Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration

Accurate prediction of ground vibration caused by blasting has always been a significant issue in the mining industry. Ground vibration caused by blasting is a harmful phenomenon to nearby buildings and should be prevented. In this regard, a new intelligent method for predicting peak particle veloci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering with computers Jg. 38; H. Suppl 5; S. 4145 - 4162
Hauptverfasser: Qiu, Yingui, Zhou, Jian, Khandelwal, Manoj, Yang, Haitao, Yang, Peixi, Li, Chuanqi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.12.2022
Springer Nature B.V
Schlagworte:
ISSN:0177-0667, 1435-5663
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate prediction of ground vibration caused by blasting has always been a significant issue in the mining industry. Ground vibration caused by blasting is a harmful phenomenon to nearby buildings and should be prevented. In this regard, a new intelligent method for predicting peak particle velocity (PPV) induced by blasting had been developed. Accordingly, 150 sets of data composed of thirteen uncontrollable and controllable indicators are selected as input dependent variables, and the measured PPV is used as the output target for characterizing blast-induced ground vibration. Also, in order to enhance its predictive accuracy, the gray wolf optimization (GWO), whale optimization algorithm (WOA) and Bayesian optimization algorithm (BO) are applied to fine-tune the hyper-parameters of the extreme gradient boosting (XGBoost) model. According to the root mean squared error (RMSE), determination coefficient ( R 2 ), the variance accounted for (VAF), and mean absolute error (MAE), the hybrid models GWO-XGBoost, WOA-XGBoost, and BO-XGBoost were verified. Additionally, XGBoost, CatBoost (CatB), Random Forest, and gradient boosting regression (GBR) were also considered and used to compare the multiple hybrid-XGBoost models that have been developed. The values of RMSE, R 2 , VAF, and MAE obtained from WOA-XGBoost, GWO-XGBoost, and BO-XGBoost models were equal to (3.0538, 0.9757, 97.68, 2.5032), (3.0954, 0.9751, 97.62, 2.5189), and (3.2409, 0.9727, 97.65, 2.5867), respectively. Findings reveal that compared with other machine learning models, the proposed WOA-XGBoost became the most reliable model. These three optimized hybrid models are superior to the GBR model, CatB model, Random Forest model, and the XGBoost model, confirming the ability of the meta-heuristic algorithm to enhance the performance of the PPV model, which can be helpful for mine planners and engineers using advanced supervised machine learning with metaheuristic algorithms for predicting ground vibration caused by explosions.
AbstractList Accurate prediction of ground vibration caused by blasting has always been a significant issue in the mining industry. Ground vibration caused by blasting is a harmful phenomenon to nearby buildings and should be prevented. In this regard, a new intelligent method for predicting peak particle velocity (PPV) induced by blasting had been developed. Accordingly, 150 sets of data composed of thirteen uncontrollable and controllable indicators are selected as input dependent variables, and the measured PPV is used as the output target for characterizing blast-induced ground vibration. Also, in order to enhance its predictive accuracy, the gray wolf optimization (GWO), whale optimization algorithm (WOA) and Bayesian optimization algorithm (BO) are applied to fine-tune the hyper-parameters of the extreme gradient boosting (XGBoost) model. According to the root mean squared error (RMSE), determination coefficient (R2), the variance accounted for (VAF), and mean absolute error (MAE), the hybrid models GWO-XGBoost, WOA-XGBoost, and BO-XGBoost were verified. Additionally, XGBoost, CatBoost (CatB), Random Forest, and gradient boosting regression (GBR) were also considered and used to compare the multiple hybrid-XGBoost models that have been developed. The values of RMSE, R2, VAF, and MAE obtained from WOA-XGBoost, GWO-XGBoost, and BO-XGBoost models were equal to (3.0538, 0.9757, 97.68, 2.5032), (3.0954, 0.9751, 97.62, 2.5189), and (3.2409, 0.9727, 97.65, 2.5867), respectively. Findings reveal that compared with other machine learning models, the proposed WOA-XGBoost became the most reliable model. These three optimized hybrid models are superior to the GBR model, CatB model, Random Forest model, and the XGBoost model, confirming the ability of the meta-heuristic algorithm to enhance the performance of the PPV model, which can be helpful for mine planners and engineers using advanced supervised machine learning with metaheuristic algorithms for predicting ground vibration caused by explosions.
Accurate prediction of ground vibration caused by blasting has always been a significant issue in the mining industry. Ground vibration caused by blasting is a harmful phenomenon to nearby buildings and should be prevented. In this regard, a new intelligent method for predicting peak particle velocity (PPV) induced by blasting had been developed. Accordingly, 150 sets of data composed of thirteen uncontrollable and controllable indicators are selected as input dependent variables, and the measured PPV is used as the output target for characterizing blast-induced ground vibration. Also, in order to enhance its predictive accuracy, the gray wolf optimization (GWO), whale optimization algorithm (WOA) and Bayesian optimization algorithm (BO) are applied to fine-tune the hyper-parameters of the extreme gradient boosting (XGBoost) model. According to the root mean squared error (RMSE), determination coefficient ( R 2 ), the variance accounted for (VAF), and mean absolute error (MAE), the hybrid models GWO-XGBoost, WOA-XGBoost, and BO-XGBoost were verified. Additionally, XGBoost, CatBoost (CatB), Random Forest, and gradient boosting regression (GBR) were also considered and used to compare the multiple hybrid-XGBoost models that have been developed. The values of RMSE, R 2 , VAF, and MAE obtained from WOA-XGBoost, GWO-XGBoost, and BO-XGBoost models were equal to (3.0538, 0.9757, 97.68, 2.5032), (3.0954, 0.9751, 97.62, 2.5189), and (3.2409, 0.9727, 97.65, 2.5867), respectively. Findings reveal that compared with other machine learning models, the proposed WOA-XGBoost became the most reliable model. These three optimized hybrid models are superior to the GBR model, CatB model, Random Forest model, and the XGBoost model, confirming the ability of the meta-heuristic algorithm to enhance the performance of the PPV model, which can be helpful for mine planners and engineers using advanced supervised machine learning with metaheuristic algorithms for predicting ground vibration caused by explosions.
Author Zhou, Jian
Li, Chuanqi
Yang, Peixi
Qiu, Yingui
Yang, Haitao
Khandelwal, Manoj
Author_xml – sequence: 1
  givenname: Yingui
  surname: Qiu
  fullname: Qiu, Yingui
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 2
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  email: j.zhou@csu.edu.cn, csujzhou@hotmail.com
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 3
  givenname: Manoj
  orcidid: 0000-0003-0368-3188
  surname: Khandelwal
  fullname: Khandelwal, Manoj
  email: m.khandelwal@federation.edu.au, mkhandelwal1@gmail.com
  organization: School of Engineering, Information Technology and Physical Sciences, Federation University Australia
– sequence: 4
  givenname: Haitao
  surname: Yang
  fullname: Yang, Haitao
  organization: State Key Laboratory of Safety and Health for Metal Mines
– sequence: 5
  givenname: Peixi
  surname: Yang
  fullname: Yang, Peixi
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 6
  givenname: Chuanqi
  surname: Li
  fullname: Li, Chuanqi
  organization: School of Resources and Safety Engineering, Central South University
BookMark eNp9kEtLxDAUhYMoOD7-gKuAW6M3TZs2SxUdhYFxoYy7kOYxdug0Y5IK8--tU0Vw4epw4Hz3XM4R2u98ZxE6o3BJAcqrCMA4J5BRApQJRsQemtCcFaTgnO2jCdCyJMB5eYiOYlzBkAIQE7R9ssH5sFadtth-qLZXqfEd9g6_bevQGLyYX5PX6Y33MV3g6WL-Y7DqDL75tWtvbBtx8ngTrGl0wnWrYiJNZ3ptDV4G3w_ER1OHXcUJOnCqjfb0W4_Ry_3d8-0Dmc2nj7fXM6IZFYkYrjLlCkPBKCZ4xQ3PdaVyUzsNzrIyU8wZ7pylOq9dZXIBxqpBhHDMOXaMzse7m-DfexuTXPk-dEOlzMq8yEXFMxhS1ZjSwccYrJO6Sbs_U1BNKynIr6HlOLQchpa7oaUY0OwPugnNWoXt_xAboTiEu6UNv1_9Q30Cz06ULA
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3518205
crossref_primary_10_3389_fpubh_2022_882811
crossref_primary_10_3390_s23041811
crossref_primary_10_3390_app14093759
crossref_primary_10_3390_buildings13061384
crossref_primary_10_3390_math11061335
crossref_primary_10_3390_app112211076
crossref_primary_10_31466_kfbd_1473382
crossref_primary_10_1016_j_ceramint_2025_01_177
crossref_primary_10_1016_j_tust_2024_105727
crossref_primary_10_1016_j_resourpol_2024_104892
crossref_primary_10_1109_ACCESS_2024_3431015
crossref_primary_10_1016_j_cscm_2023_e02766
crossref_primary_10_1016_j_irbm_2024_100860
crossref_primary_10_1007_s10479_023_05401_7
crossref_primary_10_35377_saucis___1663435
crossref_primary_10_1007_s40996_024_01477_8
crossref_primary_10_3390_rs15041168
crossref_primary_10_1007_s10064_025_04116_2
crossref_primary_10_3390_app15031254
crossref_primary_10_1007_s42461_022_00560_w
crossref_primary_10_1016_j_conbuildmat_2022_128483
crossref_primary_10_1016_j_istruc_2025_108984
crossref_primary_10_3390_min11060601
crossref_primary_10_1016_j_jastp_2024_106360
crossref_primary_10_1016_j_ecmx_2025_100903
crossref_primary_10_3390_buildings15183408
crossref_primary_10_1016_j_jrras_2024_101141
crossref_primary_10_1016_j_rineng_2025_106961
crossref_primary_10_3390_app13042079
crossref_primary_10_3390_f13121976
crossref_primary_10_1007_s00603_024_04094_z
crossref_primary_10_1080_17480930_2023_2254147
crossref_primary_10_1016_j_engfracmech_2023_109626
crossref_primary_10_1016_j_rineng_2025_107132
crossref_primary_10_1016_j_psep_2024_08_066
crossref_primary_10_1007_s00603_024_03947_x
crossref_primary_10_1007_s12204_022_2408_7
crossref_primary_10_1016_j_jag_2024_104117
crossref_primary_10_1007_s00603_025_04556_y
crossref_primary_10_1016_j_ijhydene_2024_11_329
crossref_primary_10_1016_j_tust_2025_106888
crossref_primary_10_1016_j_jhydrol_2024_132565
crossref_primary_10_1016_j_engfailanal_2025_109881
crossref_primary_10_3390_jmse12122308
crossref_primary_10_1186_s13065_024_01127_0
crossref_primary_10_3390_su151310163
crossref_primary_10_1038_s41598_024_81218_z
crossref_primary_10_1177_03019233241246343
crossref_primary_10_1038_s41598_025_03232_z
crossref_primary_10_3390_molecules29194591
crossref_primary_10_1007_s00603_023_03522_w
crossref_primary_10_1016_j_ijnonlinmec_2024_104857
crossref_primary_10_3390_electronics11223798
crossref_primary_10_1016_j_csite_2025_106516
crossref_primary_10_1007_s40515_025_00603_x
crossref_primary_10_1007_s10921_024_01088_3
crossref_primary_10_1016_j_ijsrc_2025_07_009
crossref_primary_10_3390_su17136100
crossref_primary_10_1038_s41598_025_89595_9
crossref_primary_10_7717_peerj_cs_2576
crossref_primary_10_1155_2023_3578867
crossref_primary_10_3390_agronomy15071500
crossref_primary_10_1038_s41598_025_06363_5
crossref_primary_10_1177_24056456251356175
crossref_primary_10_1109_ACCESS_2024_3519219
crossref_primary_10_1109_JSEN_2025_3577205
crossref_primary_10_1080_17486025_2023_2207546
crossref_primary_10_1016_j_apr_2025_102425
crossref_primary_10_1007_s00521_022_07771_8
crossref_primary_10_1038_s41598_023_33796_7
crossref_primary_10_1080_19942060_2023_2244558
crossref_primary_10_1016_j_conbuildmat_2025_143286
crossref_primary_10_1080_10589759_2024_2313569
crossref_primary_10_3390_agronomy15051057
crossref_primary_10_1007_s42461_024_01028_9
crossref_primary_10_1016_j_apm_2024_05_037
crossref_primary_10_1038_s41598_025_08162_4
crossref_primary_10_1063_5_0219713
crossref_primary_10_3390_ma15155275
crossref_primary_10_1016_j_jallcom_2025_181155
crossref_primary_10_3390_mining5030040
crossref_primary_10_1016_j_scitotenv_2023_166603
crossref_primary_10_1016_j_trd_2025_104896
crossref_primary_10_1109_TII_2024_3441660
crossref_primary_10_1007_s42461_025_01267_4
crossref_primary_10_1038_s41598_024_78845_x
crossref_primary_10_3390_ijerph20010702
crossref_primary_10_1007_s11071_025_11203_2
crossref_primary_10_1007_s11440_023_01830_7
crossref_primary_10_1007_s13369_023_08360_0
crossref_primary_10_1007_s40948_024_00912_4
crossref_primary_10_1016_j_aei_2024_103090
crossref_primary_10_1080_15435075_2025_2450468
crossref_primary_10_1080_17597269_2025_2528322
crossref_primary_10_1016_j_measurement_2024_115611
crossref_primary_10_3390_foods14030429
crossref_primary_10_1016_j_ress_2024_110384
crossref_primary_10_1007_s00603_021_02747_x
crossref_primary_10_1016_j_tourman_2025_105220
crossref_primary_10_1080_09544828_2025_2546838
crossref_primary_10_1016_j_eswa_2025_128281
crossref_primary_10_1007_s10973_025_14646_2
crossref_primary_10_1016_j_ijthermalsci_2023_108825
crossref_primary_10_3390_agronomy14040831
crossref_primary_10_1007_s13132_024_02081_x
crossref_primary_10_1016_j_energy_2025_135099
crossref_primary_10_1007_s11803_022_2125_0
crossref_primary_10_1080_15376494_2025_2496758
crossref_primary_10_1016_j_tust_2024_105842
crossref_primary_10_1007_s40430_023_04267_x
crossref_primary_10_3390_app14114771
crossref_primary_10_1016_j_jenvman_2024_123248
crossref_primary_10_3389_frai_2025_1553220
crossref_primary_10_1109_ACCESS_2024_3488579
crossref_primary_10_1007_s11269_023_03430_2
crossref_primary_10_2174_0123520965254438231102050325
crossref_primary_10_1016_j_heliyon_2024_e28246
crossref_primary_10_3390_a17120565
crossref_primary_10_1038_s41598_024_65411_8
crossref_primary_10_1002_nag_70083
crossref_primary_10_1016_j_conbuildmat_2024_136232
crossref_primary_10_3390_app13042574
crossref_primary_10_3390_computation12010015
crossref_primary_10_3390_atmos14010109
crossref_primary_10_1007_s11440_022_01685_4
crossref_primary_10_1016_j_conbuildmat_2025_141319
crossref_primary_10_1016_j_scitotenv_2024_175406
crossref_primary_10_1088_1748_9326_adb59d
crossref_primary_10_1016_j_eswa_2024_124789
crossref_primary_10_3390_ma16103731
crossref_primary_10_1007_s10462_023_10636_8
crossref_primary_10_1080_01605682_2025_2513449
crossref_primary_10_3390_rs17020240
crossref_primary_10_1016_j_scitotenv_2025_179856
crossref_primary_10_1016_j_envdev_2025_101298
crossref_primary_10_1016_j_eswa_2025_127654
crossref_primary_10_1038_s41598_024_81307_z
crossref_primary_10_3390_ma16010308
crossref_primary_10_1007_s13369_025_10467_5
crossref_primary_10_3390_sym17071111
crossref_primary_10_1016_j_eswa_2024_125744
crossref_primary_10_1002_qre_3584
crossref_primary_10_1007_s10462_022_10140_5
crossref_primary_10_3390_make7030070
crossref_primary_10_1007_s12145_025_01817_w
crossref_primary_10_1016_j_energy_2025_136291
crossref_primary_10_1016_j_mtcomm_2023_106545
crossref_primary_10_1016_j_compbiolchem_2025_108442
crossref_primary_10_1109_TCE_2024_3371440
crossref_primary_10_1109_ACCESS_2024_3509456
crossref_primary_10_1016_j_jenvman_2024_124001
crossref_primary_10_3389_fevo_2023_1255384
crossref_primary_10_1016_j_ecolind_2024_112945
crossref_primary_10_3390_buildings14030591
crossref_primary_10_3389_fpubh_2023_1119580
crossref_primary_10_1007_s11053_021_09890_w
crossref_primary_10_3390_app142210511
crossref_primary_10_1016_j_engappai_2023_107284
crossref_primary_10_1061_JCEMD4_COENG_16448
crossref_primary_10_3390_pr12091788
crossref_primary_10_1016_j_tra_2025_104480
crossref_primary_10_1111_ffe_13997
crossref_primary_10_3390_su132212797
crossref_primary_10_3390_fermentation9070598
crossref_primary_10_3390_agronomy14081780
crossref_primary_10_1007_s10462_025_11156_3
crossref_primary_10_32604_cmes_2022_021165
crossref_primary_10_1063_5_0252990
crossref_primary_10_1002_msd2_70004
crossref_primary_10_1007_s11053_021_09968_5
crossref_primary_10_3390_rs13183745
crossref_primary_10_1109_TIM_2024_3420372
crossref_primary_10_3390_s25051512
crossref_primary_10_1016_j_csite_2024_105094
crossref_primary_10_32604_cmes_2023_025714
crossref_primary_10_1007_s11227_025_06919_2
crossref_primary_10_1080_17480930_2025_2552707
crossref_primary_10_1007_s40747_023_01061_z
crossref_primary_10_3389_fmicb_2023_1245805
crossref_primary_10_1016_j_jhydrol_2024_131767
crossref_primary_10_3390_app14209528
crossref_primary_10_3390_electronics12214442
crossref_primary_10_1007_s00170_022_10444_4
crossref_primary_10_1007_s11053_024_10329_1
crossref_primary_10_1080_10589759_2024_2398687
crossref_primary_10_1016_j_fuel_2024_133093
crossref_primary_10_1007_s00366_021_01466_9
crossref_primary_10_1016_j_ijmst_2023_06_001
crossref_primary_10_1016_j_jappgeo_2025_105867
crossref_primary_10_1021_acs_est_4c14483
crossref_primary_10_1007_s10064_023_03366_2
crossref_primary_10_1080_15320383_2024_2306491
crossref_primary_10_3390_geosciences15050182
crossref_primary_10_3390_math11020431
crossref_primary_10_1007_s11053_025_10512_y
crossref_primary_10_1016_j_rines_2025_100109
crossref_primary_10_1007_s11053_021_09960_z
crossref_primary_10_1016_j_chemolab_2024_105197
crossref_primary_10_1007_s12517_021_08615_w
crossref_primary_10_1016_j_tust_2022_104570
crossref_primary_10_1007_s11356_023_29712_1
crossref_primary_10_1007_s40948_025_00953_3
crossref_primary_10_1016_j_rineng_2023_100892
crossref_primary_10_1016_j_fuel_2024_133953
crossref_primary_10_3390_ma16114034
crossref_primary_10_1088_1361_6501_aca2cb
crossref_primary_10_3389_fbuil_2024_1509714
crossref_primary_10_3389_fpls_2023_1283921
crossref_primary_10_1016_j_oceaneng_2025_121539
crossref_primary_10_1007_s11663_024_03092_4
crossref_primary_10_3390_app14146164
crossref_primary_10_1007_s12517_023_11237_z
crossref_primary_10_3390_machines13040290
crossref_primary_10_1016_j_heliyon_2024_e27096
crossref_primary_10_1007_s11760_025_04801_5
crossref_primary_10_3390_buildings14072163
crossref_primary_10_1007_s42461_025_01225_0
crossref_primary_10_1016_j_cscm_2025_e04359
crossref_primary_10_1016_j_undsp_2025_03_006
crossref_primary_10_1007_s11053_021_09943_0
crossref_primary_10_1080_09544828_2024_2436968
crossref_primary_10_1016_j_autcon_2023_105127
crossref_primary_10_2478_pomr_2024_0030
crossref_primary_10_1007_s11053_025_10518_6
crossref_primary_10_1016_j_biosystems_2024_105246
crossref_primary_10_1016_j_engfailanal_2024_108710
crossref_primary_10_1109_ACCESS_2024_3502759
crossref_primary_10_1155_2022_4247290
crossref_primary_10_1016_j_trgeo_2024_101288
crossref_primary_10_1007_s11053_021_09929_y
crossref_primary_10_1007_s00366_021_01418_3
crossref_primary_10_1007_s10661_025_14046_x
crossref_primary_10_1016_j_ecolind_2025_113685
crossref_primary_10_3390_agronomy13102516
crossref_primary_10_1016_j_jfranklin_2024_107303
crossref_primary_10_1016_j_cscm_2023_e02107
crossref_primary_10_1007_s12539_023_00569_9
crossref_primary_10_1515_ijeeps_2025_0184
crossref_primary_10_1109_ACCESS_2024_3456481
crossref_primary_10_1007_s10064_025_04178_2
crossref_primary_10_18311_jmmf_2022_30057
crossref_primary_10_1007_s00603_025_04730_2
crossref_primary_10_1109_ACCESS_2023_3259981
crossref_primary_10_1016_j_jocs_2023_102097
crossref_primary_10_3390_app132413170
crossref_primary_10_3390_diagnostics13152471
crossref_primary_10_1007_s40515_024_00529_w
crossref_primary_10_32604_cmes_2022_021893
crossref_primary_10_1016_j_applthermaleng_2024_122786
crossref_primary_10_1016_j_asr_2025_03_034
crossref_primary_10_1177_20552076251355127
crossref_primary_10_3390_su15043280
crossref_primary_10_1007_s42461_024_01057_4
crossref_primary_10_1016_j_coal_2023_104294
crossref_primary_10_1007_s11440_022_01450_7
Cites_doi 10.1007/s00603-013-0368-9
10.1007/s10706-011-9463-4
10.1016/j.undsp.2020.05.008
10.1007/s00603-014-0604-y
10.1007/s11053-021-09826-4
10.1007/s00366-020-01136-2
10.1260/095745606777630323
10.1016/j.undsp.2020.03.001
10.1007/s00366-020-01014-x
10.1016/j.neucom.2015.06.083
10.1145/2939672.2939785
10.1007/s00366-016-0455-0
10.1061/(ASCE)GM.1943-5622.0000817
10.1007/s11771-021-4619-8
10.1016/j.measurement.2014.06.001
10.1177/1077546312437002
10.1007/978-3-540-28650-9_4
10.1007/s00366-019-00816-y
10.1016/S0167-9031(89)90437-4
10.1061/(ASCE)CP.1943-5487.0000553
10.21608/jesaun.2011.127550
10.1016/j.advengsoft.2016.01.008
10.1007/s00254-007-1143-6
10.1016/j.ijmst.2019.02.009
10.1016/j.measurement.2018.11.050
10.1016/S1674-5264(09)60162-9
10.1007/s11053-019-09470-z
10.1016/j.gsf.2020.09.020
10.1007/978-94-011-5014-9_23
10.1080/17480930.2020.1734151
10.1061/(ASCE)CF.1943-5509.0001292
10.1007/s10064-020-01834-7
10.1016/j.jsv.2005.02.044
10.1007/s00521-015-1870-7
10.3390/app10041403
10.1007/s11069-015-1842-3
10.3390/app11041922
10.1016/j.ijmst.2020.06.008
10.1016/j.tust.2019.103103
10.1080/0305215X.2018.1439943
10.1016/j.ijrmms.2018.08.004
10.7551/mitpress/3206.001.0001
10.3390/app9183715
10.1016/j.ssci.2019.05.046
10.1007/s10064-014-0657-x
10.1016/j.soildyn.2020.106390
10.1023/A:1010933404324
10.1016/j.measurement.2015.07.019
10.1007/s11053-019-09492-7
10.1016/j.undsp.2020.05.005
10.1007/s11053-019-09593-3
10.1023/A:1012771025575
10.1007/s12517-012-0770-8
10.1016/j.engappai.2020.104015
10.1007/s12517-013-1174-0
10.1016/j.gsf.2019.12.003
10.3390/app9132714
10.1016/j.gsf.2020.03.007
10.1016/j.ijmst.2021.01.007
10.1016/j.ijrmms.2009.03.004
10.1016/j.ijrmms.2020.104220
10.1016/S1003-6326(11)61195-3
10.3390/app10030869
10.1007/s11053-019-09548-8
10.1016/j.advengsoft.2013.12.007
10.1016/j.ijrmms.2015.03.020
10.1016/j.ssci.2011.08.065
10.1007/s10661-010-1470-z
10.1214/aos/1013203451
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00366-021-01393-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1435-5663
EndPage 4162
ExternalDocumentID 10_1007_s00366_021_01393_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-d6a2af5d10da39686d64c8a4dbfc0fe372a3fd6ffe1c4bf8d490dead4999f3ff3
IEDL.DBID M7S
ISICitedReferencesCount 349
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642373200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0177-0667
IngestDate Tue Dec 02 15:58:33 EST 2025
Tue Nov 18 22:02:53 EST 2025
Sat Nov 29 06:25:19 EST 2025
Fri Feb 21 02:44:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Suppl 5
Keywords Metaheuristic optimization
Extreme gradient boosting
Blasting
Ground vibration
PPV
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d6a2af5d10da39686d64c8a4dbfc0fe372a3fd6ffe1c4bf8d490dead4999f3ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0368-3188
PQID 2745498620
PQPubID 326339
PageCount 18
ParticipantIDs proquest_journals_2745498620
crossref_citationtrail_10_1007_s00366_021_01393_9
crossref_primary_10_1007_s00366_021_01393_9
springer_journals_10_1007_s00366_021_01393_9
PublicationCentury 2000
PublicationDate 20221200
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationSubtitle An International Journal for Simulation-Based Engineering
PublicationTitle Engineering with computers
PublicationTitleAbbrev Engineering with Computers
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Singh, Singh (CR48) 1975; 23
Shi, Zhou, Wu, Huang, Wei (CR45) 2012; 22
Mirjalili, Mirjalili, Hatamlou (CR35) 2016; 27
Hajihassani, Armaghani, Marto, Mohamad (CR17) 2015; 74
Zhou, Qiu, Zhu, Armaghani, Khandelwal, Mohamad (CR71) 2020
Rasmussen, Williams (CR43) 2005
CR37
Khandelwal (CR21) 2012; 30
CR36
Zhou, Li, Shi (CR65) 2012; 50
Khandelwal, Singh (CR23) 2006; 289
CR33
CR30
Zhou, Li, Mitri (CR67) 2016; 30
Zhou, Shi, Du, Qiu, Li, Mitri (CR68) 2017; 17
Rasmussen (CR42) 2004
Gou, Shi, Zhou, Qiu, Chen, Huo (CR15) 2020; 127
Teymen, Mengüç (CR49) 2020; 30
Mirjalili, Mirjalili, Lewis (CR34) 2014; 69
Zhou, Li, Mitri (CR66) 2015; 79
Khandelwal, Saadat (CR22) 2015; 48
Cardu, Coragliotto, Oreste (CR6) 2019; 29
CR8
CR7
Yu, Shi, Zhou, Gou, Huo, Zhang, Armaghani (CR57) 2020
Wang, Shi, Zhou (CR51) 2018; 110
CR47
Gou, Shi, Huo, Zhou, Yu, Qiu (CR14) 2019; 135
Armaghani, Koopialipoor, Bahri, Hasanipanah, Tahir (CR4) 2020; 79
CR44
Breiman (CR5) 2001; 45
CR41
Zhang, Nguyen, Bui, Tran, Nguyen, Bui, Moayedi (CR64) 2020; 29
Zhou, Li, Yang, Wang, Shi, Yao, Mitri (CR70) 2019; 118
Ding, Nguyen, Bui, Zhou, Moayedi (CR9) 2020; 29
Zhang, Zhang, Wu, Goh, Wang (CR61) 2020
Lawal, Kwon, Hammed, Idris (CR28) 2021; 31
Le, Nguyen, Zhou, Dou, Moayedi (CR29) 2019; 9
Zhou, Asteris, Armaghani, Pham (CR72) 2020; 139
Khandelwal, Kankar, Harsha (CR26) 2010; 20
Li, Zhou, Shi, Armaghani, Yu, Chen, Huang (CR31) 2020
Khandelwal, Singh (CR24) 2009; 46
Wang, Shi, Zhou, Qiu (CR50) 2018; 50
Xu, Zhou, Asteris, Jahed Armaghani, Tahir (CR55) 2019; 9
CR19
CR18
CR16
Monjezi, Singh, Khandelwal, Sinha, Singh, Hosseini (CR38) 2006; 37
Wang, Zhou, Li, Armaghani, Li, Mitri (CR52) 2021; 28
CR13
CR11
CR54
Zhang, Zhang, Wu, Goh, Lacasse, Liu, Liu (CR60) 2019; 11
Emary, Zawbaa, Hassanien (CR10) 2016; 172
Khandelwal, Armaghani, Faradonbeh, Yellishetty, Abd Majid, Monjezi (CR27) 2017; 33
Zhou, Qiu, Armaghani, Zhang, Li, Zhu, Tarinejad (CR75) 2021; 12
Jones (CR20) 2001; 21
Armaghani, Hajihassani, Bejarbaneh, Marto, Mohamad (CR3) 2014; 55
Khandelwal, Singh (CR25) 2013; 46
Armaghani, Hajihassani, Mohamad, Marto, Noorani (CR2) 2014; 7
Zhang, Zhou, Armaghani, Tahir, Pham, Huynh (CR63) 2020; 10
Friedman (CR12) 2001; 29
Yu, Shi, Zhou, Chen, Qiu (CR56) 2020; 10
Yu, Koopialipoor, Murlidhar, Mohammed, Armaghani, Mohamad, Wang (CR59) 2021
Zhang, Wu, Zhong, Li, Wang (CR62) 2020; 12
Zhou, Li, Koopialipoor, Jahed Armaghani, Thai Pham (CR73) 2021; 35
Adhikari, Singh, Gupta (CR1) 1989; 8
Zhou, Li, Wang, Chen, Shi, Jiang (CR69) 2019; 33
Zhou, Qiu, Zhu, Armaghani, Li, Nguyen, Yagiz (CR74) 2021; 97
Liu, Wang, Zhao, Guo, Wang, Li, Wang (CR32) 2020; 95
Yu, Shi, Zhou, Chen, Miao, Teng, Ipangelwa (CR58) 2020; 29
Wei, Li, Liu, Zhou, Li, Zhou (CR53) 2021; 11
Nguyen, Drebenstedt, Bui, Bui (CR39) 2020; 29
Singh, Chopra (CR46) 1977; 23
Nick (CR40) 2008; 3
H Nguyen (1393_CR39) 2020; 29
LT Le (1393_CR29) 2019; 9
XZ Shi (1393_CR45) 2012; 22
E Li (1393_CR31) 2020
Z Ding (1393_CR9) 2020; 29
DP Singh (1393_CR46) 1977; 23
J Zhou (1393_CR71) 2020
M Khandelwal (1393_CR22) 2015; 48
J Zhou (1393_CR72) 2020; 139
M Khandelwal (1393_CR26) 2010; 20
AI Lawal (1393_CR28) 2021; 31
CE Rasmussen (1393_CR43) 2005
J Zhou (1393_CR75) 2021; 12
1393_CR8
S Mirjalili (1393_CR35) 2016; 27
1393_CR7
Y Gou (1393_CR14) 2019; 135
H Zhang (1393_CR63) 2020; 10
J Zhou (1393_CR73) 2021; 35
SM Wang (1393_CR52) 2021; 28
J Zhou (1393_CR67) 2016; 30
Z Yu (1393_CR56) 2020; 10
M Khandelwal (1393_CR27) 2017; 33
DJ Armaghani (1393_CR3) 2014; 55
DJ Armaghani (1393_CR4) 2020; 79
W Zhang (1393_CR62) 2020; 12
J Zhou (1393_CR65) 2012; 50
1393_CR33
1393_CR36
M Wang (1393_CR51) 2018; 110
1393_CR37
A Teymen (1393_CR49) 2020; 30
W Zhang (1393_CR61) 2020
M Khandelwal (1393_CR25) 2013; 46
DP Singh (1393_CR48) 1975; 23
L Breiman (1393_CR5) 2001; 45
1393_CR30
DR Jones (1393_CR20) 2001; 21
W Zhang (1393_CR60) 2019; 11
B Liu (1393_CR32) 2020; 95
J Zhou (1393_CR70) 2019; 118
W Wei (1393_CR53) 2021; 11
M Khandelwal (1393_CR23) 2006; 289
M Cardu (1393_CR6) 2019; 29
1393_CR44
1393_CR47
C Yu (1393_CR59) 2021
DJ Armaghani (1393_CR2) 2014; 7
Z Yu (1393_CR58) 2020; 29
CE Rasmussen (1393_CR42) 2004
J Zhou (1393_CR69) 2019; 33
1393_CR41
E Emary (1393_CR10) 2016; 172
S Mirjalili (1393_CR34) 2014; 69
GR Adhikari (1393_CR1) 1989; 8
JH Friedman (1393_CR12) 2001; 29
N Nick (1393_CR40) 2008; 3
J Zhou (1393_CR68) 2017; 17
1393_CR18
M Monjezi (1393_CR38) 2006; 37
1393_CR19
M Khandelwal (1393_CR24) 2009; 46
H Xu (1393_CR55) 2019; 9
J Zhou (1393_CR74) 2021; 97
1393_CR54
Z Yu (1393_CR57) 2020
1393_CR11
M Wang (1393_CR50) 2018; 50
Y Gou (1393_CR15) 2020; 127
1393_CR13
1393_CR16
J Zhou (1393_CR66) 2015; 79
M Khandelwal (1393_CR21) 2012; 30
X Zhang (1393_CR64) 2020; 29
M Hajihassani (1393_CR17) 2015; 74
References_xml – volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR34
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
– volume: 35
  start-page: 48
  issue: 1
  year: 2021
  end-page: 68
  ident: CR73
  article-title: Development of a new methodology for estimating the amount of PPV in surface mines based on prediction and probabilistic models (GEP-MC)
  publication-title: Int J Min Reclam Environ
– volume: 30
  start-page: 04016003
  issue: 5
  year: 2016
  ident: CR67
  article-title: Classification of rockburst in underground projects: comparison of ten supervised learning methods
  publication-title: J Comput Civ Eng
– volume: 139
  start-page: 106390
  year: 2020
  ident: CR72
  article-title: Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models
  publication-title: Soil Dyn Earthq Eng
– volume: 46
  start-page: 1551
  year: 2013
  end-page: 1558
  ident: CR25
  article-title: Application of an expert system to predict maximum explosive charge used per delay in surface mining
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0368-9
– ident: CR16
– volume: 21
  start-page: 345
  issue: 4
  year: 2001
  end-page: 383
  ident: CR20
  article-title: A taxonomy of global optimization methods based on response surfaces
  publication-title: J Glob Optim
– volume: 33
  start-page: 04019024
  issue: 3
  year: 2019
  ident: CR69
  article-title: Feasibility of stochastic gradient boosting approach for evaluating seismic liquefaction potential based on SPT and CPT case histories
  publication-title: J Perform Constr Facil
– volume: 11
  start-page: 1095
  year: 2019
  ident: CR60
  article-title: State-of-the-art review of soft computing applications in underground excavations
  publication-title: Geosci Front
– volume: 31
  start-page: 265
  issue: 2
  year: 2021
  end-page: 277
  ident: CR28
  article-title: Blast-induced ground vibration prediction in granite quarries: an application of gene expression programming, ANFIS, and sine cosine algorithm optimized ANN
  publication-title: Int J Min Sci Technol
– volume: 10
  start-page: 1403
  issue: 4
  year: 2020
  ident: CR56
  article-title: Effective assessment of blast-induced ground vibration using an optimized random forest model based on a Harris hawks optimization algorithm
  publication-title: Appl Sci
– volume: 23
  start-page: 228
  issue: 8
  year: 1977
  end-page: 231
  ident: CR46
  article-title: A comparison of static and dynamic properties of Singrauli rock
  publication-title: J Mines Metals Fuels
– ident: CR54
– volume: 110
  start-page: 199
  year: 2018
  end-page: 209
  ident: CR51
  article-title: Charge design scheme optimization for ring blasting based on the developed Scaled Heelan model
  publication-title: Int J Rock Mech Min Sci
– ident: CR8
– volume: 30
  start-page: 205
  year: 2012
  end-page: 217
  ident: CR21
  article-title: Application of an expert system for the assessment of blast vibration
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-011-9463-4
– volume: 29
  start-page: 905
  issue: 6
  year: 2019
  end-page: 915
  ident: CR6
  article-title: Analysis of predictor equations for determining the blast-induced vibration in rock blasting
  publication-title: Int J Min Sci Technol
– volume: 29
  start-page: 751
  year: 2020
  end-page: 769
  ident: CR9
  article-title: Computational intelligence model for estimating intensity of blast-induced ground vibration in a mine based on imperialist competitive and extreme gradient boosting algorithms
  publication-title: Nat Resour Res
– year: 2020
  ident: CR71
  article-title: Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization
  publication-title: Undergr Sp
  doi: 10.1016/j.undsp.2020.05.008
– volume: 30
  start-page: 785
  issue: 6
  year: 2020
  end-page: 797
  ident: CR49
  article-title: Comparative evaluation of different statistical tools for the prediction of uniaxial compressive strength of rocks
  publication-title: Int J Min Sci Technol
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: CR10
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
– ident: CR19
– volume: 50
  start-page: 629
  issue: 4
  year: 2012
  end-page: 644
  ident: CR65
  article-title: Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines
  publication-title: Saf Sci
– volume: 11
  start-page: 1922
  issue: 4
  year: 2021
  ident: CR53
  article-title: Performance evaluation of hybrid WOA-SVR and HHO-SVR models with various kernels to predict factor of safety for circular failure slope
  publication-title: Appl Sci
– volume: 48
  start-page: 727
  year: 2015
  end-page: 735
  ident: CR22
  article-title: A dimensional analysis approach to study blast-induced ground vibration
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-014-0604-y
– volume: 55
  start-page: 487
  year: 2014
  end-page: 498
  ident: CR3
  article-title: Indirect measure of shale shear strength parameters by means of rock index tests through an optimized artificial neural network
  publication-title: Measurement
– volume: 29
  start-page: 691
  issue: 2
  year: 2020
  end-page: 709
  ident: CR39
  article-title: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network
  publication-title: Nat Resour Res
– volume: 3
  start-page: 3
  year: 2008
  ident: CR40
  article-title: Joseph Juran, 103, Pioneer in quality control
  publication-title: Dies New York Times
– volume: 50
  start-page: 2177
  issue: 12
  year: 2018
  end-page: 2191
  ident: CR50
  article-title: Multi-planar detection optimization algorithm for the interval charging structure of large-diameter longhole blasting design based on rock fragmentation aspects
  publication-title: Eng Optim
– year: 2021
  ident: CR59
  article-title: Optimal ELM–Harris Hawks optimization and ELM–Grasshopper optimization models to forecast peak particle velocity resulting from mine blasting
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-021-09826-4
– ident: CR11
– year: 2020
  ident: CR57
  article-title: A new multikernel relevance vector machine based on the HPSOGWO algorithm for predicting and controlling blast-induced ground vibration
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01136-2
– start-page: 63
  year: 2004
  end-page: 71
  ident: CR42
  article-title: Gaussian processes in machine learning
  publication-title: Advanced lectures on machine learning
– volume: 12
  start-page: 101091
  issue: 3
  year: 2021
  ident: CR75
  article-title: Predicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniques
  publication-title: Geosci Front
– ident: CR36
– volume: 20
  start-page: 64
  issue: 1
  year: 2010
  end-page: 70
  ident: CR26
  article-title: Evaluation and prediction of blast induced ground vibration using support vector machine
  publication-title: Min Sci Technol (China)
– volume: 17
  start-page: 04016129
  issue: 6
  year: 2017
  ident: CR68
  article-title: Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel
  publication-title: Int J Geomech
– volume: 37
  start-page: 8
  issue: 5
  year: 2006
  end-page: 16
  ident: CR38
  article-title: Prediction and analysis of blast parameters using artificial neural network
  publication-title: Noise Vib Worldwide
  doi: 10.1260/095745606777630323
– volume: 46
  start-page: 1214
  issue: 7
  year: 2009
  end-page: 1222
  ident: CR24
  article-title: Prediction of blast-induced ground vibration using artificial neural network
  publication-title: Int J Rock Mech Min Sci
– ident: CR18
– volume: 289
  start-page: 711
  issue: 4–5
  year: 2006
  end-page: 725
  ident: CR23
  article-title: Prediction of blast induced ground vibrations and frequency in opencast mine: a neural network approach
  publication-title: J Sound Vib
– volume: 22
  start-page: 432
  issue: 2
  year: 2012
  end-page: 441
  ident: CR45
  article-title: Support vector machines approach to mean block size of rock fragmentation due to bench blasting prediction
  publication-title: Trans Nonferrous Metals Soc China
– ident: CR47
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: CR35
  article-title: Multi-Verse Optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput Appl
– volume: 9
  start-page: 3715
  issue: 18
  year: 2019
  ident: CR55
  article-title: Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate
  publication-title: Appl Sci
– ident: CR37
– volume: 118
  start-page: 505
  year: 2019
  end-page: 518
  ident: CR70
  article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories
  publication-title: Saf Sci
– ident: CR30
– volume: 7
  start-page: 5383
  issue: 12
  year: 2014
  end-page: 5396
  ident: CR2
  article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization
  publication-title: Arab J Geosci
– ident: CR33
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: CR12
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
– volume: 33
  start-page: 45
  issue: 1
  year: 2017
  end-page: 53
  ident: CR27
  article-title: Classification and regression tree technique in estimating peak particle velocity caused by blasting
  publication-title: Eng Comput
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR5
  article-title: Random forests
  publication-title: Mach Learn
– volume: 135
  start-page: 213
  year: 2019
  end-page: 230
  ident: CR14
  article-title: Motion parameter estimation and measured data correction derived from blast-induced vibration: new insights
  publication-title: Measurement
– volume: 23
  start-page: 100
  issue: 2
  year: 1975
  end-page: 107
  ident: CR48
  article-title: A study of physical properties of Singrauli rocks
  publication-title: J Mines Metals Fuels
– volume: 74
  start-page: 873
  issue: 3
  year: 2015
  end-page: 886
  ident: CR17
  article-title: Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm
  publication-title: Bull Eng Geol Environ
– ident: CR44
– volume: 12
  start-page: 469
  year: 2020
  ident: CR62
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci Front
– start-page: 4
  year: 2005
  ident: CR43
  publication-title: Gaussian processes for machine learning
– volume: 79
  start-page: 291
  issue: 1
  year: 2015
  end-page: 316
  ident: CR66
  article-title: Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction
  publication-title: Nat Hazards
– volume: 97
  start-page: 104015
  year: 2021
  ident: CR74
  article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate
  publication-title: Eng Appl Artif Intell
– volume: 95
  start-page: 103103
  year: 2020
  ident: CR32
  article-title: Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm
  publication-title: Tunn Undergr Sp Technol
– ident: CR13
– volume: 29
  start-page: 843
  year: 2020
  end-page: 865
  ident: CR58
  article-title: Prediction of blast-induced rock movement during bench blasting: use of gray wolf optimizer and support vector regression
  publication-title: Nat Resour Res
– ident: CR7
– volume: 28
  start-page: 527
  issue: 2
  year: 2021
  end-page: 542
  ident: CR52
  article-title: Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques
  publication-title: J Cent South Univ
– ident: CR41
– volume: 8
  start-page: 297
  issue: 3
  year: 1989
  end-page: 300
  ident: CR1
  article-title: Influence of rock properties on blast-induced vibration
  publication-title: Min Sci Technol
– volume: 79
  start-page: 1
  year: 2020
  end-page: 17
  ident: CR4
  article-title: A SVR-GWO technique to minimize flyrock distance resulting from blasting
  publication-title: Bull Eng Geol Environ
– volume: 127
  start-page: 104220
  year: 2020
  ident: CR15
  article-title: Attenuation assessment of blast-induced vibrations derived from an underground mine
  publication-title: Int J Rock Mech Min Sci
– year: 2020
  ident: CR61
  article-title: Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression
  publication-title: Undergr Sp
  doi: 10.1016/j.undsp.2020.03.001
– volume: 9
  start-page: 2714
  issue: 13
  year: 2019
  ident: CR29
  article-title: Estimating the heating load of buildings for smart city planning using a novel artificial intelligence technique PSO-XGBoost
  publication-title: Appl Sci
– year: 2020
  ident: CR31
  article-title: Developing a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfill
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01014-x
– volume: 10
  start-page: 869
  issue: 3
  year: 2020
  ident: CR63
  article-title: A combination of feature selection and random forest techniques to solve a problem related to blast-induced ground vibration
  publication-title: Appl Sci
– volume: 29
  start-page: 711
  year: 2020
  end-page: 721
  ident: CR64
  article-title: Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost
  publication-title: Nat Resour Res
– year: 2020
  ident: 1393_CR31
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01014-x
– ident: 1393_CR41
– year: 2021
  ident: 1393_CR59
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-021-09826-4
– volume: 172
  start-page: 371
  year: 2016
  ident: 1393_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– ident: 1393_CR7
  doi: 10.1145/2939672.2939785
– volume: 33
  start-page: 45
  issue: 1
  year: 2017
  ident: 1393_CR27
  publication-title: Eng Comput
  doi: 10.1007/s00366-016-0455-0
– volume: 17
  start-page: 04016129
  issue: 6
  year: 2017
  ident: 1393_CR68
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0000817
– volume: 23
  start-page: 228
  issue: 8
  year: 1977
  ident: 1393_CR46
  publication-title: J Mines Metals Fuels
– volume: 28
  start-page: 527
  issue: 2
  year: 2021
  ident: 1393_CR52
  publication-title: J Cent South Univ
  doi: 10.1007/s11771-021-4619-8
– volume: 55
  start-page: 487
  year: 2014
  ident: 1393_CR3
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.06.001
– ident: 1393_CR13
  doi: 10.1177/1077546312437002
– start-page: 63
  volume-title: Advanced lectures on machine learning
  year: 2004
  ident: 1393_CR42
  doi: 10.1007/978-3-540-28650-9_4
– ident: 1393_CR16
  doi: 10.1007/s00366-019-00816-y
– volume: 8
  start-page: 297
  issue: 3
  year: 1989
  ident: 1393_CR1
  publication-title: Min Sci Technol
  doi: 10.1016/S0167-9031(89)90437-4
– volume: 30
  start-page: 04016003
  issue: 5
  year: 2016
  ident: 1393_CR67
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000553
– ident: 1393_CR36
  doi: 10.21608/jesaun.2011.127550
– ident: 1393_CR33
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 1393_CR19
  doi: 10.1007/s00254-007-1143-6
– volume: 29
  start-page: 905
  issue: 6
  year: 2019
  ident: 1393_CR6
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2019.02.009
– volume: 135
  start-page: 213
  year: 2019
  ident: 1393_CR14
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.11.050
– volume: 23
  start-page: 100
  issue: 2
  year: 1975
  ident: 1393_CR48
  publication-title: J Mines Metals Fuels
– volume: 20
  start-page: 64
  issue: 1
  year: 2010
  ident: 1393_CR26
  publication-title: Min Sci Technol (China)
  doi: 10.1016/S1674-5264(09)60162-9
– volume: 29
  start-page: 691
  issue: 2
  year: 2020
  ident: 1393_CR39
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-019-09470-z
– volume: 12
  start-page: 101091
  issue: 3
  year: 2021
  ident: 1393_CR75
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.09.020
– ident: 1393_CR54
  doi: 10.1007/978-94-011-5014-9_23
– volume: 35
  start-page: 48
  issue: 1
  year: 2021
  ident: 1393_CR73
  publication-title: Int J Min Reclam Environ
  doi: 10.1080/17480930.2020.1734151
– volume: 33
  start-page: 04019024
  issue: 3
  year: 2019
  ident: 1393_CR69
  publication-title: J Perform Constr Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0001292
– volume: 79
  start-page: 1
  year: 2020
  ident: 1393_CR4
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-020-01834-7
– volume: 289
  start-page: 711
  issue: 4–5
  year: 2006
  ident: 1393_CR23
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2005.02.044
– volume: 27
  start-page: 495
  year: 2016
  ident: 1393_CR35
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1870-7
– volume: 10
  start-page: 1403
  issue: 4
  year: 2020
  ident: 1393_CR56
  publication-title: Appl Sci
  doi: 10.3390/app10041403
– volume: 79
  start-page: 291
  issue: 1
  year: 2015
  ident: 1393_CR66
  publication-title: Nat Hazards
  doi: 10.1007/s11069-015-1842-3
– volume: 11
  start-page: 1922
  issue: 4
  year: 2021
  ident: 1393_CR53
  publication-title: Appl Sci
  doi: 10.3390/app11041922
– volume: 3
  start-page: 3
  year: 2008
  ident: 1393_CR40
  publication-title: Dies New York Times
– volume: 30
  start-page: 785
  issue: 6
  year: 2020
  ident: 1393_CR49
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2020.06.008
– volume: 95
  start-page: 103103
  year: 2020
  ident: 1393_CR32
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2019.103103
– volume: 50
  start-page: 2177
  issue: 12
  year: 2018
  ident: 1393_CR50
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2018.1439943
– volume: 110
  start-page: 199
  year: 2018
  ident: 1393_CR51
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2018.08.004
– volume: 37
  start-page: 8
  issue: 5
  year: 2006
  ident: 1393_CR38
  publication-title: Noise Vib Worldwide
  doi: 10.1260/095745606777630323
– start-page: 4
  volume-title: Gaussian processes for machine learning
  year: 2005
  ident: 1393_CR43
  doi: 10.7551/mitpress/3206.001.0001
– volume: 9
  start-page: 3715
  issue: 18
  year: 2019
  ident: 1393_CR55
  publication-title: Appl Sci
  doi: 10.3390/app9183715
– volume: 48
  start-page: 727
  year: 2015
  ident: 1393_CR22
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-014-0604-y
– year: 2020
  ident: 1393_CR57
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01136-2
– volume: 118
  start-page: 505
  year: 2019
  ident: 1393_CR70
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2019.05.046
– ident: 1393_CR47
– volume: 74
  start-page: 873
  issue: 3
  year: 2015
  ident: 1393_CR17
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-014-0657-x
– volume: 30
  start-page: 205
  year: 2012
  ident: 1393_CR21
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-011-9463-4
– volume: 139
  start-page: 106390
  year: 2020
  ident: 1393_CR72
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2020.106390
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 1393_CR5
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: 1393_CR18
  doi: 10.1016/j.measurement.2015.07.019
– volume: 29
  start-page: 711
  year: 2020
  ident: 1393_CR64
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-019-09492-7
– ident: 1393_CR30
  doi: 10.1016/j.undsp.2020.05.005
– volume: 29
  start-page: 843
  year: 2020
  ident: 1393_CR58
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-019-09593-3
– year: 2020
  ident: 1393_CR71
  publication-title: Undergr Sp
  doi: 10.1016/j.undsp.2020.05.008
– volume: 21
  start-page: 345
  issue: 4
  year: 2001
  ident: 1393_CR20
  publication-title: J Glob Optim
  doi: 10.1023/A:1012771025575
– ident: 1393_CR37
  doi: 10.1007/s12517-012-0770-8
– volume: 97
  start-page: 104015
  year: 2021
  ident: 1393_CR74
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.104015
– volume: 7
  start-page: 5383
  issue: 12
  year: 2014
  ident: 1393_CR2
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-013-1174-0
– volume: 11
  start-page: 1095
  year: 2019
  ident: 1393_CR60
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2019.12.003
– volume: 9
  start-page: 2714
  issue: 13
  year: 2019
  ident: 1393_CR29
  publication-title: Appl Sci
  doi: 10.3390/app9132714
– volume: 12
  start-page: 469
  year: 2020
  ident: 1393_CR62
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.03.007
– ident: 1393_CR8
– volume: 31
  start-page: 265
  issue: 2
  year: 2021
  ident: 1393_CR28
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2021.01.007
– volume: 46
  start-page: 1214
  issue: 7
  year: 2009
  ident: 1393_CR24
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2009.03.004
– year: 2020
  ident: 1393_CR61
  publication-title: Undergr Sp
  doi: 10.1016/j.undsp.2020.03.001
– volume: 127
  start-page: 104220
  year: 2020
  ident: 1393_CR15
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2020.104220
– volume: 22
  start-page: 432
  issue: 2
  year: 2012
  ident: 1393_CR45
  publication-title: Trans Nonferrous Metals Soc China
  doi: 10.1016/S1003-6326(11)61195-3
– volume: 10
  start-page: 869
  issue: 3
  year: 2020
  ident: 1393_CR63
  publication-title: Appl Sci
  doi: 10.3390/app10030869
– volume: 29
  start-page: 751
  year: 2020
  ident: 1393_CR9
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-019-09548-8
– volume: 69
  start-page: 46
  year: 2014
  ident: 1393_CR34
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 1393_CR44
  doi: 10.1016/j.ijrmms.2015.03.020
– volume: 46
  start-page: 1551
  year: 2013
  ident: 1393_CR25
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0368-9
– volume: 50
  start-page: 629
  issue: 4
  year: 2012
  ident: 1393_CR65
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2011.08.065
– ident: 1393_CR11
  doi: 10.1007/s10661-010-1470-z
– volume: 29
  start-page: 1189
  year: 2001
  ident: 1393_CR12
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
SSID ssj0013009
Score 2.6814582
Snippet Accurate prediction of ground vibration caused by blasting has always been a significant issue in the mining industry. Ground vibration caused by blasting is a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4145
SubjectTerms Algorithms
Blasting (explosive)
CAE) and Design
Calculus of Variations and Optimal Control; Optimization
Classical Mechanics
Computer Science
Computer-Aided Engineering (CAD
Control
Controllability
Dependent variables
Explosions
Heuristic methods
Machine learning
Math. Applications in Chemistry
Mathematical and Computational Engineering
Mining industry
Optimization
Optimization algorithms
Original Article
Performance evaluation
Root-mean-square errors
Systems Theory
Vibration
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBQgFRXvLARiPl4Trx2CIoA2orXu0WOX6ISiipmlCp_x47TRpAgASjHduJzuf4Pt19dwAXbUUYYUzDEqmwhaWLrYBp4OoSaTus7Siq8qold36_H4zHdFiQwtIy2r10SeZ_6hXZzaROMQGzBv561LPoOmzo6y4wBRvuH54r34G9DOxwfBPYRfyCKvP9Gp-vo8rG_OIWzW-bm_r_vnMXdgrrEnWW6rAHazJuQL2wNFFxjlPdVRZzKPsasP0hM-E-LIYVoQBVGcFRotDLwpC80GjQsca9bpKkWQv1RoOygVgsULdq5qV2UpQlaDozTqEMRdpgz6xJLLRWCWRoJXrG3MB284oDeLq5fry6tYoqDRbXxzezBGEuU23h2IJ5lAREEMwDhkWkuK2k57vMU4IoJR2OIxUITG2h9ddALeUp5R1CLU5ieQTIJ5hGehWfYxdHDosw8wPOXEk9xSMfN8EpNyvkRQpzU0njNVwlX86FH2rhh7nwQ9qEy9Wc6TKBx6-jT0sdCIvDnIYauGsUraGf3YRWuefV459XO_7b8BPYcg25Ig-WOYVaNnuTZ7DJ59kknZ3nSv4OmT_2lw
  priority: 102
  providerName: Springer Nature
Title Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration
URI https://link.springer.com/article/10.1007/s00366-021-01393-9
https://www.proquest.com/docview/2745498620
Volume 38
WOSCitedRecordID wos000642373200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1435-5663
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOrQHoLQVC3TlQ29gNQ-vHZ8Qi3hIoGUFtKx6iRw_VCSUbDcBiX-P7XUIVCoXLpasxE6kGdvzeWa-Afg-MFRQISws0YZgohOCM2GBa0J1FItBbLjxVUvO2WiUTSZ8HC7c6hBW2e6JfqNWlXR35D8serJQxtrf0f70L3ZVo5x3NZTQWIRlx5IQ-9C9q86LEM1DPGLmQrwoC0kzPnXOEbG48FsHplOeYv76YOqszX8cpP7cOV577x-vw2qwONHBXEU-wYIuN2AtWJ8orO16Az6-oCb8DI_jLqMAdZTgqDLoz6PL8kI3Fwd4cjKsqrrZQyc3F20HiVKhYdf1tXZq1FRoOnNeoQYV1mJv8G2prFop5PJK7IgHh9vdJ77Az-Oj68NTHMo0YGnXb4MVFYkwAxVHSqScZlRRIjNBVGFkZHTKEpEaRY3RsSSFyRThkbIK7LCWSY1Jv8JSWZV6ExCjhBd2FiZJQopYFESwTIpE89TIgpEexK2Mchk4zF0pjbv8mX3ZyzW3cs29XHPeg93nMdM5g8ebb--0wszDaq7zTpI92GvVoXv8_9m23p5tGz4kLpvCR8fswFIzu9ffYEU-NLf1rA_Lw6PR-LIPi2cM971m23Y8-G3by6tfT7rR_u0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ9UCitWCjgA5yoRWJ77fiAUAv0oV22PRR1b8HxQ1RCyXYTivZP8RuxvUkDSPTWA0cr8URyvhn787wAXg4dV1wpT0usY5hZwnCmPHEl3CapGqZOuti1ZCwmk2w6lScr8LPLhQlhlZ1NjIbaVDrckb_x7MlTGX_-Tt7NLnDoGhW8q10LjSUsRnbxw1O2-u3RB_9_XxGy__H0_SFuuwpg7eHWYMMVUW5o0sQoKnnGDWc6U8wUTifOUkEUdYY7Z1PNCpcZJhPj1ztQA0edo17uLbjNaCaCXo0E7r0WyTKkJBUhpIyLNkknpuqFwi8h3DeQdyopln9uhP3p9i-HbNzn9tf_txV6APfbEzXaXarAQ1ix5Qast6dr1NquegPWfiu9-AgWJ33GBOpLnqPKoa-LkMWGzo538fRgr6rqZgcdnB13A6RKg_b6YewlVKOmQrN58Ho1qPCMpMHnpfFqY1DIm_EzLsO9RPjEJny-keXYgtWyKu1jQIIzWXgpQjPCilQVTIlMK2IldboQbABph4lctzXaQ6uQb_lVdemIo9zjKI84yuUAXl_NmS0rlFz79nYHnry1VnXeI2cAOx38-sf_lvbkemkv4O7h6adxPj6ajJ7CPRIyR2Ik0DasNvPv9hnc0ZfNeT1_HvUIwZebhuUvumtcFw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTxQxFH9BMAYPgihxBbQHPEnDTKfbTg_E8OECgSx70LDxMnb6EUnMzLozYvZf86-z7c4wYCI3Dh6bmb5JOr--vl_fF8B23zLJpHS0xFiKqSEUp9IRV8JMFMt-bIUNXUvO-XCYjsditAC_21wYH1bZ6sSgqHWp_B35rmNPjso4-zvatU1YxOho8GHyA_sOUt7T2rbTmEPkzMx-OfpW7Z0euX_9jpDBx0-HJ7jpMICVg16NNZNE2r6OIy0TwVKmGVWppDq3KrIm4UQmVjNrTaxoblNNRaTd2nuaYBNrEyf3ESxxxzF9OOGo_6XzYETz8JKY-_AyxpuEnZC254vA-NBfT-QTkWBx91DsLN2_nLPhzBus_M-rtQrPGksb7c-3xnNYMMUarDRWN2p0WrUGT2-VZHwBs1GXSYG6UuiotOjbzGe3ocuLfTw-PijLqt5Bx5cX7QDJQqODbhh6DFWoLtFk6r1hNcodU6nxVaHddtLI59O4Gdf-vsJ_4iV8fpDlWIfFoizMK0CcUZE7KVxRQvNY5lTyVEliRGJVzmkP4hYfmWpqt_sWIt-zm6rTAVOZw1QWMJWJHry_mTOZVy659-3NFkhZo8WqrENRD3ZaKHaP_y3t9f3S3sITh8bs_HR4tgHLxCeUhAChTVispz_NFjxW1_VVNX0TthSCrw-Nyj9VtWU7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+hybrid+WOA-XGBoost%2C+GWO-XGBoost+and+BO-XGBoost+models+to+predict+blast-induced+ground+vibration&rft.jtitle=Engineering+with+computers&rft.au=Qiu%2C+Yingui&rft.au=Zhou%2C+Jian&rft.au=Khandelwal%2C+Manoj&rft.au=Yang%2C+Haitao&rft.date=2022-12-01&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=38&rft.issue=S5&rft.spage=4145&rft.epage=4162&rft_id=info:doi/10.1007%2Fs00366-021-01393-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00366_021_01393_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon