Next-generation antivirus for JavaScript malware detection based on dynamic features
There are many kinds of Exploit Kits, each one being built with several vulnerabilities, but almost all of them are written in JavaScript. So, we created an antivirus, endowed with machine learning, expert in detecting JavaScript malware based on Runtime Behaviors. In our methodology, JavaScript is...
Saved in:
| Published in: | Knowledge and information systems Vol. 66; no. 2; pp. 1337 - 1370 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.02.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0219-1377, 0219-3116 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | There are many kinds of Exploit Kits, each one being built with several vulnerabilities, but almost all of them are written in JavaScript. So, we created an antivirus, endowed with machine learning, expert in detecting JavaScript malware based on Runtime Behaviors. In our methodology, JavaScript is executed, in a controlled environment. The goal was to investigate suspicious file behavior. Our antivirus, as a whole, dynamically monitors and ponders 7690 suspicious behaviors that the JavaScript file can do in Windows 7. As experiments, the authorial antivirus is compared to antiviruses based on deep as based on shallow networks. Our antivirus achieves an average accuracy of 99.75% in the distinction between benign and malware, accompanied by a training time of 8.92 s. Establishing the relationship between accuracy and training time is essential in information security. Eight (8) new malware are released every second. An antivirus with excessive training time can become obsolete even when released. As our proposed model can overcome the limitations of state-of-the-art, our antivirus combines high accuracy and fast training. In addition, the authorial antivirus is able to detect JavaScript malware, endowed with digital antiforense, such as obfuscates, polymorphic and fileless attacks. |
|---|---|
| AbstractList | There are many kinds of Exploit Kits, each one being built with several vulnerabilities, but almost all of them are written in JavaScript. So, we created an antivirus, endowed with machine learning, expert in detecting JavaScript malware based on Runtime Behaviors. In our methodology, JavaScript is executed, in a controlled environment. The goal was to investigate suspicious file behavior. Our antivirus, as a whole, dynamically monitors and ponders 7690 suspicious behaviors that the JavaScript file can do in Windows 7. As experiments, the authorial antivirus is compared to antiviruses based on deep as based on shallow networks. Our antivirus achieves an average accuracy of 99.75% in the distinction between benign and malware, accompanied by a training time of 8.92 s. Establishing the relationship between accuracy and training time is essential in information security. Eight (8) new malware are released every second. An antivirus with excessive training time can become obsolete even when released. As our proposed model can overcome the limitations of state-of-the-art, our antivirus combines high accuracy and fast training. In addition, the authorial antivirus is able to detect JavaScript malware, endowed with digital antiforense, such as obfuscates, polymorphic and fileless attacks. There are many kinds of Exploit Kits, each one being built with several vulnerabilities, but almost all of them are written in JavaScript. So, we created an antivirus, endowed with machine learning, expert in detecting JavaScript malware based on Runtime Behaviors. In our methodology, JavaScript is executed, in a controlled environment. The goal was to investigate suspicious file behavior. Our antivirus, as a whole, dynamically monitors and ponders 7690 suspicious behaviors that the JavaScript file can do in Windows 7. As experiments, the authorial antivirus is compared to antiviruses based on deep as based on shallow networks. Our antivirus achieves an average accuracy of 99.75% in the distinction between benign and malware, accompanied by a training time of 8.92 s. Establishing the relationship between accuracy and training time is essential in information security. Eight (8) new malware are released every second. An antivirus with excessive training time can become obsolete even when released. As our proposed model can overcome the limitations of state-of-the-art, our antivirus combines high accuracy and fast training. In addition, the authorial antivirus is able to detect JavaScript malware, endowed with digital antiforense, such as obfuscates, polymorphic and fileless attacks. |
| Author | de Lima, Rafael D. T. dos Santos, Wellington P. da Silva, Washington W. A. Souza, Danilo M. Pinheiro, Ricardo P. Monteiro, Thyago de A. Fernandes, Sérgio M. M. Lopes, Petrônio G. de Oliveira, Jemerson R. de Lima, Sidney M. L. Silva, Sthéfano H. M. T. Albuquerque, Edison de Q. |
| Author_xml | – sequence: 1 givenname: Sidney M. L. orcidid: 0000-0002-4350-9689 surname: de Lima fullname: de Lima, Sidney M. L. email: sidney.lima@ufpe.br, smll@ecomp.poli.br organization: Electronics and Systems Department, Federal University of Pernambuco – sequence: 2 givenname: Danilo M. surname: Souza fullname: Souza, Danilo M. organization: Computing Department, University of Pernambuco – sequence: 3 givenname: Ricardo P. surname: Pinheiro fullname: Pinheiro, Ricardo P. organization: Computing Department, University of Pernambuco – sequence: 4 givenname: Sthéfano H. M. T. surname: Silva fullname: Silva, Sthéfano H. M. T. organization: Computing Department, University of Pernambuco – sequence: 5 givenname: Petrônio G. surname: Lopes fullname: Lopes, Petrônio G. organization: Computing Department, University of Pernambuco – sequence: 6 givenname: Rafael D. T. surname: de Lima fullname: de Lima, Rafael D. T. organization: Computing Department, University of Pernambuco – sequence: 7 givenname: Jemerson R. surname: de Oliveira fullname: de Oliveira, Jemerson R. organization: Computing Department, University of Pernambuco – sequence: 8 givenname: Thyago de A. surname: Monteiro fullname: Monteiro, Thyago de A. organization: Computing Department, University of Pernambuco – sequence: 9 givenname: Sérgio M. M. surname: Fernandes fullname: Fernandes, Sérgio M. M. organization: Computing Department, University of Pernambuco – sequence: 10 givenname: Edison de Q. surname: Albuquerque fullname: Albuquerque, Edison de Q. organization: Computing Department, University of Pernambuco – sequence: 11 givenname: Washington W. A. surname: da Silva fullname: da Silva, Washington W. A. organization: Biomedical Engineering Department, Federal University of Pernambuco – sequence: 12 givenname: Wellington P. surname: dos Santos fullname: dos Santos, Wellington P. organization: Biomedical Engineering Department, Federal University of Pernambuco |
| BookMark | eNp9kD1PwzAQhi1UJErhDzBFYg744iSOR1TxqQoGymw5zqVy1TrFdgr995imEhJDp7vhfe7jOScj21kk5AroDVDKbz1QgCKlGUspCF6l-QkZ0wxEygDK0aEHxvkZOfd-SSnwEmBM5q_4HdIFWnQqmM4mygazNa73Sdu55EVt1bt2ZhOStVp9KYdJgwH1Plorj00Sm2Zn1dropEUVeof-gpy2auXx8lAn5OPhfj59Smdvj8_Tu1mqGYiQNqUqMS-oaJFjQTVyKGqma6ACMUfFG8Cc1U0tmviFZmUpqiZDyPIiBnXFJuR6mLtx3WePPshl1zsbV8pMQFFRDgJiKhtS2nXeO2zlxpm1cjsJVP7ak4M9Ge3JvT2ZR6j6B2kT9oaCU2Z1HGUD6uMeu0D3d9UR6gcXpYbk |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2025_113537 crossref_primary_10_1007_s11416_024_00526_0 crossref_primary_10_1007_s11227_024_06551_6 crossref_primary_10_3389_fphy_2024_1349463 |
| Cites_doi | 10.1007/s10115-022-01707-3 10.1016/j.neucom.2018.10.063 10.1109/ICCWS53234.2021.9703021 10.1016/S1361-3723(14)70531-7 10.1016/j.ins.2011.09.016 10.1016/j.cmpb.2016.04.029 10.1007/s10115-022-01672-x 10.1007/s10115-023-01906-6 10.1007/s10115-023-01860-3 10.1007/978-981-13-7561-3_10 10.1109/RDCAPE.2017.8358312 10.1016/j.jnca.2012.10.004 10.1007/s13748-020-00220-4 10.1109/TSMCB.2011.2168604 10.1007/s10115-022-01753-x 10.1109/72.846750 10.1109/SYNASC.2014.39 10.4018/978-1-7998-5728-0.ch020 10.1109/SMC.2014.6974041 10.1109/IJCNN.2015.7280774 10.1016/B978-0-12-819295-5.00003-2 10.1007/978-3-319-47121-1_5 10.1109/COMPSAC.2018.10315 10.1109/CVPR.2017.195 10.1109/FUZZ-IEEE.2015.7337975 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s10115-023-01978-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 0219-3116 |
| EndPage | 1370 |
| ExternalDocumentID | 10_1007_s10115_023_01978_4 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29L 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6KP 6NX 7WY 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAS LLZTM M0C M0N M4Y MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-d6a6e4509fe7e50ce715b3cb109ee4ea7d1e43bdb9d311c36698d2e124515bc83 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001080559500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0219-1377 |
| IngestDate | Sat Nov 08 15:45:58 EST 2025 Sat Nov 29 02:29:26 EST 2025 Tue Nov 18 22:41:14 EST 2025 Fri Feb 21 02:41:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Computer forensics Dynamic features JavaScript Machine learning Malware Antivirus Sandbox |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-d6a6e4509fe7e50ce715b3cb109ee4ea7d1e43bdb9d311c36698d2e124515bc83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4350-9689 |
| PQID | 2915807191 |
| PQPubID | 43394 |
| PageCount | 34 |
| ParticipantIDs | proquest_journals_2915807191 crossref_primary_10_1007_s10115_023_01978_4 crossref_citationtrail_10_1007_s10115_023_01978_4 springer_journals_10_1007_s10115_023_01978_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20240200 2024-02-00 20240201 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 2 year: 2024 text: 20240200 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Knowledge and information systems |
| PublicationTitleAbbrev | Knowl Inf Syst |
| PublicationYear | 2024 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Salehi, Sami, Ghiasi (CR26) 2014; 9 Shahzad, Shahzad (CR30) 2013; 231 Huang (CR15) 2012; 42 Santos, Silva Filho, Santos (CR29) 2019; 329 CR19 CR18 Faruki, Buddhadev (CR10) 2019 CR16 Santos (CR28) 2011 Ferreira, Silva, Itzazelaia (CR11) 2023 CR13 Maniath, Ashok (CR23) 2017 CR12 Huang (CR14) 2000; 11 CR34 CR33 CR32 Alam, Akram, Saeed, Arshad (CR1) 2021; 2021 Lima, Silva-Filho, Santos (CR21) 2016; 134 CR2 CR4 CR3 CR8 CR7 Lima, Silva, Luz (CR22) 2020 CR9 CR27 CR25 SIKOS (CR31) 2023; 65 CR24 Challapalli, Devarakonda (CR6) 2022; 64 CR20 Wang, Zhang, Guo, Zhao (CR35) 2023; 65 Islam, Tian, Batten, Versteeg (CR17) 2013; 36 Catal, Giray, Tekinerdogan, Kumar, SHUKLA (CR5) 2022; 64 Z Salehi (1978_CR26) 2014; 9 P Faruki (1978_CR10) 2019 GB Huang (1978_CR15) 2012; 42 1978_CR7 S Lima (1978_CR22) 2020 1978_CR8 WP Santos (1978_CR28) 2011 1978_CR9 L SIKOS (1978_CR31) 2023; 65 1978_CR18 1978_CR19 1978_CR2 1978_CR3 1978_CR16 S Maniath (1978_CR23) 2017 1978_CR4 1978_CR32 MM Santos (1978_CR29) 2019; 329 1978_CR33 J Challapalli (1978_CR6) 2022; 64 1978_CR12 1978_CR34 1978_CR13 F Shahzad (1978_CR30) 2013; 231 X Wang (1978_CR35) 2023; 65 C Catal (1978_CR5) 2022; 64 S Lima (1978_CR21) 2016; 134 M Alam (1978_CR1) 2021; 2021 GB Huang (1978_CR14) 2000; 11 L Ferreira (1978_CR11) 2023 1978_CR25 1978_CR27 1978_CR24 R Islam (1978_CR17) 2013; 36 1978_CR20 |
| References_xml | – ident: CR18 – ident: CR4 – ident: CR2 – ident: CR16 – ident: CR12 – volume: 64 start-page: 2411 year: 2022 end-page: 2434 ident: CR6 article-title: A novel approach for optimization of convolution neural network with hybrid particle swarm and grey wolf algorithm for classification of indian classical dances publication-title: Knowl Inf Syst doi: 10.1007/s10115-022-01707-3 – volume: 329 start-page: 359 year: 2019 end-page: 369 ident: CR29 article-title: Deep convolutional extreme learning machines: filters combination and error model validation publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.063 – volume: 2021 start-page: 93 year: 2021 end-page: 99 ident: CR1 article-title: Deepmalware: a deep learning based malware images classification publication-title: Int Conf Cyber Warfare Secur doi: 10.1109/ICCWS53234.2021.9703021 – ident: CR33 – ident: CR8 – volume: 9 start-page: 9 year: 2014 end-page: 18 ident: CR26 article-title: Using features generation from API calls form malware detection publication-title: Comput Fraud Secur doi: 10.1016/S1361-3723(14)70531-7 – ident: CR25 – ident: CR27 – volume: 231 start-page: 45 year: 2013 end-page: 63 ident: CR30 article-title: In-execution dynamic malware analysis and detection by mining information in process control blocks of linux os publication-title: Inf Sci doi: 10.1016/j.ins.2011.09.016 – volume: 134 start-page: 11 year: 2016 end-page: 29 ident: CR21 article-title: Detection and classification of masses in mammographic images in a multi-kernel approach publication-title: Comput Methods Progr Biomed doi: 10.1016/j.cmpb.2016.04.029 – volume: 64 start-page: 1457 year: 2022 end-page: 1500 ident: CR5 article-title: Applications of deep learning for phishing detection: a systematic literature review publication-title: Knowl Inf Syst doi: 10.1007/s10115-022-01672-x – ident: CR19 – year: 2023 ident: CR11 article-title: Recommender systems in cybersecurity publication-title: Knowl Inf Syst doi: 10.1007/s10115-023-01906-6 – volume: 65 start-page: 3511 year: 2023 end-page: 3531 ident: CR31 article-title: Cybersecurity knowledge graphs publication-title: Knowl Inf Syst doi: 10.1007/s10115-023-01860-3 – ident: CR3 – ident: CR13 – year: 2019 ident: CR10 article-title: Droiddivesdeep: android malware classification via low level monitorable features with deep neural networks publication-title: Int Conf Secur Priv doi: 10.1007/978-981-13-7561-3_10 – ident: CR9 – year: 2017 ident: CR23 article-title: Deep learning lstm based ransomware detection publication-title: Recent Dev Contr Autom Power Eng doi: 10.1109/RDCAPE.2017.8358312 – volume: 36 start-page: 646 year: 2013 end-page: 656 ident: CR17 article-title: Classification of malware based on integrated static and dynamic features publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2012.10.004 – ident: CR32 – ident: CR34 – year: 2020 ident: CR22 article-title: Artificial intelligence-based antivirus in order to detect malware preventively publication-title: Progr Artif Intelli doi: 10.1007/s13748-020-00220-4 – ident: CR7 – year: 2011 ident: CR28 publication-title: Mathematical morphology in digital document analysis and processing – volume: 42 start-page: 513 issue: 2 year: 2012 end-page: 519 ident: CR15 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMCB.2011.2168604 – volume: 65 start-page: 945 year: 2023 end-page: 989 ident: CR35 article-title: A survey of continuous subgraph matching for dynamic graphs publication-title: Knowl Inf Syst doi: 10.1007/s10115-022-01753-x – ident: CR24 – volume: 11 start-page: 799 issue: 3 year: 2000 end-page: 801 ident: CR14 article-title: Classification ability of single hidden layer feedforward neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/72.846750 – ident: CR20 – volume: 134 start-page: 11 year: 2016 ident: 1978_CR21 publication-title: Comput Methods Progr Biomed doi: 10.1016/j.cmpb.2016.04.029 – volume: 9 start-page: 9 year: 2014 ident: 1978_CR26 publication-title: Comput Fraud Secur doi: 10.1016/S1361-3723(14)70531-7 – ident: 1978_CR27 – ident: 1978_CR9 doi: 10.1109/SYNASC.2014.39 – ident: 1978_CR18 doi: 10.4018/978-1-7998-5728-0.ch020 – ident: 1978_CR25 – ident: 1978_CR33 – volume: 36 start-page: 646 year: 2013 ident: 1978_CR17 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2012.10.004 – ident: 1978_CR19 doi: 10.1109/SMC.2014.6974041 – volume-title: Mathematical morphology in digital document analysis and processing year: 2011 ident: 1978_CR28 – ident: 1978_CR3 doi: 10.1109/IJCNN.2015.7280774 – ident: 1978_CR4 doi: 10.1016/B978-0-12-819295-5.00003-2 – volume: 64 start-page: 1457 year: 2022 ident: 1978_CR5 publication-title: Knowl Inf Syst doi: 10.1007/s10115-022-01672-x – ident: 1978_CR16 – volume: 11 start-page: 799 issue: 3 year: 2000 ident: 1978_CR14 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/72.846750 – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 1978_CR15 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMCB.2011.2168604 – ident: 1978_CR12 – ident: 1978_CR13 doi: 10.1007/978-3-319-47121-1_5 – ident: 1978_CR32 doi: 10.1109/COMPSAC.2018.10315 – ident: 1978_CR8 – volume: 65 start-page: 945 year: 2023 ident: 1978_CR35 publication-title: Knowl Inf Syst doi: 10.1007/s10115-022-01753-x – year: 2019 ident: 1978_CR10 publication-title: Int Conf Secur Priv doi: 10.1007/978-981-13-7561-3_10 – volume: 329 start-page: 359 year: 2019 ident: 1978_CR29 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.063 – ident: 1978_CR24 – year: 2023 ident: 1978_CR11 publication-title: Knowl Inf Syst doi: 10.1007/s10115-023-01906-6 – volume: 64 start-page: 2411 year: 2022 ident: 1978_CR6 publication-title: Knowl Inf Syst doi: 10.1007/s10115-022-01707-3 – year: 2017 ident: 1978_CR23 publication-title: Recent Dev Contr Autom Power Eng doi: 10.1109/RDCAPE.2017.8358312 – ident: 1978_CR7 doi: 10.1109/CVPR.2017.195 – volume: 231 start-page: 45 year: 2013 ident: 1978_CR30 publication-title: Inf Sci doi: 10.1016/j.ins.2011.09.016 – year: 2020 ident: 1978_CR22 publication-title: Progr Artif Intelli doi: 10.1007/s13748-020-00220-4 – volume: 65 start-page: 3511 year: 2023 ident: 1978_CR31 publication-title: Knowl Inf Syst doi: 10.1007/s10115-023-01860-3 – ident: 1978_CR20 – ident: 1978_CR34 – volume: 2021 start-page: 93 year: 2021 ident: 1978_CR1 publication-title: Int Conf Cyber Warfare Secur doi: 10.1109/ICCWS53234.2021.9703021 – ident: 1978_CR2 doi: 10.1109/FUZZ-IEEE.2015.7337975 |
| SSID | ssj0017611 |
| Score | 2.3828034 |
| Snippet | There are many kinds of Exploit Kits, each one being built with several vulnerabilities, but almost all of them are written in JavaScript. So, we created an... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1337 |
| SubjectTerms | Accuracy Anti-virus software Computer Science Cybersecurity Data Mining and Knowledge Discovery Database Management Information Storage and Retrieval Information Systems and Communication Service Information Systems Applications (incl.Internet) IT in Business JavaScript Machine learning Malware Operating systems Regular Paper |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60evBifWK1yh686WI275xExCIKRbBCb2FfkUJNa5LWv-_sZtOgYC_eAkmWkG9m55ud3fkQugTWwJn0GHEYpKu-LrdynmQki7kMXRZmLhNGbCIaDuPxOHmxC26l3VbZzIlmopYzodfIb9yEBjHEw4Tezj-JVo3S1VUrobGJtqjrUm3nzxFZVREgRTeKeeCVRHfWs4dm7NE54EIEIhYk0zqT8n8GppZt_iqQmrgz6P73i_fQrmWc-K42kX20ofID1G3UHLB17kM0Guok-N20odZoYfjnk-WkWJQYiC1-Ykv2aqYY_MGmX6xQWKrKbOTKsY6FEsOFrAXucaZMw9DyCL0NHkb3j8RqLhABzlgRGbJQ-cAiMhWpwBEqogH3BKdOopSvWCSp8j0ueSI9SoUXhkksXQUsAYgRF7F3jDr5LFcnCAspID9yeehngc-TkHGwiYwyFdMMsiSnh2jzw1NhG5JrXYxp2rZS1iClAFJqQEr9HrpavTOv23GsfbrfIJNa1yzTFpYeum6wbW__Pdrp-tHO0I4LhKfe0d1HnapYqHO0LZbVpCwujGF-A6qL6Ns priority: 102 providerName: ProQuest |
| Title | Next-generation antivirus for JavaScript malware detection based on dynamic features |
| URI | https://link.springer.com/article/10.1007/s10115-023-01978-4 https://www.proquest.com/docview/2915807191 |
| Volume | 66 |
| WOSCitedRecordID | wos001080559500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 0219-3116 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017611 issn: 0219-1377 databaseCode: RSV dateStart: 19990201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6s9eDF-sT6KHvwpoFs3jmqKKIYilatXsK-IoUapWnr33d2k1gVFfSyJGSzLDM7O9_H7M4A7CFq4Ey6zLIZ0lVPh1s5jzMri7gMHBZkDhOm2ESYJFG_H3erS2FFfdq9DkmanfrDZTdELxb6GKS_mvt4DWiiu4u0OV5d377HDpCYmzp5aIuWzqdXXZX5fozP7miGMb-ERY23OW39b57LsFShS3JYLocVmFP5KrTqyg2kMuQ16CWa8D6alNNaMwTlO5gORpOCIIgl52zKrs12Qp7Y8JWNFJFqbA5t5UT7PUnwQZbF7EmmTHLQYh1uTk96x2dWVV_BEmh4Y0sGLFAeijBTofJtoULqc1dwasdKeYqFkirP5ZLH0qVUuEEQR9JRiAgQBHERuRswnz_nahOIkAK5kMMDL_M9HgeMo_4zylREM2REdhtoLeZUVMnHdQ2MYTpLm6zFlqLYUiO21GvD_vs_L2XqjV9779TaSyszLFInpn6EICqmbTiotTX7_PNoW3_rvg2LDoKd8jT3DsyPRxO1CwtiOh4Uow40wrv7DjSPTpLuFb5dhBa2l_Yxtl3_oWOW7xuc6eRt |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RilQupaVFbMvDh_bURo0TrxMfEEI8xKurSt1K3FI_JmilJdDNsog_xW9k7E1YFancOPQWKbGlxJ_nmy8zngH4RF6D0S7VUaxJrgofbjVGlVGZGycTLctE29BsIuv18rMz9WMO7tqzMD6tsrWJwVC7S-v_kX9LFO_mxIeKb1_9iXzXKB9dbVtoTGFxgrc3JNnqraM9Wt_PSXKw3989jJquApEluI0jJ7VEQTxZYobd2GLGuya1hscKUaDOHEeRGmeUSzm3qZQqdwkSDxL1G5unNO8LeCkEbQefKhjvPkQtMhn6_RJtqshX8msO6TRH9cj3ioghSbx75Sb-JsKZd_soIBt47mDpf_tCb-B141GznekWeAtzWC3DUtutgjXG6x30e17kn4cy2x6NjDA1mAxG1zUjx50d64n-GUwou9DDGz1C5nAcEtUq5rneMbpwt5W-GFhWYiiIWr-HX8_ybiswX11WuArMOkv6LzFSlF1hlNSGMF9yjTkvSQXGHeDtAhe2Kbju-34Mi1mpaA-KgkBRBFAUogNfHsZcTcuNPPn0WouEojE9dTGDQQe-tlia3f73bB-enm0TXh32v58Wp0e9k4-wmJBzN81eX4P58ega12HBTsaDerQRNgWD38-NsXutTEa8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RqCouhT5Qt6XgQ3tqLdZ5OPGhqqrCCrrVCqlU4pb6Ma5WggCbZRF_rb-uY2_Cikpw49BbpCSWknwz3zeZ8QzAO1INRrtU876mcDUL6VZjlOe-NE4mWvpE2zhsohiNyuNjdbgEf7q9MKGssvOJ0VG7Mxv-ke8kSuQl8aESO74tizjcHXw-v-BhglTItHbjNOYQGeL1FYVvzaeDXfrW75NksHf0dZ-3Ewa4JehNuZNaYkac6bHAvG-xELlJrRF9hZihLpzALDXOKJcKYVMpVekSJE4kGWBsmdK6j2CFWDgPNjYs-E0Go5Bx9i9RqOKhq1-7Yafdtkc6jBNbUiAforjsNikulO4_ydnIeYO1__ltrcPTVmmzL3PTeAZLWD-HtW6KBWud2gs4GoXg_3dsvx1Qyghr49l4ctkwEvTsm57pH9G1slN9cqUnyBxOYwFbzYIGcIwO3HWtT8eWeYyNUpuX8PNBnm0DluuzGl8Bs85SXJgYmfk8M0pqQ7bghcZSeIoO-z0Q3ceubNuIPcwDOakWLaQDQCoCSBUBUmU9-HBzz_m8Dcm9V292qKhal9RUC0j04GOHq8Xpu1d7ff9q2_CEoFV9PxgN38BqQppvXtS-CcvTySW-hcd2Nh03k61oHwx-PTTE_gKLmE9i |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Next-generation+antivirus+for+JavaScript+malware+detection+based+on+dynamic+features&rft.jtitle=Knowledge+and+information+systems&rft.au=de+Lima%2C+Sidney+M.+L.&rft.au=Souza%2C+Danilo+M.&rft.au=Pinheiro%2C+Ricardo+P.&rft.au=Silva%2C+Sth%C3%A9fano+H.+M.+T.&rft.date=2024-02-01&rft.pub=Springer+London&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=66&rft.issue=2&rft.spage=1337&rft.epage=1370&rft_id=info:doi/10.1007%2Fs10115-023-01978-4&rft.externalDocID=10_1007_s10115_023_01978_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon |