A new upper bound on the work function algorithm for the k-server problem

The k -server problem was introduced by Manasse et al. (in: Proceedings of the 20th annual ACM symposium on theory of computing, Chicago, Illinois, USA, pp 322–333, 1988), and is one of the most famous and well-studied online problems. Koutsoupias and Papadimitriou (J ACM 42(5):971–983, 1995) showed...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial optimization Ročník 39; číslo 2; s. 509 - 518
Hlavní autoři: Zhang, Wenming, Cheng, Yongxi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.02.2020
Springer Nature B.V
Témata:
ISSN:1382-6905, 1573-2886
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The k -server problem was introduced by Manasse et al. (in: Proceedings of the 20th annual ACM symposium on theory of computing, Chicago, Illinois, USA, pp 322–333, 1988), and is one of the most famous and well-studied online problems. Koutsoupias and Papadimitriou (J ACM 42(5):971–983, 1995) showed that the work function algorithm ( WFA ) has a competitive ratio of at most 2 k - 1 for the k -server problem. In this paper, by proposing a potential function that is different from the one in Koutsoupias and Papadimitriou (1995), we show that the WFA has a competitive ratio of at most n - 1 , where n is the number of points in the metric space. When n < 2 k , this ratio is less than 2 k - 1 .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-019-00493-z