411
  year: 2022
  ident: 1978_CR6
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-022-01707-3
– year: 2017
  ident: 1978_CR23
  publication-title: Recent Dev Contr Autom Power Eng
  doi: 10.1109/RDCAPE.2017.8358312
– ident: 1978_CR7
  doi: 10.1109/CVPR.2017.195
– volume: 231
  start-page: 45
  year: 2013
  ident: 1978_CR30
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2011.09.016
– year: 2020
  ident: 1978_CR22
  publication-title: Progr Artif Intelli
  doi: 10.1007/s13748-020-00220-4
– volume: 65
  start-page: 3511
  year: 2023
  ident: 1978_CR31
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-023-01860-3
– ident: 1978_CR20
– ident: 1978_CR34
– volume: 2021
  start-page: 93
  year: 2021
  ident: 1978_CR1
  publication-title: Int Conf Cyber Warfare Secur
  doi: 10.1109/ICCWS53234.2021.9703021
– ident: 1978_CR2
  doi: 10.1109/FUZZ-IEEE.2015.7337975
SSID ssj0017611
Score 2.3828034
Snippet There are many kinds of Exploit Kits, each one being built with several vulnerabilities, but almost all of them are written in JavaScript. So, we created an...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1337
SubjectTerms Accuracy
Anti-virus software
Computer Science
Cybersecurity
Data Mining and Knowledge Discovery
Database Management
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
IT in Business
JavaScript
Machine learning
Malware
Operating systems
Regular Paper
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60evBifWK1yh686WI275xExCIKRbBCb2FfkUJNa5LWv-_sZtOgYC_eAkmWkG9m55ud3fkQugTWwJn0GHEYpKu-LrdynmQki7kMXRZmLhNGbCIaDuPxOHmxC26l3VbZzIlmopYzodfIb9yEBjHEw4Tezj-JVo3S1VUrobGJtqjrUm3nzxFZVREgRTeKeeCVRHfWs4dm7NE54EIEIhYk0zqT8n8GppZt_iqQmrgz6P73i_fQrmWc-K42kX20ofID1G3UHLB17kM0Guok-N20odZoYfjnk-WkWJQYiC1-Ykv2aqYY_MGmX6xQWKrKbOTKsY6FEsOFrAXucaZMw9DyCL0NHkb3j8RqLhABzlgRGbJQ-cAiMhWpwBEqogH3BKdOopSvWCSp8j0ueSI9SoUXhkksXQUsAYgRF7F3jDr5LFcnCAspID9yeehngc-TkHGwiYwyFdMMsiSnh2jzw1NhG5JrXYxp2rZS1iClAFJqQEr9HrpavTOv23GsfbrfIJNa1yzTFpYeum6wbW__Pdrp-tHO0I4LhKfe0d1HnapYqHO0LZbVpCwujGF-A6qL6Ns
  priority: 102
  providerName: ProQuest
Title Next-generation antivirus for JavaScript malware detection based on dynamic features
URI https://link.springer.com/article/10.1007/s10115-023-01978-4
https://www.proquest.com/docview/2915807191
Volume 66
WOSCitedRecordID wos001080559500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0219-3116
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017611
  issn: 0219-1377
  databaseCode: RSV
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6s9eDF-sT6KHvwpoFs3jmqKKIYilatXsK-IoUapWnr33d2k1gVFfSyJGSzLDM7O9_H7M4A7CFq4Ey6zLIZ0lVPh1s5jzMri7gMHBZkDhOm2ESYJFG_H3erS2FFfdq9DkmanfrDZTdELxb6GKS_mvt4DWiiu4u0OV5d377HDpCYmzp5aIuWzqdXXZX5fozP7miGMb-ERY23OW39b57LsFShS3JYLocVmFP5KrTqyg2kMuQ16CWa8D6alNNaMwTlO5gORpOCIIgl52zKrs12Qp7Y8JWNFJFqbA5t5UT7PUnwQZbF7EmmTHLQYh1uTk96x2dWVV_BEmh4Y0sGLFAeijBTofJtoULqc1dwasdKeYqFkirP5ZLH0qVUuEEQR9JRiAgQBHERuRswnz_nahOIkAK5kMMDL_M9HgeMo_4zylREM2REdhtoLeZUVMnHdQ2MYTpLm6zFlqLYUiO21GvD_vs_L2XqjV9779TaSyszLFInpn6EICqmbTiotTX7_PNoW3_rvg2LDoKd8jT3DsyPRxO1CwtiOh4Uow40wrv7DjSPTpLuFb5dhBa2l_Yxtl3_oWOW7xuc6eRt
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RilQupaVFbMvDh_bURo0TrxMfEEI8xKurSt1K3FI_JmilJdDNsog_xW9k7E1YFancOPQWKbGlxJ_nmy8zngH4RF6D0S7VUaxJrgofbjVGlVGZGycTLctE29BsIuv18rMz9WMO7tqzMD6tsrWJwVC7S-v_kX9LFO_mxIeKb1_9iXzXKB9dbVtoTGFxgrc3JNnqraM9Wt_PSXKw3989jJquApEluI0jJ7VEQTxZYobd2GLGuya1hscKUaDOHEeRGmeUSzm3qZQqdwkSDxL1G5unNO8LeCkEbQefKhjvPkQtMhn6_RJtqshX8msO6TRH9cj3ioghSbx75Sb-JsKZd_soIBt47mDpf_tCb-B141GznekWeAtzWC3DUtutgjXG6x30e17kn4cy2x6NjDA1mAxG1zUjx50d64n-GUwou9DDGz1C5nAcEtUq5rneMbpwt5W-GFhWYiiIWr-HX8_ybiswX11WuArMOkv6LzFSlF1hlNSGMF9yjTkvSQXGHeDtAhe2Kbju-34Mi1mpaA-KgkBRBFAUogNfHsZcTcuNPPn0WouEojE9dTGDQQe-tlia3f73bB-enm0TXh32v58Wp0e9k4-wmJBzN81eX4P58ega12HBTsaDerQRNgWD38-NsXutTEa8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RqCouhT5Qt6XgQ3tqLdZ5OPGhqqrCCrrVCqlU4pb6Ma5WggCbZRF_rb-uY2_Cikpw49BbpCSWknwz3zeZ8QzAO1INRrtU876mcDUL6VZjlOe-NE4mWvpE2zhsohiNyuNjdbgEf7q9MKGssvOJ0VG7Mxv-ke8kSuQl8aESO74tizjcHXw-v-BhglTItHbjNOYQGeL1FYVvzaeDXfrW75NksHf0dZ-3Ewa4JehNuZNaYkac6bHAvG-xELlJrRF9hZihLpzALDXOKJcKYVMpVekSJE4kGWBsmdK6j2CFWDgPNjYs-E0Go5Bx9i9RqOKhq1-7Yafdtkc6jBNbUiAforjsNikulO4_ydnIeYO1__ltrcPTVmmzL3PTeAZLWD-HtW6KBWud2gs4GoXg_3dsvx1Qyghr49l4ctkwEvTsm57pH9G1slN9cqUnyBxOYwFbzYIGcIwO3HWtT8eWeYyNUpuX8PNBnm0DluuzGl8Bs85SXJgYmfk8M0pqQ7bghcZSeIoO-z0Q3ceubNuIPcwDOakWLaQDQCoCSBUBUmU9-HBzz_m8Dcm9V292qKhal9RUC0j04GOHq8Xpu1d7ff9q2_CEoFV9PxgN38BqQppvXtS-CcvTySW-hcd2Nh03k61oHwx-PTTE_gKLmE9i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Next-generation+antivirus+for+JavaScript+malware+detection+based+on+dynamic+features&rft.jtitle=Knowledge+and+information+systems&rft.au=de+Lima%2C+Sidney+M.+L.&rft.au=Souza%2C+Danilo+M.&rft.au=Pinheiro%2C+Ricardo+P.&rft.au=Silva%2C+Sth%C3%A9fano+H.+M.+T.&rft.date=2024-02-01&rft.pub=Springer+London&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=66&rft.issue=2&rft.spage=1337&rft.epage=1370&rft_id=info:doi/10.1007%2Fs10115-023-01978-4&rft.externalDocID=10_1007_s10115_023_01978_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon