Prediction of Employee Turn Over Using Random Forest Classifier with Intensive Optimized Pca Algorithm

Employee turnover is the important issue in the recent day organizations. In this paper, a data mining based employee turnover predictor is developed in which ORACLE ERP dataset was used for sample training to predict the employee turnover with much higher accuracy. This paper deploys impactful algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications Jg. 119; H. 4; S. 3365 - 3382
1. Verfasser: Wild Ali, Alaeldeen Bader
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2021
Springer Nature B.V
Schlagworte:
ISSN:0929-6212, 1572-834X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Employee turnover is the important issue in the recent day organizations. In this paper, a data mining based employee turnover predictor is developed in which ORACLE ERP dataset was used for sample training to predict the employee turnover with much higher accuracy. This paper deploys impactful algorithms and methodologies for the accurate prediction employee turnover taking place in any organization. First of all preprocessing is done as a precautionary step as always before proceeding with the core part of the proposed work. New Intensive Optimized PCA-Principal Component Analysis is used for feature selection and RFC-Random Forest Classifier is used for the classification purposes to classify accordingly to make the prediction more feasible. For classifying and predicting accurately, a methodology called Random Forest Classifier (RFC) classifier is deployed. The main objective of this work is to utilize Random Forest Classification methodology to break down fundamental purposes lying behind the worker turnover by making use of the information mining technique refer as Intensive Optimized PCA for feature selection. Comparative study taking the proposed novel work with the existing is made for showing the efficiency of this work. The performance of this proposed method was found to perform better with improved yields of ROC, accuracy, precision, recall, and F1 score when compared to other existing methodologies.
AbstractList Employee turnover is the important issue in the recent day organizations. In this paper, a data mining based employee turnover predictor is developed in which ORACLE ERP dataset was used for sample training to predict the employee turnover with much higher accuracy. This paper deploys impactful algorithms and methodologies for the accurate prediction employee turnover taking place in any organization. First of all preprocessing is done as a precautionary step as always before proceeding with the core part of the proposed work. New Intensive Optimized PCA-Principal Component Analysis is used for feature selection and RFC-Random Forest Classifier is used for the classification purposes to classify accordingly to make the prediction more feasible. For classifying and predicting accurately, a methodology called Random Forest Classifier (RFC) classifier is deployed. The main objective of this work is to utilize Random Forest Classification methodology to break down fundamental purposes lying behind the worker turnover by making use of the information mining technique refer as Intensive Optimized PCA for feature selection. Comparative study taking the proposed novel work with the existing is made for showing the efficiency of this work. The performance of this proposed method was found to perform better with improved yields of ROC, accuracy, precision, recall, and F1 score when compared to other existing methodologies.
Author Wild Ali, Alaeldeen Bader
Author_xml – sequence: 1
  givenname: Alaeldeen Bader
  orcidid: 0000-0001-7553-9383
  surname: Wild Ali
  fullname: Wild Ali, Alaeldeen Bader
  email: alaeldeenali12@gmail.com
  organization: Faculty of Organizational Sciences, University of Belgrade
BookMark eNp9kM1KAzEURoMo2Kov4CrgevQmk0lmlqVULQgVqeAuxExSIzNJTcZKfXpTKwguXN3F_c79OWN06IM3CJ0TuCQA4ioRQoUogJICagZ1AQdoRCpBi7pkT4doBA1tCk4JPUbjlF4BMtbQEbL30bRODy54HCye9esubI3By_fo8WJjIn5Mzq_wg_Jt6PF1iCYNeNqplJx1uf3hhhc894PxyW0MXqwH17tP0-J7rfCkW4WYA_0pOrKqS-bsp56gx-vZcnpb3C1u5tPJXaFL0gxFy5lgbasJbXNhgle8zp9RUGCg5qohjIqKlZZYrTm11IJQXBNgLRcanssTdLGfu47h7T2fKl9D_iSvlLTiFatLUtGcqvcpHUNK0Vip3aB2DoaoXCcJyJ1Vubcqs1X5bVVCRukfdB1dr-L2f6jcQymH_crE36v-ob4A0JiL4g
CitedBy_id crossref_primary_10_3390_bs14070562
crossref_primary_10_1016_j_compind_2024_104106
crossref_primary_10_1016_j_joitmc_2025_100557
crossref_primary_10_1155_je_6613167
crossref_primary_10_2478_amns_2023_2_00820
crossref_primary_10_1038_s41598_024_59690_4
crossref_primary_10_1108_IJOA_12_2024_5117
crossref_primary_10_3390_app15062984
crossref_primary_10_1002_eng2_70298
crossref_primary_10_1016_j_eswa_2023_121794
crossref_primary_10_1109_ACCESS_2023_3304669
crossref_primary_10_1007_s12599_024_00898_z
crossref_primary_10_1109_JPROC_2025_3572744
Cites_doi 10.2139/ssrn.3397445
10.1108/ICT-04-2015-0029
10.1007/978-3-319-94301-5_19
10.1109/ACCESS.2019.2914999
10.1016/j.procs.2016.05.183
10.1016/j.asoc.2017.03.011
10.1080/09585192.2017.1362658
10.1016/j.isprsjprs.2016.01.011
10.1007/s00521-017-2969-9
10.1177/2397002216683885
10.1016/j.imu.2019.100179
10.3390/mca22040046
10.1007/978-3-030-01057-7_56
10.1016/j.cmpb.2016.03.020
10.1109/LGRS.2015.2409112
10.1016/j.procs.2016.06.047
10.1016/j.neucom.2015.05.005
10.1007/978-981-13-1813-9_27
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11277-021-08408-0
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1572-834X
EndPage 3382
ExternalDocumentID 10_1007_s11277_021_08408_0
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FD6
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c319t-d6474ddc12d4dd47656811220a0e086a91427543f1fcc62f2f07a6c104d67c0b3
IEDL.DBID RSV
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000632870000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0929-6212
IngestDate Sat Nov 15 17:55:08 EST 2025
Tue Nov 18 21:22:03 EST 2025
Sat Nov 29 05:18:20 EST 2025
Fri Feb 21 02:48:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords ORACLE ERP dataset
Feature selection
Data mining
Classification
PCA Algorithm
Random Forest
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d6474ddc12d4dd47656811220a0e086a91427543f1fcc62f2f07a6c104d67c0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7553-9383
PQID 2565483152
PQPubID 2043826
PageCount 18
ParticipantIDs proquest_journals_2565483152
crossref_citationtrail_10_1007_s11277_021_08408_0
crossref_primary_10_1007_s11277_021_08408_0
springer_journals_10_1007_s11277_021_08408_0
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Wireless personal communications
PublicationTitleAbbrev Wireless Pers Commun
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Tan, P.-N. (2018) Introduction to data mining: Pearson education India.
FrederiksenAJob satisfaction and employee turnover: A firm-level perspectiveGerman Journal of Human Resource Management20173113216110.1177/2397002216683885
SukhijaPBehalSSinghPFace recognition system using genetic algorithmProcedia Computer Science20168541041710.1016/j.procs.2016.05.183
ZhuCIdemudiaCUFengWImproved logistic regression model for diabetes prediction by integrating PCA and K-means techniquesInformatics in Medicine Unlocked20191710017910.1016/j.imu.2019.100179
LiuFTsoKYangYGuanJMultilevel analysis of employee satisfaction on commitment to organizational culture: Case study of chinese state-owned enterprisesMathematical and Computational Applications2017224610.3390/mca22040046
Zhao, Y., Hryniewicki, M. K., Cheng, F., Fu, B. & Zhu, X. (2018) Employee turnover prediction with machine learning: A reliable approach. In Proceedings of SAI intelligent systems conference, (pp. 737–758).
PuXFanKChenXJiLZhouZFacial expression recognition from image sequences using twofold random forest classifierNeurocomputing20151681173118010.1016/j.neucom.2015.05.005
ValleMARuzGAMasíasVHUsing self-organizing maps to model turnover of sales agents in a call centerApplied Soft Computing20176076377410.1016/j.asoc.2017.03.011
Saleem, D. I., Ahmed, R., & Saleem, N. (2016) "Mediating role of work exhaustion: The missing linchpin to address employee's turnover," Saleem I., Ahmed R. & Saleem, (pp. 156–173)
BelgiuMDrăguţLRandom forest in remote sensing: A review of applications and future directionsISPRS Journal of Photogrammetry and Remote Sensing2016114243110.1016/j.isprsjprs.2016.01.011
YiğitİOShourabizadehHAn approach for predicting employee churn by using data miningIn International Artificial Intelligence and Data Processing Symposium (IDAP)2017201714
IerodiakonouCStavrouEFlexitime and employee turnover: the polycontextuality of regulation as cross-national institutional contingencyThe International Journal of Human Resource Management2017283003302610.1080/09585192.2017.1362658
HuangW-RSuC-HThe mediating role of job satisfaction in the relationship between job training satisfaction and turnover intentionsIndustrial and Commercial Training201648425210.1108/ICT-04-2015-0029
AjitPPrediction of employee turnover in organizations using machine learning algorithmsAlgorithms201645C5
Islam, M. K., Alam, M. M., Islam, M. B., Mohiuddin, K., Das, A. K., & Kaonain, M. S. (2018) An adaptive feature dimensionality reduction technique based on random forest on employee turnover prediction model. In International Conference on Advances in Computing and Data Sciences, (pp. 269–278).
KarandeSShyamalaLYu-ChenHuTiwariShaileshMishraKrishn KTrivediMunesh CPrediction of employee turnover using ensemble learningAmbient Communications and Computer Systems2019SingaporeSpringer
UllahIRazaBMalikAKImranMIslamSUKimSWA churn prediction model using random forest: Analysis of machine learning techniques for churn prediction and factor identification in telecom sectorIEEE Access20197601346014910.1109/ACCESS.2019.2914999
XiaJLiaoWChanussotJDuPSongGPhilipsWImproving random forest with ensemble of features and semisupervised feature extractionIEEE Geoscience and Remote Sensing Letters2015121471147510.1109/LGRS.2015.2409112
FarnaazNJabbarMRandom forest modeling for network intrusion detection systemProcedia Computer Science20168921321710.1016/j.procs.2016.06.047
DwivediAKAnalysis of computational intelligence techniques for diabetes mellitus predictionNeural Computing and Applications2018303837384510.1007/s00521-017-2969-9
KoddenBRoelofsJPsychological contract as a mediator of the leadership-turnover intentions relationshipJournal of Organizational Psychology201919293102
MaseticZSubasiACongestive heart failure detection using random forest classifierComputer methods and programs in biomedicine2016130546410.1016/j.cmpb.2016.03.020
Frierson, J. & Si, D.(2018) Who’s next: Evaluating attrition with machine learning algorithms and survival analysis, In International Conference on Big Data, (pp. 251–259).
El-rayesNSmithMTaylorSMAn explicative and predictive study of employee attrition using tree-based modelsSSRN Electronic Journal201910.2139/ssrn.3397445
P Sukhija (8408_CR14) 2016; 85
8408_CR23
W-R Huang (8408_CR5) 2016; 48
Z Masetic (8408_CR9) 2016; 130
İO Yiğit (8408_CR24) 2017; 2017
N El-rayes (8408_CR20) 2019
8408_CR3
8408_CR1
MA Valle (8408_CR16) 2017; 60
C Ierodiakonou (8408_CR21) 2017; 28
B Kodden (8408_CR22) 2019; 19
C Zhu (8408_CR15) 2019; 17
I Ullah (8408_CR8) 2019; 7
AK Dwivedi (8408_CR2) 2018; 30
X Pu (8408_CR13) 2015; 168
S Karande (8408_CR6) 2019
M Belgiu (8408_CR10) 2016; 114
F Liu (8408_CR17) 2017; 22
P Ajit (8408_CR7) 2016; 4
J Xia (8408_CR12) 2015; 12
8408_CR19
A Frederiksen (8408_CR4) 2017; 31
8408_CR18
N Farnaaz (8408_CR11) 2016; 89
References_xml – reference: Tan, P.-N. (2018) Introduction to data mining: Pearson education India.
– reference: FrederiksenAJob satisfaction and employee turnover: A firm-level perspectiveGerman Journal of Human Resource Management20173113216110.1177/2397002216683885
– reference: Islam, M. K., Alam, M. M., Islam, M. B., Mohiuddin, K., Das, A. K., & Kaonain, M. S. (2018) An adaptive feature dimensionality reduction technique based on random forest on employee turnover prediction model. In International Conference on Advances in Computing and Data Sciences, (pp. 269–278).
– reference: Zhao, Y., Hryniewicki, M. K., Cheng, F., Fu, B. & Zhu, X. (2018) Employee turnover prediction with machine learning: A reliable approach. In Proceedings of SAI intelligent systems conference, (pp. 737–758).
– reference: SukhijaPBehalSSinghPFace recognition system using genetic algorithmProcedia Computer Science20168541041710.1016/j.procs.2016.05.183
– reference: BelgiuMDrăguţLRandom forest in remote sensing: A review of applications and future directionsISPRS Journal of Photogrammetry and Remote Sensing2016114243110.1016/j.isprsjprs.2016.01.011
– reference: KarandeSShyamalaLYu-ChenHuTiwariShaileshMishraKrishn KTrivediMunesh CPrediction of employee turnover using ensemble learningAmbient Communications and Computer Systems2019SingaporeSpringer
– reference: LiuFTsoKYangYGuanJMultilevel analysis of employee satisfaction on commitment to organizational culture: Case study of chinese state-owned enterprisesMathematical and Computational Applications2017224610.3390/mca22040046
– reference: KoddenBRoelofsJPsychological contract as a mediator of the leadership-turnover intentions relationshipJournal of Organizational Psychology201919293102
– reference: YiğitİOShourabizadehHAn approach for predicting employee churn by using data miningIn International Artificial Intelligence and Data Processing Symposium (IDAP)2017201714
– reference: Saleem, D. I., Ahmed, R., & Saleem, N. (2016) "Mediating role of work exhaustion: The missing linchpin to address employee's turnover," Saleem I., Ahmed R. & Saleem, (pp. 156–173)
– reference: ZhuCIdemudiaCUFengWImproved logistic regression model for diabetes prediction by integrating PCA and K-means techniquesInformatics in Medicine Unlocked20191710017910.1016/j.imu.2019.100179
– reference: El-rayesNSmithMTaylorSMAn explicative and predictive study of employee attrition using tree-based modelsSSRN Electronic Journal201910.2139/ssrn.3397445
– reference: IerodiakonouCStavrouEFlexitime and employee turnover: the polycontextuality of regulation as cross-national institutional contingencyThe International Journal of Human Resource Management2017283003302610.1080/09585192.2017.1362658
– reference: XiaJLiaoWChanussotJDuPSongGPhilipsWImproving random forest with ensemble of features and semisupervised feature extractionIEEE Geoscience and Remote Sensing Letters2015121471147510.1109/LGRS.2015.2409112
– reference: ValleMARuzGAMasíasVHUsing self-organizing maps to model turnover of sales agents in a call centerApplied Soft Computing20176076377410.1016/j.asoc.2017.03.011
– reference: UllahIRazaBMalikAKImranMIslamSUKimSWA churn prediction model using random forest: Analysis of machine learning techniques for churn prediction and factor identification in telecom sectorIEEE Access20197601346014910.1109/ACCESS.2019.2914999
– reference: PuXFanKChenXJiLZhouZFacial expression recognition from image sequences using twofold random forest classifierNeurocomputing20151681173118010.1016/j.neucom.2015.05.005
– reference: Frierson, J. & Si, D.(2018) Who’s next: Evaluating attrition with machine learning algorithms and survival analysis, In International Conference on Big Data, (pp. 251–259).
– reference: FarnaazNJabbarMRandom forest modeling for network intrusion detection systemProcedia Computer Science20168921321710.1016/j.procs.2016.06.047
– reference: MaseticZSubasiACongestive heart failure detection using random forest classifierComputer methods and programs in biomedicine2016130546410.1016/j.cmpb.2016.03.020
– reference: HuangW-RSuC-HThe mediating role of job satisfaction in the relationship between job training satisfaction and turnover intentionsIndustrial and Commercial Training201648425210.1108/ICT-04-2015-0029
– reference: DwivediAKAnalysis of computational intelligence techniques for diabetes mellitus predictionNeural Computing and Applications2018303837384510.1007/s00521-017-2969-9
– reference: AjitPPrediction of employee turnover in organizations using machine learning algorithmsAlgorithms201645C5
– year: 2019
  ident: 8408_CR20
  publication-title: SSRN Electronic Journal
  doi: 10.2139/ssrn.3397445
– volume: 48
  start-page: 42
  year: 2016
  ident: 8408_CR5
  publication-title: Industrial and Commercial Training
  doi: 10.1108/ICT-04-2015-0029
– ident: 8408_CR18
  doi: 10.1007/978-3-319-94301-5_19
– volume: 7
  start-page: 60134
  year: 2019
  ident: 8408_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914999
– volume: 85
  start-page: 410
  year: 2016
  ident: 8408_CR14
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2016.05.183
– volume-title: Ambient Communications and Computer Systems
  year: 2019
  ident: 8408_CR6
– volume: 60
  start-page: 763
  year: 2017
  ident: 8408_CR16
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.03.011
– volume: 28
  start-page: 3003
  year: 2017
  ident: 8408_CR21
  publication-title: The International Journal of Human Resource Management
  doi: 10.1080/09585192.2017.1362658
– volume: 114
  start-page: 24
  year: 2016
  ident: 8408_CR10
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 30
  start-page: 3837
  year: 2018
  ident: 8408_CR2
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-017-2969-9
– volume: 31
  start-page: 132
  year: 2017
  ident: 8408_CR4
  publication-title: German Journal of Human Resource Management
  doi: 10.1177/2397002216683885
– volume: 4
  start-page: C5
  issue: 5
  year: 2016
  ident: 8408_CR7
  publication-title: Algorithms
– volume: 17
  start-page: 100179
  year: 2019
  ident: 8408_CR15
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2019.100179
– volume: 22
  start-page: 46
  year: 2017
  ident: 8408_CR17
  publication-title: Mathematical and Computational Applications
  doi: 10.3390/mca22040046
– volume: 19
  start-page: 93
  issue: 2
  year: 2019
  ident: 8408_CR22
  publication-title: Journal of Organizational Psychology
– ident: 8408_CR1
– ident: 8408_CR23
  doi: 10.1007/978-3-030-01057-7_56
– ident: 8408_CR3
– volume: 2017
  start-page: 1
  year: 2017
  ident: 8408_CR24
  publication-title: In International Artificial Intelligence and Data Processing Symposium (IDAP)
– volume: 130
  start-page: 54
  year: 2016
  ident: 8408_CR9
  publication-title: Computer methods and programs in biomedicine
  doi: 10.1016/j.cmpb.2016.03.020
– volume: 12
  start-page: 1471
  year: 2015
  ident: 8408_CR12
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2015.2409112
– volume: 89
  start-page: 213
  year: 2016
  ident: 8408_CR11
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2016.06.047
– volume: 168
  start-page: 1173
  year: 2015
  ident: 8408_CR13
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.005
– ident: 8408_CR19
  doi: 10.1007/978-981-13-1813-9_27
SSID ssj0010092
Score 2.3256743
Snippet Employee turnover is the important issue in the recent day organizations. In this paper, a data mining based employee turnover predictor is developed in which...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3365
SubjectTerms Algorithms
Classification
Classifiers
Communications Engineering
Comparative studies
Computer Communication Networks
Data mining
Employee turnover
Engineering
Feature selection
Networks
Predictions
Principal components analysis
Signal,Image and Speech Processing
Title Prediction of Employee Turn Over Using Random Forest Classifier with Intensive Optimized Pca Algorithm
URI https://link.springer.com/article/10.1007/s11277-021-08408-0
https://www.proquest.com/docview/2565483152
Volume 119
WOSCitedRecordID wos000632870000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1572-834X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA6iPuiDP6bidMo9iC8aSLMsaR-HOHyQOXSKbyVLUhm4Tdrpg3-9l65dnaigT6X0UkruktzXu_uOkBOm0amWTlFUuKGixQX1bgiVoYisiJyyOe3iw7XqdsPHx6hXFIVlZbZ7GZLMd-qq2C3w4UafUsAQlYQUgfpKy7PNeIx-9zCPHXgaoZxhzyd24M5clMp8_47F46jyMb-ERfPTprP5v-_cIhuFdwntmTlskyU3rpH1T5yDNXJYCA2zEZzCQn1ItkOSXuojN_4OJgmU_YChj2PgBs0e8hwDuNVjOxmBb-yZTSHvrDlM8IQF_18X5nnxcIM70mj47iz0jIb289MkRYHRLrnvXPYvrmjRioEaXKNTaqVQwloTcIsXoaTnLQs4Z5o5BEU6CgRXLdFMgsQYyROeMKWlQaxnpTJs0Nwjy-PJ2O0TMEKH0UAK2VJOBFxGiKnCiBvdZJHRA1cnQamR2BQ85b5dxnNcMSz7GY5xhuN8hmNWJ2fzMS8zlo5fpRulouNixWYxWiyCtya6M3VyXiq2evzz2w7-Jn5I1vjMNigLGmR5mr66I7Jq3qbDLD3OLfkDVs_qfQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4hhjR42PgpOgrcA-Jls-S4rp08omkViFIq6BBvkWs7qBJtUVN42F-_c5q0MDEkeIqinKPId7bvy919B3DEDTnVymtGCrdMNoVkwQ1hKpaJk4nXrqBdvGnrTie-vU26ZVFYXmW7VyHJYqdeFLtFIdwYUgo4oZKYEVD_JEObnYDRr2_msYNAI1Qw7IXEDtqZy1KZ19_x8jha-Jj_hEWL06b19WPfuQ5fSu8ST2bmsAFLfrQJa884BzdhrxQa5EM8xhf1IfkWZN1JiNyEOxxnWPUDxh6NwUsyeyxyDPDKjNx4iKGxZz7ForPmIKMTFsN_XZznxeMl7UjDwR_vsGsNntzfjSckMNyG361fvZ-nrGzFwCyt0SlzSmrpnI2Eo4vUKvCWRUJwwz2BIpNEUuimbGRRZq0Smci4NsoS1nNKW95v7MDyaDzyu4BWmjjpK6ma2stIqIQwVZwIaxo8sabvaxBVGkltyVMe2mXcpwuG5TDDKc1wWsxwymvwfT7mYcbS8aZ0vVJ0Wq7YPCWLJfDWIHemBj8qxS4e__9t394nfgifT3sX7bR91jnfg1UxsxPGozosTyePfh9W7NN0kE8OCqv-C1xh7WE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5NMCH2MDbYtK5su4dpL5uF47p28ojYqk1DpWKAeItc20GVaFo1GQ_89ZzTpD8QQ5p4iqKco8h3tu_L3X0H8JkbcqqV14wUbpnsCsmCG8JULBMnE69dRbt4caz7_fjyMhmsVPFX2e5NSHJe0xBYmvLyYOqyg2XhWxRCjyG9gBNCiRmB9k1JSCYkdZ3-uVjEEQKlUMW2F5I8aJeuy2Yefsf60bT0N--FSKuTp7fz9G9-BS9rrxMP52byGp75fBderHAR7kK7FhoVY_yCa3UjxR5kg1mI6IQ7nGTY9AnGMxqDJ7QcsMo9wFOTu8kYQ8PPosSq4-Yoo5MXw_9eXOTL4wntVOPRrXc4sAYPr68mMxIYv4Hz3o-zo5-sbtHALK3dkjkltXTORsLRRWoV-MwiIbjhnsCSSSIpdFd2siizVolMZFwbZQkDOqUtH3bewkY-yf07QCtNnAyVVF3tZSRUQlgrToQ1HZ5YM_QtiBrtpLbmLw9tNK7TJfNymOGUZjitZjjlLfi6GDOds3c8Kr3fKD2tV3KRkiUTqOuQm9OCb42Sl4___bb3_yf-CbYG33vp8a_-7zZsi7mZMB7tw0Y5--s_wHN7U46K2cfKwO8AUtP2RQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Employee+Turn+Over+Using+Random+Forest+Classifier+with+Intensive+Optimized+Pca+Algorithm&rft.jtitle=Wireless+personal+communications&rft.au=Wild+Ali%2C+Alaeldeen+Bader&rft.date=2021-08-01&rft.pub=Springer+US&rft.issn=0929-6212&rft.eissn=1572-834X&rft.volume=119&rft.issue=4&rft.spage=3365&rft.epage=3382&rft_id=info:doi/10.1007%2Fs11277-021-08408-0&rft.externalDocID=10_1007_s11277_021_08408_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-6212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-6212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-6212&client=summon