Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration
Accurate prediction of ground vibration caused by blasting has always been a significant issue in the mining industry. Ground vibration caused by blasting is a harmful phenomenon to nearby buildings and should be prevented. In this regard, a new intelligent method for predicting peak particle veloci...
Gespeichert in:
| Veröffentlicht in: | Engineering with computers Jg. 38; H. Suppl 5; S. 4145 - 4162 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Springer London
01.12.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0177-0667, 1435-5663 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Accurate prediction of ground vibration caused by blasting has always been a significant issue in the mining industry. Ground vibration caused by blasting is a harmful phenomenon to nearby buildings and should be prevented. In this regard, a new intelligent method for predicting peak particle velocity (PPV) induced by blasting had been developed. Accordingly, 150 sets of data composed of thirteen uncontrollable and controllable indicators are selected as input dependent variables, and the measured PPV is used as the output target for characterizing blast-induced ground vibration. Also, in order to enhance its predictive accuracy, the gray wolf optimization (GWO), whale optimization algorithm (WOA) and Bayesian optimization algorithm (BO) are applied to fine-tune the hyper-parameters of the extreme gradient boosting (XGBoost) model. According to the root mean squared error (RMSE), determination coefficient (
R
2
), the variance accounted for (VAF), and mean absolute error (MAE), the hybrid models GWO-XGBoost, WOA-XGBoost, and BO-XGBoost were verified. Additionally, XGBoost, CatBoost (CatB), Random Forest, and gradient boosting regression (GBR) were also considered and used to compare the multiple hybrid-XGBoost models that have been developed. The values of RMSE,
R
2
, VAF, and MAE obtained from WOA-XGBoost, GWO-XGBoost, and BO-XGBoost models were equal to (3.0538, 0.9757, 97.68, 2.5032), (3.0954, 0.9751, 97.62, 2.5189), and (3.2409, 0.9727, 97.65, 2.5867), respectively. Findings reveal that compared with other machine learning models, the proposed WOA-XGBoost became the most reliable model. These three optimized hybrid models are superior to the GBR model, CatB model, Random Forest model, and the XGBoost model, confirming the ability of the meta-heuristic algorithm to enhance the performance of the PPV model, which can be helpful for mine planners and engineers using advanced supervised machine learning with metaheuristic algorithms for predicting ground vibration caused by explosions. |
|---|---|
| AbstractList | Accurate prediction of ground vibration caused by blasting has always been a significant issue in the mining industry. Ground vibration caused by blasting is a harmful phenomenon to nearby buildings and should be prevented. In this regard, a new intelligent method for predicting peak particle velocity (PPV) induced by blasting had been developed. Accordingly, 150 sets of data composed of thirteen uncontrollable and controllable indicators are selected as input dependent variables, and the measured PPV is used as the output target for characterizing blast-induced ground vibration. Also, in order to enhance its predictive accuracy, the gray wolf optimization (GWO), whale optimization algorithm (WOA) and Bayesian optimization algorithm (BO) are applied to fine-tune the hyper-parameters of the extreme gradient boosting (XGBoost) model. According to the root mean squared error (RMSE), determination coefficient (R2), the variance accounted for (VAF), and mean absolute error (MAE), the hybrid models GWO-XGBoost, WOA-XGBoost, and BO-XGBoost were verified. Additionally, XGBoost, CatBoost (CatB), Random Forest, and gradient boosting regression (GBR) were also considered and used to compare the multiple hybrid-XGBoost models that have been developed. The values of RMSE, R2, VAF, and MAE obtained from WOA-XGBoost, GWO-XGBoost, and BO-XGBoost models were equal to (3.0538, 0.9757, 97.68, 2.5032), (3.0954, 0.9751, 97.62, 2.5189), and (3.2409, 0.9727, 97.65, 2.5867), respectively. Findings reveal that compared with other machine learning models, the proposed WOA-XGBoost became the most reliable model. These three optimized hybrid models are superior to the GBR model, CatB model, Random Forest model, and the XGBoost model, confirming the ability of the meta-heuristic algorithm to enhance the performance of the PPV model, which can be helpful for mine planners and engineers using advanced supervised machine learning with metaheuristic algorithms for predicting ground vibration caused by explosions. Accurate prediction of ground vibration caused by blasting has always been a significant issue in the mining industry. Ground vibration caused by blasting is a harmful phenomenon to nearby buildings and should be prevented. In this regard, a new intelligent method for predicting peak particle velocity (PPV) induced by blasting had been developed. Accordingly, 150 sets of data composed of thirteen uncontrollable and controllable indicators are selected as input dependent variables, and the measured PPV is used as the output target for characterizing blast-induced ground vibration. Also, in order to enhance its predictive accuracy, the gray wolf optimization (GWO), whale optimization algorithm (WOA) and Bayesian optimization algorithm (BO) are applied to fine-tune the hyper-parameters of the extreme gradient boosting (XGBoost) model. According to the root mean squared error (RMSE), determination coefficient ( R 2 ), the variance accounted for (VAF), and mean absolute error (MAE), the hybrid models GWO-XGBoost, WOA-XGBoost, and BO-XGBoost were verified. Additionally, XGBoost, CatBoost (CatB), Random Forest, and gradient boosting regression (GBR) were also considered and used to compare the multiple hybrid-XGBoost models that have been developed. The values of RMSE, R 2 , VAF, and MAE obtained from WOA-XGBoost, GWO-XGBoost, and BO-XGBoost models were equal to (3.0538, 0.9757, 97.68, 2.5032), (3.0954, 0.9751, 97.62, 2.5189), and (3.2409, 0.9727, 97.65, 2.5867), respectively. Findings reveal that compared with other machine learning models, the proposed WOA-XGBoost became the most reliable model. These three optimized hybrid models are superior to the GBR model, CatB model, Random Forest model, and the XGBoost model, confirming the ability of the meta-heuristic algorithm to enhance the performance of the PPV model, which can be helpful for mine planners and engineers using advanced supervised machine learning with metaheuristic algorithms for predicting ground vibration caused by explosions. |
| Author | Zhou, Jian Li, Chuanqi Yang, Peixi Qiu, Yingui Yang, Haitao Khandelwal, Manoj |
| Author_xml | – sequence: 1 givenname: Yingui surname: Qiu fullname: Qiu, Yingui organization: School of Resources and Safety Engineering, Central South University – sequence: 2 givenname: Jian surname: Zhou fullname: Zhou, Jian email: j.zhou@csu.edu.cn, csujzhou@hotmail.com organization: School of Resources and Safety Engineering, Central South University – sequence: 3 givenname: Manoj orcidid: 0000-0003-0368-3188 surname: Khandelwal fullname: Khandelwal, Manoj email: m.khandelwal@federation.edu.au, mkhandelwal1@gmail.com organization: School of Engineering, Information Technology and Physical Sciences, Federation University Australia – sequence: 4 givenname: Haitao surname: Yang fullname: Yang, Haitao organization: State Key Laboratory of Safety and Health for Metal Mines – sequence: 5 givenname: Peixi surname: Yang fullname: Yang, Peixi organization: School of Resources and Safety Engineering, Central South University – sequence: 6 givenname: Chuanqi surname: Li fullname: Li, Chuanqi organization: School of Resources and Safety Engineering, Central South University |
| BookMark | eNp9kEtLxDAUhYMoOD7-gKuAW6M3TZs2SxUdhYFxoYy7kOYxdug0Y5IK8--tU0Vw4epw4Hz3XM4R2u98ZxE6o3BJAcqrCMA4J5BRApQJRsQemtCcFaTgnO2jCdCyJMB5eYiOYlzBkAIQE7R9ssH5sFadtth-qLZXqfEd9g6_bevQGLyYX5PX6Y33MV3g6WL-Y7DqDL75tWtvbBtx8ngTrGl0wnWrYiJNZ3ptDV4G3w_ER1OHXcUJOnCqjfb0W4_Ry_3d8-0Dmc2nj7fXM6IZFYkYrjLlCkPBKCZ4xQ3PdaVyUzsNzrIyU8wZ7pylOq9dZXIBxqpBhHDMOXaMzse7m-DfexuTXPk-dEOlzMq8yEXFMxhS1ZjSwccYrJO6Sbs_U1BNKynIr6HlOLQchpa7oaUY0OwPugnNWoXt_xAboTiEu6UNv1_9Q30Cz06ULA |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3518205 crossref_primary_10_3389_fpubh_2022_882811 crossref_primary_10_3390_s23041811 crossref_primary_10_3390_app14093759 crossref_primary_10_3390_buildings13061384 crossref_primary_10_3390_math11061335 crossref_primary_10_3390_app112211076 crossref_primary_10_31466_kfbd_1473382 crossref_primary_10_1016_j_ceramint_2025_01_177 crossref_primary_10_1016_j_tust_2024_105727 crossref_primary_10_1016_j_resourpol_2024_104892 crossref_primary_10_1109_ACCESS_2024_3431015 crossref_primary_10_1016_j_cscm_2023_e02766 crossref_primary_10_1016_j_irbm_2024_100860 crossref_primary_10_1007_s10479_023_05401_7 crossref_primary_10_35377_saucis___1663435 crossref_primary_10_1007_s40996_024_01477_8 crossref_primary_10_3390_rs15041168 crossref_primary_10_1007_s10064_025_04116_2 crossref_primary_10_3390_app15031254 crossref_primary_10_1007_s42461_022_00560_w crossref_primary_10_1016_j_conbuildmat_2022_128483 crossref_primary_10_1016_j_istruc_2025_108984 crossref_primary_10_3390_min11060601 crossref_primary_10_1016_j_jastp_2024_106360 crossref_primary_10_1016_j_ecmx_2025_100903 crossref_primary_10_3390_buildings15183408 crossref_primary_10_1016_j_jrras_2024_101141 crossref_primary_10_1016_j_rineng_2025_106961 crossref_primary_10_3390_app13042079 crossref_primary_10_3390_f13121976 crossref_primary_10_1007_s00603_024_04094_z crossref_primary_10_1080_17480930_2023_2254147 crossref_primary_10_1016_j_engfracmech_2023_109626 crossref_primary_10_1016_j_rineng_2025_107132 crossref_primary_10_1016_j_psep_2024_08_066 crossref_primary_10_1007_s00603_024_03947_x crossref_primary_10_1007_s12204_022_2408_7 crossref_primary_10_1016_j_jag_2024_104117 crossref_primary_10_1007_s00603_025_04556_y crossref_primary_10_1016_j_ijhydene_2024_11_329 crossref_primary_10_1016_j_tust_2025_106888 crossref_primary_10_1016_j_jhydrol_2024_132565 crossref_primary_10_1016_j_engfailanal_2025_109881 crossref_primary_10_3390_jmse12122308 crossref_primary_10_1186_s13065_024_01127_0 crossref_primary_10_3390_su151310163 crossref_primary_10_1038_s41598_024_81218_z crossref_primary_10_1177_03019233241246343 crossref_primary_10_1038_s41598_025_03232_z crossref_primary_10_3390_molecules29194591 crossref_primary_10_1007_s00603_023_03522_w crossref_primary_10_1016_j_ijnonlinmec_2024_104857 crossref_primary_10_3390_electronics11223798 crossref_primary_10_1016_j_csite_2025_106516 crossref_primary_10_1007_s40515_025_00603_x crossref_primary_10_1007_s10921_024_01088_3 crossref_primary_10_1016_j_ijsrc_2025_07_009 crossref_primary_10_3390_su17136100 crossref_primary_10_1038_s41598_025_89595_9 crossref_primary_10_7717_peerj_cs_2576 crossref_primary_10_1155_2023_3578867 crossref_primary_10_3390_agronomy15071500 crossref_primary_10_1038_s41598_025_06363_5 crossref_primary_10_1177_24056456251356175 crossref_primary_10_1109_ACCESS_2024_3519219 crossref_primary_10_1109_JSEN_2025_3577205 crossref_primary_10_1080_17486025_2023_2207546 crossref_primary_10_1016_j_apr_2025_102425 crossref_primary_10_1007_s00521_022_07771_8 crossref_primary_10_1038_s41598_023_33796_7 crossref_primary_10_1080_19942060_2023_2244558 crossref_primary_10_1016_j_conbuildmat_2025_143286 crossref_primary_10_1080_10589759_2024_2313569 crossref_primary_10_3390_agronomy15051057 crossref_primary_10_1007_s42461_024_01028_9 crossref_primary_10_1016_j_apm_2024_05_037 crossref_primary_10_1038_s41598_025_08162_4 crossref_primary_10_1063_5_0219713 crossref_primary_10_3390_ma15155275 crossref_primary_10_1016_j_jallcom_2025_181155 crossref_primary_10_3390_mining5030040 crossref_primary_10_1016_j_scitotenv_2023_166603 crossref_primary_10_1016_j_trd_2025_104896 crossref_primary_10_1109_TII_2024_3441660 crossref_primary_10_1007_s42461_025_01267_4 crossref_primary_10_1038_s41598_024_78845_x crossref_primary_10_3390_ijerph20010702 crossref_primary_10_1007_s11071_025_11203_2 crossref_primary_10_1007_s11440_023_01830_7 crossref_primary_10_1007_s13369_023_08360_0 crossref_primary_10_1007_s40948_024_00912_4 crossref_primary_10_1016_j_aei_2024_103090 crossref_primary_10_1080_15435075_2025_2450468 crossref_primary_10_1080_17597269_2025_2528322 crossref_primary_10_1016_j_measurement_2024_115611 crossref_primary_10_3390_foods14030429 crossref_primary_10_1016_j_ress_2024_110384 crossref_primary_10_1007_s00603_021_02747_x crossref_primary_10_1016_j_tourman_2025_105220 crossref_primary_10_1080_09544828_2025_2546838 crossref_primary_10_1016_j_eswa_2025_128281 crossref_primary_10_1007_s10973_025_14646_2 crossref_primary_10_1016_j_ijthermalsci_2023_108825 crossref_primary_10_3390_agronomy14040831 crossref_primary_10_1007_s13132_024_02081_x crossref_primary_10_1016_j_energy_2025_135099 crossref_primary_10_1007_s11803_022_2125_0 crossref_primary_10_1080_15376494_2025_2496758 crossref_primary_10_1016_j_tust_2024_105842 crossref_primary_10_1007_s40430_023_04267_x crossref_primary_10_3390_app14114771 crossref_primary_10_1016_j_jenvman_2024_123248 crossref_primary_10_3389_frai_2025_1553220 crossref_primary_10_1109_ACCESS_2024_3488579 crossref_primary_10_1007_s11269_023_03430_2 crossref_primary_10_2174_0123520965254438231102050325 crossref_primary_10_1016_j_heliyon_2024_e28246 crossref_primary_10_3390_a17120565 crossref_primary_10_1038_s41598_024_65411_8 crossref_primary_10_1002_nag_70083 crossref_primary_10_1016_j_conbuildmat_2024_136232 crossref_primary_10_3390_app13042574 crossref_primary_10_3390_computation12010015 crossref_primary_10_3390_atmos14010109 crossref_primary_10_1007_s11440_022_01685_4 crossref_primary_10_1016_j_conbuildmat_2025_141319 crossref_primary_10_1016_j_scitotenv_2024_175406 crossref_primary_10_1088_1748_9326_adb59d crossref_primary_10_1016_j_eswa_2024_124789 crossref_primary_10_3390_ma16103731 crossref_primary_10_1007_s10462_023_10636_8 crossref_primary_10_1080_01605682_2025_2513449 crossref_primary_10_3390_rs17020240 crossref_primary_10_1016_j_scitotenv_2025_179856 crossref_primary_10_1016_j_envdev_2025_101298 crossref_primary_10_1016_j_eswa_2025_127654 crossref_primary_10_1038_s41598_024_81307_z crossref_primary_10_3390_ma16010308 crossref_primary_10_1007_s13369_025_10467_5 crossref_primary_10_3390_sym17071111 crossref_primary_10_1016_j_eswa_2024_125744 crossref_primary_10_1002_qre_3584 crossref_primary_10_1007_s10462_022_10140_5 crossref_primary_10_3390_make7030070 crossref_primary_10_1007_s12145_025_01817_w crossref_primary_10_1016_j_energy_2025_136291 crossref_primary_10_1016_j_mtcomm_2023_106545 crossref_primary_10_1016_j_compbiolchem_2025_108442 crossref_primary_10_1109_TCE_2024_3371440 crossref_primary_10_1109_ACCESS_2024_3509456 crossref_primary_10_1016_j_jenvman_2024_124001 crossref_primary_10_3389_fevo_2023_1255384 crossref_primary_10_1016_j_ecolind_2024_112945 crossref_primary_10_3390_buildings14030591 crossref_primary_10_3389_fpubh_2023_1119580 crossref_primary_10_1007_s11053_021_09890_w crossref_primary_10_3390_app142210511 crossref_primary_10_1016_j_engappai_2023_107284 crossref_primary_10_1061_JCEMD4_COENG_16448 crossref_primary_10_3390_pr12091788 crossref_primary_10_1016_j_tra_2025_104480 crossref_primary_10_1111_ffe_13997 crossref_primary_10_3390_su132212797 crossref_primary_10_3390_fermentation9070598 crossref_primary_10_3390_agronomy14081780 crossref_primary_10_1007_s10462_025_11156_3 crossref_primary_10_32604_cmes_2022_021165 crossref_primary_10_1063_5_0252990 crossref_primary_10_1002_msd2_70004 crossref_primary_10_1007_s11053_021_09968_5 crossref_primary_10_3390_rs13183745 crossref_primary_10_1109_TIM_2024_3420372 crossref_primary_10_3390_s25051512 crossref_primary_10_1016_j_csite_2024_105094 crossref_primary_10_32604_cmes_2023_025714 crossref_primary_10_1007_s11227_025_06919_2 crossref_primary_10_1080_17480930_2025_2552707 crossref_primary_10_1007_s40747_023_01061_z crossref_primary_10_3389_fmicb_2023_1245805 crossref_primary_10_1016_j_jhydrol_2024_131767 crossref_primary_10_3390_app14209528 crossref_primary_10_3390_electronics12214442 crossref_primary_10_1007_s00170_022_10444_4 crossref_primary_10_1007_s11053_024_10329_1 crossref_primary_10_1080_10589759_2024_2398687 crossref_primary_10_1016_j_fuel_2024_133093 crossref_primary_10_1007_s00366_021_01466_9 crossref_primary_10_1016_j_ijmst_2023_06_001 crossref_primary_10_1016_j_jappgeo_2025_105867 crossref_primary_10_1021_acs_est_4c14483 crossref_primary_10_1007_s10064_023_03366_2 crossref_primary_10_1080_15320383_2024_2306491 crossref_primary_10_3390_geosciences15050182 crossref_primary_10_3390_math11020431 crossref_primary_10_1007_s11053_025_10512_y crossref_primary_10_1016_j_rines_2025_100109 crossref_primary_10_1007_s11053_021_09960_z crossref_primary_10_1016_j_chemolab_2024_105197 crossref_primary_10_1007_s12517_021_08615_w crossref_primary_10_1016_j_tust_2022_104570 crossref_primary_10_1007_s11356_023_29712_1 crossref_primary_10_1007_s40948_025_00953_3 crossref_primary_10_1016_j_rineng_2023_100892 crossref_primary_10_1016_j_fuel_2024_133953 crossref_primary_10_3390_ma16114034 crossref_primary_10_1088_1361_6501_aca2cb crossref_primary_10_3389_fbuil_2024_1509714 crossref_primary_10_3389_fpls_2023_1283921 crossref_primary_10_1016_j_oceaneng_2025_121539 crossref_primary_10_1007_s11663_024_03092_4 crossref_primary_10_3390_app14146164 crossref_primary_10_1007_s12517_023_11237_z crossref_primary_10_3390_machines13040290 crossref_primary_10_1016_j_heliyon_2024_e27096 crossref_primary_10_1007_s11760_025_04801_5 crossref_primary_10_3390_buildings14072163 crossref_primary_10_1007_s42461_025_01225_0 crossref_primary_10_1016_j_cscm_2025_e04359 crossref_primary_10_1016_j_undsp_2025_03_006 crossref_primary_10_1007_s11053_021_09943_0 crossref_primary_10_1080_09544828_2024_2436968 crossref_primary_10_1016_j_autcon_2023_105127 crossref_primary_10_2478_pomr_2024_0030 crossref_primary_10_1007_s11053_025_10518_6 crossref_primary_10_1016_j_biosystems_2024_105246 crossref_primary_10_1016_j_engfailanal_2024_108710 crossref_primary_10_1109_ACCESS_2024_3502759 crossref_primary_10_1155_2022_4247290 crossref_primary_10_1016_j_trgeo_2024_101288 crossref_primary_10_1007_s11053_021_09929_y crossref_primary_10_1007_s00366_021_01418_3 crossref_primary_10_1007_s10661_025_14046_x crossref_primary_10_1016_j_ecolind_2025_113685 crossref_primary_10_3390_agronomy13102516 crossref_primary_10_1016_j_jfranklin_2024_107303 crossref_primary_10_1016_j_cscm_2023_e02107 crossref_primary_10_1007_s12539_023_00569_9 crossref_primary_10_1515_ijeeps_2025_0184 crossref_primary_10_1109_ACCESS_2024_3456481 crossref_primary_10_1007_s10064_025_04178_2 crossref_primary_10_18311_jmmf_2022_30057 crossref_primary_10_1007_s00603_025_04730_2 crossref_primary_10_1109_ACCESS_2023_3259981 crossref_primary_10_1016_j_jocs_2023_102097 crossref_primary_10_3390_app132413170 crossref_primary_10_3390_diagnostics13152471 crossref_primary_10_1007_s40515_024_00529_w crossref_primary_10_32604_cmes_2022_021893 crossref_primary_10_1016_j_applthermaleng_2024_122786 crossref_primary_10_1016_j_asr_2025_03_034 crossref_primary_10_1177_20552076251355127 crossref_primary_10_3390_su15043280 crossref_primary_10_1007_s42461_024_01057_4 crossref_primary_10_1016_j_coal_2023_104294 crossref_primary_10_1007_s11440_022_01450_7 |
| Cites_doi | 10.1007/s00603-013-0368-9 10.1007/s10706-011-9463-4 10.1016/j.undsp.2020.05.008 10.1007/s00603-014-0604-y 10.1007/s11053-021-09826-4 10.1007/s00366-020-01136-2 10.1260/095745606777630323 10.1016/j.undsp.2020.03.001 10.1007/s00366-020-01014-x 10.1016/j.neucom.2015.06.083 10.1145/2939672.2939785 10.1007/s00366-016-0455-0 10.1061/(ASCE)GM.1943-5622.0000817 10.1007/s11771-021-4619-8 10.1016/j.measurement.2014.06.001 10.1177/1077546312437002 10.1007/978-3-540-28650-9_4 10.1007/s00366-019-00816-y 10.1016/S0167-9031(89)90437-4 10.1061/(ASCE)CP.1943-5487.0000553 10.21608/jesaun.2011.127550 10.1016/j.advengsoft.2016.01.008 10.1007/s00254-007-1143-6 10.1016/j.ijmst.2019.02.009 10.1016/j.measurement.2018.11.050 10.1016/S1674-5264(09)60162-9 10.1007/s11053-019-09470-z 10.1016/j.gsf.2020.09.020 10.1007/978-94-011-5014-9_23 10.1080/17480930.2020.1734151 10.1061/(ASCE)CF.1943-5509.0001292 10.1007/s10064-020-01834-7 10.1016/j.jsv.2005.02.044 10.1007/s00521-015-1870-7 10.3390/app10041403 10.1007/s11069-015-1842-3 10.3390/app11041922 10.1016/j.ijmst.2020.06.008 10.1016/j.tust.2019.103103 10.1080/0305215X.2018.1439943 10.1016/j.ijrmms.2018.08.004 10.7551/mitpress/3206.001.0001 10.3390/app9183715 10.1016/j.ssci.2019.05.046 10.1007/s10064-014-0657-x 10.1016/j.soildyn.2020.106390 10.1023/A:1010933404324 10.1016/j.measurement.2015.07.019 10.1007/s11053-019-09492-7 10.1016/j.undsp.2020.05.005 10.1007/s11053-019-09593-3 10.1023/A:1012771025575 10.1007/s12517-012-0770-8 10.1016/j.engappai.2020.104015 10.1007/s12517-013-1174-0 10.1016/j.gsf.2019.12.003 10.3390/app9132714 10.1016/j.gsf.2020.03.007 10.1016/j.ijmst.2021.01.007 10.1016/j.ijrmms.2009.03.004 10.1016/j.ijrmms.2020.104220 10.1016/S1003-6326(11)61195-3 10.3390/app10030869 10.1007/s11053-019-09548-8 10.1016/j.advengsoft.2013.12.007 10.1016/j.ijrmms.2015.03.020 10.1016/j.ssci.2011.08.065 10.1007/s10661-010-1470-z 10.1214/aos/1013203451 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s00366-021-01393-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1435-5663 |
| EndPage | 4162 |
| ExternalDocumentID | 10_1007_s00366_021_01393_9 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR ZY4 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-d6a2af5d10da39686d64c8a4dbfc0fe372a3fd6ffe1c4bf8d490dead4999f3ff3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 349 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642373200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0177-0667 |
| IngestDate | Tue Dec 02 15:58:33 EST 2025 Tue Nov 18 22:02:53 EST 2025 Sat Nov 29 06:25:19 EST 2025 Fri Feb 21 02:44:00 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 5 |
| Keywords | Metaheuristic optimization Extreme gradient boosting Blasting Ground vibration PPV Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-d6a2af5d10da39686d64c8a4dbfc0fe372a3fd6ffe1c4bf8d490dead4999f3ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0368-3188 |
| PQID | 2745498620 |
| PQPubID | 326339 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2745498620 crossref_citationtrail_10_1007_s00366_021_01393_9 crossref_primary_10_1007_s00366_021_01393_9 springer_journals_10_1007_s00366_021_01393_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20221200 2022-12-00 20221201 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 20221200 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationSubtitle | An International Journal for Simulation-Based Engineering |
| PublicationTitle | Engineering with computers |
| PublicationTitleAbbrev | Engineering with Computers |
| PublicationYear | 2022 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Singh, Singh (CR48) 1975; 23 Shi, Zhou, Wu, Huang, Wei (CR45) 2012; 22 Mirjalili, Mirjalili, Hatamlou (CR35) 2016; 27 Hajihassani, Armaghani, Marto, Mohamad (CR17) 2015; 74 Zhou, Qiu, Zhu, Armaghani, Khandelwal, Mohamad (CR71) 2020 Rasmussen, Williams (CR43) 2005 CR37 Khandelwal (CR21) 2012; 30 CR36 Zhou, Li, Shi (CR65) 2012; 50 Khandelwal, Singh (CR23) 2006; 289 CR33 CR30 Zhou, Li, Mitri (CR67) 2016; 30 Zhou, Shi, Du, Qiu, Li, Mitri (CR68) 2017; 17 Rasmussen (CR42) 2004 Gou, Shi, Zhou, Qiu, Chen, Huo (CR15) 2020; 127 Teymen, Mengüç (CR49) 2020; 30 Mirjalili, Mirjalili, Lewis (CR34) 2014; 69 Zhou, Li, Mitri (CR66) 2015; 79 Khandelwal, Saadat (CR22) 2015; 48 Cardu, Coragliotto, Oreste (CR6) 2019; 29 CR8 CR7 Yu, Shi, Zhou, Gou, Huo, Zhang, Armaghani (CR57) 2020 Wang, Shi, Zhou (CR51) 2018; 110 CR47 Gou, Shi, Huo, Zhou, Yu, Qiu (CR14) 2019; 135 Armaghani, Koopialipoor, Bahri, Hasanipanah, Tahir (CR4) 2020; 79 CR44 Breiman (CR5) 2001; 45 CR41 Zhang, Nguyen, Bui, Tran, Nguyen, Bui, Moayedi (CR64) 2020; 29 Zhou, Li, Yang, Wang, Shi, Yao, Mitri (CR70) 2019; 118 Ding, Nguyen, Bui, Zhou, Moayedi (CR9) 2020; 29 Zhang, Zhang, Wu, Goh, Wang (CR61) 2020 Lawal, Kwon, Hammed, Idris (CR28) 2021; 31 Le, Nguyen, Zhou, Dou, Moayedi (CR29) 2019; 9 Zhou, Asteris, Armaghani, Pham (CR72) 2020; 139 Khandelwal, Kankar, Harsha (CR26) 2010; 20 Li, Zhou, Shi, Armaghani, Yu, Chen, Huang (CR31) 2020 Khandelwal, Singh (CR24) 2009; 46 Wang, Shi, Zhou, Qiu (CR50) 2018; 50 Xu, Zhou, Asteris, Jahed Armaghani, Tahir (CR55) 2019; 9 CR19 CR18 CR16 Monjezi, Singh, Khandelwal, Sinha, Singh, Hosseini (CR38) 2006; 37 Wang, Zhou, Li, Armaghani, Li, Mitri (CR52) 2021; 28 CR13 CR11 CR54 Zhang, Zhang, Wu, Goh, Lacasse, Liu, Liu (CR60) 2019; 11 Emary, Zawbaa, Hassanien (CR10) 2016; 172 Khandelwal, Armaghani, Faradonbeh, Yellishetty, Abd Majid, Monjezi (CR27) 2017; 33 Zhou, Qiu, Armaghani, Zhang, Li, Zhu, Tarinejad (CR75) 2021; 12 Jones (CR20) 2001; 21 Armaghani, Hajihassani, Bejarbaneh, Marto, Mohamad (CR3) 2014; 55 Khandelwal, Singh (CR25) 2013; 46 Armaghani, Hajihassani, Mohamad, Marto, Noorani (CR2) 2014; 7 Zhang, Zhou, Armaghani, Tahir, Pham, Huynh (CR63) 2020; 10 Friedman (CR12) 2001; 29 Yu, Shi, Zhou, Chen, Qiu (CR56) 2020; 10 Yu, Koopialipoor, Murlidhar, Mohammed, Armaghani, Mohamad, Wang (CR59) 2021 Zhang, Wu, Zhong, Li, Wang (CR62) 2020; 12 Zhou, Li, Koopialipoor, Jahed Armaghani, Thai Pham (CR73) 2021; 35 Adhikari, Singh, Gupta (CR1) 1989; 8 Zhou, Li, Wang, Chen, Shi, Jiang (CR69) 2019; 33 Zhou, Qiu, Zhu, Armaghani, Li, Nguyen, Yagiz (CR74) 2021; 97 Liu, Wang, Zhao, Guo, Wang, Li, Wang (CR32) 2020; 95 Yu, Shi, Zhou, Chen, Miao, Teng, Ipangelwa (CR58) 2020; 29 Wei, Li, Liu, Zhou, Li, Zhou (CR53) 2021; 11 Nguyen, Drebenstedt, Bui, Bui (CR39) 2020; 29 Singh, Chopra (CR46) 1977; 23 Nick (CR40) 2008; 3 H Nguyen (1393_CR39) 2020; 29 LT Le (1393_CR29) 2019; 9 XZ Shi (1393_CR45) 2012; 22 E Li (1393_CR31) 2020 Z Ding (1393_CR9) 2020; 29 DP Singh (1393_CR46) 1977; 23 J Zhou (1393_CR71) 2020 M Khandelwal (1393_CR22) 2015; 48 J Zhou (1393_CR72) 2020; 139 M Khandelwal (1393_CR26) 2010; 20 AI Lawal (1393_CR28) 2021; 31 CE Rasmussen (1393_CR43) 2005 J Zhou (1393_CR75) 2021; 12 1393_CR8 S Mirjalili (1393_CR35) 2016; 27 1393_CR7 Y Gou (1393_CR14) 2019; 135 H Zhang (1393_CR63) 2020; 10 J Zhou (1393_CR73) 2021; 35 SM Wang (1393_CR52) 2021; 28 J Zhou (1393_CR67) 2016; 30 Z Yu (1393_CR56) 2020; 10 M Khandelwal (1393_CR27) 2017; 33 DJ Armaghani (1393_CR3) 2014; 55 DJ Armaghani (1393_CR4) 2020; 79 W Zhang (1393_CR62) 2020; 12 J Zhou (1393_CR65) 2012; 50 1393_CR33 1393_CR36 M Wang (1393_CR51) 2018; 110 1393_CR37 A Teymen (1393_CR49) 2020; 30 W Zhang (1393_CR61) 2020 M Khandelwal (1393_CR25) 2013; 46 DP Singh (1393_CR48) 1975; 23 L Breiman (1393_CR5) 2001; 45 1393_CR30 DR Jones (1393_CR20) 2001; 21 W Zhang (1393_CR60) 2019; 11 B Liu (1393_CR32) 2020; 95 J Zhou (1393_CR70) 2019; 118 W Wei (1393_CR53) 2021; 11 M Khandelwal (1393_CR23) 2006; 289 M Cardu (1393_CR6) 2019; 29 1393_CR44 1393_CR47 C Yu (1393_CR59) 2021 DJ Armaghani (1393_CR2) 2014; 7 Z Yu (1393_CR58) 2020; 29 CE Rasmussen (1393_CR42) 2004 J Zhou (1393_CR69) 2019; 33 1393_CR41 E Emary (1393_CR10) 2016; 172 S Mirjalili (1393_CR34) 2014; 69 GR Adhikari (1393_CR1) 1989; 8 JH Friedman (1393_CR12) 2001; 29 N Nick (1393_CR40) 2008; 3 J Zhou (1393_CR68) 2017; 17 1393_CR18 M Monjezi (1393_CR38) 2006; 37 1393_CR19 M Khandelwal (1393_CR24) 2009; 46 H Xu (1393_CR55) 2019; 9 J Zhou (1393_CR74) 2021; 97 1393_CR54 Z Yu (1393_CR57) 2020 1393_CR11 M Wang (1393_CR50) 2018; 50 Y Gou (1393_CR15) 2020; 127 1393_CR13 1393_CR16 J Zhou (1393_CR66) 2015; 79 M Khandelwal (1393_CR21) 2012; 30 X Zhang (1393_CR64) 2020; 29 M Hajihassani (1393_CR17) 2015; 74 |
| References_xml | – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR34 article-title: Grey wolf optimizer publication-title: Adv Eng Softw – volume: 35 start-page: 48 issue: 1 year: 2021 end-page: 68 ident: CR73 article-title: Development of a new methodology for estimating the amount of PPV in surface mines based on prediction and probabilistic models (GEP-MC) publication-title: Int J Min Reclam Environ – volume: 30 start-page: 04016003 issue: 5 year: 2016 ident: CR67 article-title: Classification of rockburst in underground projects: comparison of ten supervised learning methods publication-title: J Comput Civ Eng – volume: 139 start-page: 106390 year: 2020 ident: CR72 article-title: Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models publication-title: Soil Dyn Earthq Eng – volume: 46 start-page: 1551 year: 2013 end-page: 1558 ident: CR25 article-title: Application of an expert system to predict maximum explosive charge used per delay in surface mining publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0368-9 – ident: CR16 – volume: 21 start-page: 345 issue: 4 year: 2001 end-page: 383 ident: CR20 article-title: A taxonomy of global optimization methods based on response surfaces publication-title: J Glob Optim – volume: 33 start-page: 04019024 issue: 3 year: 2019 ident: CR69 article-title: Feasibility of stochastic gradient boosting approach for evaluating seismic liquefaction potential based on SPT and CPT case histories publication-title: J Perform Constr Facil – volume: 11 start-page: 1095 year: 2019 ident: CR60 article-title: State-of-the-art review of soft computing applications in underground excavations publication-title: Geosci Front – volume: 31 start-page: 265 issue: 2 year: 2021 end-page: 277 ident: CR28 article-title: Blast-induced ground vibration prediction in granite quarries: an application of gene expression programming, ANFIS, and sine cosine algorithm optimized ANN publication-title: Int J Min Sci Technol – volume: 10 start-page: 1403 issue: 4 year: 2020 ident: CR56 article-title: Effective assessment of blast-induced ground vibration using an optimized random forest model based on a Harris hawks optimization algorithm publication-title: Appl Sci – volume: 23 start-page: 228 issue: 8 year: 1977 end-page: 231 ident: CR46 article-title: A comparison of static and dynamic properties of Singrauli rock publication-title: J Mines Metals Fuels – ident: CR54 – volume: 110 start-page: 199 year: 2018 end-page: 209 ident: CR51 article-title: Charge design scheme optimization for ring blasting based on the developed Scaled Heelan model publication-title: Int J Rock Mech Min Sci – ident: CR8 – volume: 30 start-page: 205 year: 2012 end-page: 217 ident: CR21 article-title: Application of an expert system for the assessment of blast vibration publication-title: Geotech Geol Eng doi: 10.1007/s10706-011-9463-4 – volume: 29 start-page: 905 issue: 6 year: 2019 end-page: 915 ident: CR6 article-title: Analysis of predictor equations for determining the blast-induced vibration in rock blasting publication-title: Int J Min Sci Technol – volume: 29 start-page: 751 year: 2020 end-page: 769 ident: CR9 article-title: Computational intelligence model for estimating intensity of blast-induced ground vibration in a mine based on imperialist competitive and extreme gradient boosting algorithms publication-title: Nat Resour Res – year: 2020 ident: CR71 article-title: Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization publication-title: Undergr Sp doi: 10.1016/j.undsp.2020.05.008 – volume: 30 start-page: 785 issue: 6 year: 2020 end-page: 797 ident: CR49 article-title: Comparative evaluation of different statistical tools for the prediction of uniaxial compressive strength of rocks publication-title: Int J Min Sci Technol – volume: 172 start-page: 371 year: 2016 end-page: 381 ident: CR10 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing – ident: CR19 – volume: 50 start-page: 629 issue: 4 year: 2012 end-page: 644 ident: CR65 article-title: Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines publication-title: Saf Sci – volume: 11 start-page: 1922 issue: 4 year: 2021 ident: CR53 article-title: Performance evaluation of hybrid WOA-SVR and HHO-SVR models with various kernels to predict factor of safety for circular failure slope publication-title: Appl Sci – volume: 48 start-page: 727 year: 2015 end-page: 735 ident: CR22 article-title: A dimensional analysis approach to study blast-induced ground vibration publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-014-0604-y – volume: 55 start-page: 487 year: 2014 end-page: 498 ident: CR3 article-title: Indirect measure of shale shear strength parameters by means of rock index tests through an optimized artificial neural network publication-title: Measurement – volume: 29 start-page: 691 issue: 2 year: 2020 end-page: 709 ident: CR39 article-title: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network publication-title: Nat Resour Res – volume: 3 start-page: 3 year: 2008 ident: CR40 article-title: Joseph Juran, 103, Pioneer in quality control publication-title: Dies New York Times – volume: 50 start-page: 2177 issue: 12 year: 2018 end-page: 2191 ident: CR50 article-title: Multi-planar detection optimization algorithm for the interval charging structure of large-diameter longhole blasting design based on rock fragmentation aspects publication-title: Eng Optim – year: 2021 ident: CR59 article-title: Optimal ELM–Harris Hawks optimization and ELM–Grasshopper optimization models to forecast peak particle velocity resulting from mine blasting publication-title: Nat Resour Res doi: 10.1007/s11053-021-09826-4 – ident: CR11 – year: 2020 ident: CR57 article-title: A new multikernel relevance vector machine based on the HPSOGWO algorithm for predicting and controlling blast-induced ground vibration publication-title: Eng Comput doi: 10.1007/s00366-020-01136-2 – start-page: 63 year: 2004 end-page: 71 ident: CR42 article-title: Gaussian processes in machine learning publication-title: Advanced lectures on machine learning – volume: 12 start-page: 101091 issue: 3 year: 2021 ident: CR75 article-title: Predicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniques publication-title: Geosci Front – ident: CR36 – volume: 20 start-page: 64 issue: 1 year: 2010 end-page: 70 ident: CR26 article-title: Evaluation and prediction of blast induced ground vibration using support vector machine publication-title: Min Sci Technol (China) – volume: 17 start-page: 04016129 issue: 6 year: 2017 ident: CR68 article-title: Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel publication-title: Int J Geomech – volume: 37 start-page: 8 issue: 5 year: 2006 end-page: 16 ident: CR38 article-title: Prediction and analysis of blast parameters using artificial neural network publication-title: Noise Vib Worldwide doi: 10.1260/095745606777630323 – volume: 46 start-page: 1214 issue: 7 year: 2009 end-page: 1222 ident: CR24 article-title: Prediction of blast-induced ground vibration using artificial neural network publication-title: Int J Rock Mech Min Sci – ident: CR18 – volume: 289 start-page: 711 issue: 4–5 year: 2006 end-page: 725 ident: CR23 article-title: Prediction of blast induced ground vibrations and frequency in opencast mine: a neural network approach publication-title: J Sound Vib – volume: 22 start-page: 432 issue: 2 year: 2012 end-page: 441 ident: CR45 article-title: Support vector machines approach to mean block size of rock fragmentation due to bench blasting prediction publication-title: Trans Nonferrous Metals Soc China – ident: CR47 – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: CR35 article-title: Multi-Verse Optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput Appl – volume: 9 start-page: 3715 issue: 18 year: 2019 ident: CR55 article-title: Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate publication-title: Appl Sci – ident: CR37 – volume: 118 start-page: 505 year: 2019 end-page: 518 ident: CR70 article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories publication-title: Saf Sci – ident: CR30 – volume: 7 start-page: 5383 issue: 12 year: 2014 end-page: 5396 ident: CR2 article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization publication-title: Arab J Geosci – ident: CR33 – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: CR12 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann Stat – volume: 33 start-page: 45 issue: 1 year: 2017 end-page: 53 ident: CR27 article-title: Classification and regression tree technique in estimating peak particle velocity caused by blasting publication-title: Eng Comput – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR5 article-title: Random forests publication-title: Mach Learn – volume: 135 start-page: 213 year: 2019 end-page: 230 ident: CR14 article-title: Motion parameter estimation and measured data correction derived from blast-induced vibration: new insights publication-title: Measurement – volume: 23 start-page: 100 issue: 2 year: 1975 end-page: 107 ident: CR48 article-title: A study of physical properties of Singrauli rocks publication-title: J Mines Metals Fuels – volume: 74 start-page: 873 issue: 3 year: 2015 end-page: 886 ident: CR17 article-title: Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm publication-title: Bull Eng Geol Environ – ident: CR44 – volume: 12 start-page: 469 year: 2020 ident: CR62 article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization publication-title: Geosci Front – start-page: 4 year: 2005 ident: CR43 publication-title: Gaussian processes for machine learning – volume: 79 start-page: 291 issue: 1 year: 2015 end-page: 316 ident: CR66 article-title: Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction publication-title: Nat Hazards – volume: 97 start-page: 104015 year: 2021 ident: CR74 article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate publication-title: Eng Appl Artif Intell – volume: 95 start-page: 103103 year: 2020 ident: CR32 article-title: Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm publication-title: Tunn Undergr Sp Technol – ident: CR13 – volume: 29 start-page: 843 year: 2020 end-page: 865 ident: CR58 article-title: Prediction of blast-induced rock movement during bench blasting: use of gray wolf optimizer and support vector regression publication-title: Nat Resour Res – ident: CR7 – volume: 28 start-page: 527 issue: 2 year: 2021 end-page: 542 ident: CR52 article-title: Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques publication-title: J Cent South Univ – ident: CR41 – volume: 8 start-page: 297 issue: 3 year: 1989 end-page: 300 ident: CR1 article-title: Influence of rock properties on blast-induced vibration publication-title: Min Sci Technol – volume: 79 start-page: 1 year: 2020 end-page: 17 ident: CR4 article-title: A SVR-GWO technique to minimize flyrock distance resulting from blasting publication-title: Bull Eng Geol Environ – volume: 127 start-page: 104220 year: 2020 ident: CR15 article-title: Attenuation assessment of blast-induced vibrations derived from an underground mine publication-title: Int J Rock Mech Min Sci – year: 2020 ident: CR61 article-title: Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression publication-title: Undergr Sp doi: 10.1016/j.undsp.2020.03.001 – volume: 9 start-page: 2714 issue: 13 year: 2019 ident: CR29 article-title: Estimating the heating load of buildings for smart city planning using a novel artificial intelligence technique PSO-XGBoost publication-title: Appl Sci – year: 2020 ident: CR31 article-title: Developing a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfill publication-title: Eng Comput doi: 10.1007/s00366-020-01014-x – volume: 10 start-page: 869 issue: 3 year: 2020 ident: CR63 article-title: A combination of feature selection and random forest techniques to solve a problem related to blast-induced ground vibration publication-title: Appl Sci – volume: 29 start-page: 711 year: 2020 end-page: 721 ident: CR64 article-title: Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost publication-title: Nat Resour Res – year: 2020 ident: 1393_CR31 publication-title: Eng Comput doi: 10.1007/s00366-020-01014-x – ident: 1393_CR41 – year: 2021 ident: 1393_CR59 publication-title: Nat Resour Res doi: 10.1007/s11053-021-09826-4 – volume: 172 start-page: 371 year: 2016 ident: 1393_CR10 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – ident: 1393_CR7 doi: 10.1145/2939672.2939785 – volume: 33 start-page: 45 issue: 1 year: 2017 ident: 1393_CR27 publication-title: Eng Comput doi: 10.1007/s00366-016-0455-0 – volume: 17 start-page: 04016129 issue: 6 year: 2017 ident: 1393_CR68 publication-title: Int J Geomech doi: 10.1061/(ASCE)GM.1943-5622.0000817 – volume: 23 start-page: 228 issue: 8 year: 1977 ident: 1393_CR46 publication-title: J Mines Metals Fuels – volume: 28 start-page: 527 issue: 2 year: 2021 ident: 1393_CR52 publication-title: J Cent South Univ doi: 10.1007/s11771-021-4619-8 – volume: 55 start-page: 487 year: 2014 ident: 1393_CR3 publication-title: Measurement doi: 10.1016/j.measurement.2014.06.001 – ident: 1393_CR13 doi: 10.1177/1077546312437002 – start-page: 63 volume-title: Advanced lectures on machine learning year: 2004 ident: 1393_CR42 doi: 10.1007/978-3-540-28650-9_4 – ident: 1393_CR16 doi: 10.1007/s00366-019-00816-y – volume: 8 start-page: 297 issue: 3 year: 1989 ident: 1393_CR1 publication-title: Min Sci Technol doi: 10.1016/S0167-9031(89)90437-4 – volume: 30 start-page: 04016003 issue: 5 year: 2016 ident: 1393_CR67 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000553 – ident: 1393_CR36 doi: 10.21608/jesaun.2011.127550 – ident: 1393_CR33 doi: 10.1016/j.advengsoft.2016.01.008 – ident: 1393_CR19 doi: 10.1007/s00254-007-1143-6 – volume: 29 start-page: 905 issue: 6 year: 2019 ident: 1393_CR6 publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2019.02.009 – volume: 135 start-page: 213 year: 2019 ident: 1393_CR14 publication-title: Measurement doi: 10.1016/j.measurement.2018.11.050 – volume: 23 start-page: 100 issue: 2 year: 1975 ident: 1393_CR48 publication-title: J Mines Metals Fuels – volume: 20 start-page: 64 issue: 1 year: 2010 ident: 1393_CR26 publication-title: Min Sci Technol (China) doi: 10.1016/S1674-5264(09)60162-9 – volume: 29 start-page: 691 issue: 2 year: 2020 ident: 1393_CR39 publication-title: Nat Resour Res doi: 10.1007/s11053-019-09470-z – volume: 12 start-page: 101091 issue: 3 year: 2021 ident: 1393_CR75 publication-title: Geosci Front doi: 10.1016/j.gsf.2020.09.020 – ident: 1393_CR54 doi: 10.1007/978-94-011-5014-9_23 – volume: 35 start-page: 48 issue: 1 year: 2021 ident: 1393_CR73 publication-title: Int J Min Reclam Environ doi: 10.1080/17480930.2020.1734151 – volume: 33 start-page: 04019024 issue: 3 year: 2019 ident: 1393_CR69 publication-title: J Perform Constr Facil doi: 10.1061/(ASCE)CF.1943-5509.0001292 – volume: 79 start-page: 1 year: 2020 ident: 1393_CR4 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-020-01834-7 – volume: 289 start-page: 711 issue: 4–5 year: 2006 ident: 1393_CR23 publication-title: J Sound Vib doi: 10.1016/j.jsv.2005.02.044 – volume: 27 start-page: 495 year: 2016 ident: 1393_CR35 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1870-7 – volume: 10 start-page: 1403 issue: 4 year: 2020 ident: 1393_CR56 publication-title: Appl Sci doi: 10.3390/app10041403 – volume: 79 start-page: 291 issue: 1 year: 2015 ident: 1393_CR66 publication-title: Nat Hazards doi: 10.1007/s11069-015-1842-3 – volume: 11 start-page: 1922 issue: 4 year: 2021 ident: 1393_CR53 publication-title: Appl Sci doi: 10.3390/app11041922 – volume: 3 start-page: 3 year: 2008 ident: 1393_CR40 publication-title: Dies New York Times – volume: 30 start-page: 785 issue: 6 year: 2020 ident: 1393_CR49 publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2020.06.008 – volume: 95 start-page: 103103 year: 2020 ident: 1393_CR32 publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2019.103103 – volume: 50 start-page: 2177 issue: 12 year: 2018 ident: 1393_CR50 publication-title: Eng Optim doi: 10.1080/0305215X.2018.1439943 – volume: 110 start-page: 199 year: 2018 ident: 1393_CR51 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2018.08.004 – volume: 37 start-page: 8 issue: 5 year: 2006 ident: 1393_CR38 publication-title: Noise Vib Worldwide doi: 10.1260/095745606777630323 – start-page: 4 volume-title: Gaussian processes for machine learning year: 2005 ident: 1393_CR43 doi: 10.7551/mitpress/3206.001.0001 – volume: 9 start-page: 3715 issue: 18 year: 2019 ident: 1393_CR55 publication-title: Appl Sci doi: 10.3390/app9183715 – volume: 48 start-page: 727 year: 2015 ident: 1393_CR22 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-014-0604-y – year: 2020 ident: 1393_CR57 publication-title: Eng Comput doi: 10.1007/s00366-020-01136-2 – volume: 118 start-page: 505 year: 2019 ident: 1393_CR70 publication-title: Saf Sci doi: 10.1016/j.ssci.2019.05.046 – ident: 1393_CR47 – volume: 74 start-page: 873 issue: 3 year: 2015 ident: 1393_CR17 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-014-0657-x – volume: 30 start-page: 205 year: 2012 ident: 1393_CR21 publication-title: Geotech Geol Eng doi: 10.1007/s10706-011-9463-4 – volume: 139 start-page: 106390 year: 2020 ident: 1393_CR72 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2020.106390 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 1393_CR5 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: 1393_CR18 doi: 10.1016/j.measurement.2015.07.019 – volume: 29 start-page: 711 year: 2020 ident: 1393_CR64 publication-title: Nat Resour Res doi: 10.1007/s11053-019-09492-7 – ident: 1393_CR30 doi: 10.1016/j.undsp.2020.05.005 – volume: 29 start-page: 843 year: 2020 ident: 1393_CR58 publication-title: Nat Resour Res doi: 10.1007/s11053-019-09593-3 – year: 2020 ident: 1393_CR71 publication-title: Undergr Sp doi: 10.1016/j.undsp.2020.05.008 – volume: 21 start-page: 345 issue: 4 year: 2001 ident: 1393_CR20 publication-title: J Glob Optim doi: 10.1023/A:1012771025575 – ident: 1393_CR37 doi: 10.1007/s12517-012-0770-8 – volume: 97 start-page: 104015 year: 2021 ident: 1393_CR74 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.104015 – volume: 7 start-page: 5383 issue: 12 year: 2014 ident: 1393_CR2 publication-title: Arab J Geosci doi: 10.1007/s12517-013-1174-0 – volume: 11 start-page: 1095 year: 2019 ident: 1393_CR60 publication-title: Geosci Front doi: 10.1016/j.gsf.2019.12.003 – volume: 9 start-page: 2714 issue: 13 year: 2019 ident: 1393_CR29 publication-title: Appl Sci doi: 10.3390/app9132714 – volume: 12 start-page: 469 year: 2020 ident: 1393_CR62 publication-title: Geosci Front doi: 10.1016/j.gsf.2020.03.007 – ident: 1393_CR8 – volume: 31 start-page: 265 issue: 2 year: 2021 ident: 1393_CR28 publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2021.01.007 – volume: 46 start-page: 1214 issue: 7 year: 2009 ident: 1393_CR24 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2009.03.004 – year: 2020 ident: 1393_CR61 publication-title: Undergr Sp doi: 10.1016/j.undsp.2020.03.001 – volume: 127 start-page: 104220 year: 2020 ident: 1393_CR15 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2020.104220 – volume: 22 start-page: 432 issue: 2 year: 2012 ident: 1393_CR45 publication-title: Trans Nonferrous Metals Soc China doi: 10.1016/S1003-6326(11)61195-3 – volume: 10 start-page: 869 issue: 3 year: 2020 ident: 1393_CR63 publication-title: Appl Sci doi: 10.3390/app10030869 – volume: 29 start-page: 751 year: 2020 ident: 1393_CR9 publication-title: Nat Resour Res doi: 10.1007/s11053-019-09548-8 – volume: 69 start-page: 46 year: 2014 ident: 1393_CR34 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – ident: 1393_CR44 doi: 10.1016/j.ijrmms.2015.03.020 – volume: 46 start-page: 1551 year: 2013 ident: 1393_CR25 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0368-9 – volume: 50 start-page: 629 issue: 4 year: 2012 ident: 1393_CR65 publication-title: Saf Sci doi: 10.1016/j.ssci.2011.08.065 – ident: 1393_CR11 doi: 10.1007/s10661-010-1470-z – volume: 29 start-page: 1189 year: 2001 ident: 1393_CR12 publication-title: Ann Stat doi: 10.1214/aos/1013203451 |
| SSID | ssj0013009 |
| Score | 2.6814582 |
| Snippet | Accurate prediction of ground vibration caused by blasting has always been a significant issue in the mining industry. Ground vibration caused by blasting is a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4145 |
| SubjectTerms | Algorithms Blasting (explosive) CAE) and Design Calculus of Variations and Optimal Control; Optimization Classical Mechanics Computer Science Computer-Aided Engineering (CAD Control Controllability Dependent variables Explosions Heuristic methods Machine learning Math. Applications in Chemistry Mathematical and Computational Engineering Mining industry Optimization Optimization algorithms Original Article Performance evaluation Root-mean-square errors Systems Theory Vibration |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary (1997 - Present) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBQgFRXvLARiPl4Trx2CIoA2orXu0WOX6ISiipmlCp_x47TRpAgASjHduJzuf4Pt19dwAXbUUYYUzDEqmwhaWLrYBp4OoSaTus7Siq8qold36_H4zHdFiQwtIy2r10SeZ_6hXZzaROMQGzBv561LPoOmzo6y4wBRvuH54r34G9DOxwfBPYRfyCKvP9Gp-vo8rG_OIWzW-bm_r_vnMXdgrrEnWW6rAHazJuQL2wNFFxjlPdVRZzKPsasP0hM-E-LIYVoQBVGcFRotDLwpC80GjQsca9bpKkWQv1RoOygVgsULdq5qV2UpQlaDozTqEMRdpgz6xJLLRWCWRoJXrG3MB284oDeLq5fry6tYoqDRbXxzezBGEuU23h2IJ5lAREEMwDhkWkuK2k57vMU4IoJR2OIxUITG2h9ddALeUp5R1CLU5ieQTIJ5hGehWfYxdHDosw8wPOXEk9xSMfN8EpNyvkRQpzU0njNVwlX86FH2rhh7nwQ9qEy9Wc6TKBx6-jT0sdCIvDnIYauGsUraGf3YRWuefV459XO_7b8BPYcg25Ig-WOYVaNnuTZ7DJ59kknZ3nSv4OmT_2lw priority: 102 providerName: Springer Nature |
| Title | Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration |
| URI | https://link.springer.com/article/10.1007/s00366-021-01393-9 https://www.proquest.com/docview/2745498620 |
| Volume | 38 |
| WOSCitedRecordID | wos000642373200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1435-5663 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOrQHoLQVC3TlQ29gNQ-vHZ8Qi3hIoGUFtKx6iRw_VCSUbDcBiX-P7XUIVCoXLpasxE6kGdvzeWa-Afg-MFRQISws0YZgohOCM2GBa0J1FItBbLjxVUvO2WiUTSZ8HC7c6hBW2e6JfqNWlXR35D8serJQxtrf0f70L3ZVo5x3NZTQWIRlx5IQ-9C9q86LEM1DPGLmQrwoC0kzPnXOEbG48FsHplOeYv76YOqszX8cpP7cOV577x-vw2qwONHBXEU-wYIuN2AtWJ8orO16Az6-oCb8DI_jLqMAdZTgqDLoz6PL8kI3Fwd4cjKsqrrZQyc3F20HiVKhYdf1tXZq1FRoOnNeoQYV1mJv8G2prFop5PJK7IgHh9vdJ77Az-Oj68NTHMo0YGnXb4MVFYkwAxVHSqScZlRRIjNBVGFkZHTKEpEaRY3RsSSFyRThkbIK7LCWSY1Jv8JSWZV6ExCjhBd2FiZJQopYFESwTIpE89TIgpEexK2Mchk4zF0pjbv8mX3ZyzW3cs29XHPeg93nMdM5g8ebb--0wszDaq7zTpI92GvVoXv8_9m23p5tGz4kLpvCR8fswFIzu9ffYEU-NLf1rA_Lw6PR-LIPi2cM971m23Y8-G3by6tfT7rR_u0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ9UCitWCjgA5yoRWJ77fiAUAv0oV22PRR1b8HxQ1RCyXYTivZP8RuxvUkDSPTWA0cr8URyvhn787wAXg4dV1wpT0usY5hZwnCmPHEl3CapGqZOuti1ZCwmk2w6lScr8LPLhQlhlZ1NjIbaVDrckb_x7MlTGX_-Tt7NLnDoGhW8q10LjSUsRnbxw1O2-u3RB_9_XxGy__H0_SFuuwpg7eHWYMMVUW5o0sQoKnnGDWc6U8wUTifOUkEUdYY7Z1PNCpcZJhPj1ztQA0edo17uLbjNaCaCXo0E7r0WyTKkJBUhpIyLNkknpuqFwi8h3DeQdyopln9uhP3p9i-HbNzn9tf_txV6APfbEzXaXarAQ1ix5Qast6dr1NquegPWfiu9-AgWJ33GBOpLnqPKoa-LkMWGzo538fRgr6rqZgcdnB13A6RKg_b6YewlVKOmQrN58Ho1qPCMpMHnpfFqY1DIm_EzLsO9RPjEJny-keXYgtWyKu1jQIIzWXgpQjPCilQVTIlMK2IldboQbABph4lctzXaQ6uQb_lVdemIo9zjKI84yuUAXl_NmS0rlFz79nYHnry1VnXeI2cAOx38-sf_lvbkemkv4O7h6adxPj6ajJ7CPRIyR2Ik0DasNvPv9hnc0ZfNeT1_HvUIwZebhuUvumtcFw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTxQxFH9BMAYPgihxBbQHPEnDTKfbTg_E8OECgSx70LDxMnb6EUnMzLozYvZf86-z7c4wYCI3Dh6bmb5JOr--vl_fF8B23zLJpHS0xFiKqSEUp9IRV8JMFMt-bIUNXUvO-XCYjsditAC_21wYH1bZ6sSgqHWp_B35rmNPjso4-zvatU1YxOho8GHyA_sOUt7T2rbTmEPkzMx-OfpW7Z0euX_9jpDBx0-HJ7jpMICVg16NNZNE2r6OIy0TwVKmGVWppDq3KrIm4UQmVjNrTaxoblNNRaTd2nuaYBNrEyf3ESxxxzF9OOGo_6XzYETz8JKY-_AyxpuEnZC254vA-NBfT-QTkWBx91DsLN2_nLPhzBus_M-rtQrPGksb7c-3xnNYMMUarDRWN2p0WrUGT2-VZHwBs1GXSYG6UuiotOjbzGe3ocuLfTw-PijLqt5Bx5cX7QDJQqODbhh6DFWoLtFk6r1hNcodU6nxVaHddtLI59O4Gdf-vsJ_4iV8fpDlWIfFoizMK0CcUZE7KVxRQvNY5lTyVEliRGJVzmkP4hYfmWpqt_sWIt-zm6rTAVOZw1QWMJWJHry_mTOZVy659-3NFkhZo8WqrENRD3ZaKHaP_y3t9f3S3sITh8bs_HR4tgHLxCeUhAChTVispz_NFjxW1_VVNX0TthSCrw-Nyj9VtWU7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+hybrid+WOA-XGBoost%2C+GWO-XGBoost+and+BO-XGBoost+models+to+predict+blast-induced+ground+vibration&rft.jtitle=Engineering+with+computers&rft.au=Qiu%2C+Yingui&rft.au=Zhou%2C+Jian&rft.au=Khandelwal%2C+Manoj&rft.au=Yang%2C+Haitao&rft.date=2022-12-01&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=38&rft.issue=S5&rft.spage=4145&rft.epage=4162&rft_id=info:doi/10.1007%2Fs00366-021-01393-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00366_021_01393_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon |