YOLO series algorithms in object detection of unmanned aerial vehicles: a survey
YOLO series algorithms are widely used in unmanned aerial vehicles (UAV) object detection scenarios due to their fast and lightweight properties. This article summarizes the key concepts in YOLO series algorithms, such as the anchor mechanism, feature fusion strategy, bounding box regression loss an...
Gespeichert in:
| Veröffentlicht in: | Service oriented computing and applications Jg. 18; H. 3; S. 269 - 298 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Springer London
01.09.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1863-2386, 1863-2394 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | YOLO series algorithms are widely used in unmanned aerial vehicles (UAV) object detection scenarios due to their fast and lightweight properties. This article summarizes the key concepts in YOLO series algorithms, such as the anchor mechanism, feature fusion strategy, bounding box regression loss and so on and points out the advantages and improvement space of the YOLO series algorithms. Discussing the relevant technologies of the YOLOv1 to YOLOv7 series algorithms in detail in three parts: basic structure, strengths and weaknesses, and compares the algorithm performance. On this basis, combined with the challenges of object detection technology in UAV applications, various solutions for improving the YOLO series algorithms and applying them to UAV object detection scenarios are demonstrated. The improvement strategies, application scenarios, academic contributions and limitations of the algorithms are summarized. Finally, the future development directions and challenges of applying YOLO series algorithms to UAV object recognition are prospected. |
|---|---|
| AbstractList | YOLO series algorithms are widely used in unmanned aerial vehicles (UAV) object detection scenarios due to their fast and lightweight properties. This article summarizes the key concepts in YOLO series algorithms, such as the anchor mechanism, feature fusion strategy, bounding box regression loss and so on and points out the advantages and improvement space of the YOLO series algorithms. Discussing the relevant technologies of the YOLOv1 to YOLOv7 series algorithms in detail in three parts: basic structure, strengths and weaknesses, and compares the algorithm performance. On this basis, combined with the challenges of object detection technology in UAV applications, various solutions for improving the YOLO series algorithms and applying them to UAV object detection scenarios are demonstrated. The improvement strategies, application scenarios, academic contributions and limitations of the algorithms are summarized. Finally, the future development directions and challenges of applying YOLO series algorithms to UAV object recognition are prospected. |
| Author | Jiao, Li Abdullah, Muhammad Irsyad |
| Author_xml | – sequence: 1 givenname: Li surname: Jiao fullname: Jiao, Li organization: School of Graduates Studies of Management and Science University, Mianyang Polytechnic – sequence: 2 givenname: Muhammad Irsyad surname: Abdullah fullname: Abdullah, Muhammad Irsyad email: irsyad@msu.edu.my organization: Software Engineering and Digital Innovation Center, Management and Science University |
| BookMark | eNp9kEtLAzEQgIMoWGv_gKeA59U8No_1JsUXFOpBD55CmmTblG22JtuW_ntTVxQ8dC4zDPPNDN8FOA1tcABcYXSDERK3CWPBcYFIWSBEpSx2J2CAJacFoVV5-ltLfg5GKS1RDkqE5GIAXj-mkylMLnqXoG7mbfTdYpWgD7CdLZ3poHVdTr7NjRpuwkqH4CzUmdAN3LqFN41Ld1DDtIlbt78EZ7Vukhv95CF4f3x4Gz8Xk-nTy_h-UhiKq66wjNGS2tqUlFc1QY5xU2uDCCvJjFlXGYmlsNZoix22pjSSMjEjnNJKC43oEFz3e9ex_dy41Kllu4khn1SUMF4JxliZp0g_ZWKbUnS1Wke_0nGvMFIHeaqXp7I89S1P7TIk_0HGd_qgoIvaN8dR2qMp3wlzF_--OkJ9AT9Phl4 |
| CitedBy_id | crossref_primary_10_1051_shsconf_202521601039 crossref_primary_10_1007_s11554_025_01708_9 crossref_primary_10_1177_03611981251327213 crossref_primary_10_1371_journal_pone_0321920 crossref_primary_10_32604_cmc_2024_058932 crossref_primary_10_3390_math13071043 crossref_primary_10_3390_agriculture15111213 |
| Cites_doi | 10.1109/JSTARS.2022.3206399 10.1080/01431161.2015.1043760 10.3390/electronics12143141 10.1016/j.imavis.2023.104697 10.3390/rs14225806 10.1016/j.isprsjprs.2018.04.003 10.1109/TPAMI.2016.2577031 10.1109/TPAMI.2015.2389824 10.3390/app12168314 10.3390/drones3030054 10.3390/electronics11152343 10.3390/drones7030188 10.3390/rs14174324 10.3390/rs14143498 10.1002/bse.2289 10.1016/j.patcog.2022.108998 10.3390/app12189314 10.1109/JSTARS.2020.2969809 10.3390/drones6110335 10.3390/app12073627 10.1002/adts.202100631 10.1007/978-3-030-01234-2_1 10.1109/ICCV.2017.322 10.1109/WACV48630.2021.00120 10.1109/CVPR.2016.91 10.1109/CVPR52688.2022.01330 10.1109/CVPR46437.2021.01283 10.5121/csit.2019.91713 10.1007/978-3-319-46448-0_2 10.1109/ICCV.2017.324 10.1109/CVPR52729.2023.00721 10.1109/IWCMC.2019.8766519 10.1109/CVPR.2018.00377 10.1109/CVPRW.2019.00103 10.1109/ITNEC.2017.8284767 10.1109/URAI.2015.7358813 10.1109/CVPR.2017.106 10.1109/CVPR.2015.7298594 10.1109/CVPR46437.2021.01352 10.1109/CVPR.2019.00075 10.1155/2022/7408265 10.1109/CVPR.2014.81 10.1016/j.techfore.2020.120433 10.1109/ICCVW54120.2021.00312 10.1109/CVPR46437.2021.00037 10.1145/2964284.2967274 10.1109/ICCVW54120.2021.00319 10.23919/DATE.2018.8342149 10.1109/ICPR.2006.479 10.1109/CVPR42600.2020.01261 10.1109/ICCVW.2019.00011 10.1109/ICCV.2017.593 10.23919/ELINFOCOM.2018.8330557 10.1109/CVPR.2017.690 10.1609/aaai.v34i07.6999 10.1109/CVPR.2016.90 10.1109/CVPR.2018.00378 10.1109/WACVW58289.2023.00029 10.1007/978-3-030-01264-9_45 10.1109/CVPR.2018.00913 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11761-024-00388-w |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1863-2394 |
| EndPage | 298 |
| ExternalDocumentID | 10_1007_s11761_024_00388_w |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40E 5VS 67Z 6NX 875 8TC 8UJ 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-d55343dfc4369f20e56cfac02542b5de9c8187ddcad1e1dc4c8357b26339a7a03 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001186196000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1863-2386 |
| IngestDate | Sat Oct 11 06:56:45 EDT 2025 Sat Nov 29 01:50:26 EST 2025 Tue Nov 18 21:02:34 EST 2025 Fri Feb 21 02:38:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | YOLO Unmanned aerial vehicles UAV Drone Object detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-d55343dfc4369f20e56cfac02542b5de9c8187ddcad1e1dc4c8357b26339a7a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256975554 |
| PQPubID | 2044172 |
| PageCount | 30 |
| ParticipantIDs | proquest_journals_3256975554 crossref_primary_10_1007_s11761_024_00388_w crossref_citationtrail_10_1007_s11761_024_00388_w springer_journals_10_1007_s11761_024_00388_w |
| PublicationCentury | 2000 |
| PublicationDate | 20240900 2024-09-00 20240901 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Service oriented computing and applications |
| PublicationTitleAbbrev | SOCA |
| PublicationYear | 2024 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | CR39 CR38 CR37 Hwang, Kim (CR1) 2019; 28 CR35 Javed (CR57) 2021; 2021 CR34 CR33 Zhao, Zhu (CR73) 2023; 7 CR32 CR31 CR30 Feng, Zhong, Gao, Scott, Huang (CR36) 2021; 2021 CR74 CR72 Deng, Sun, Zhou, Zhao, Lei, Zou (CR43) 2018; 145 CR2 Wang, He, Hong, Wang, Chen (CR69) 2023; 135 CR3 CR6 CR7 Moranduzzo, Melgani, Bazi, Alajlan (CR44) 2015; 36 CR9 CR49 Li, Yuan, Wang, Xiao (CR67) 2022; 6 CR48 CR47 CR46 CR45 Li, Namiki, Suzuki, Wang, Zhang, Wang (CR65) 2022; 12 CR42 CR41 CR40 Bosquet, Cores, Seidenari, Brea, Mucientes, Del Bimbo (CR51) 2023; 133 He, Zhang, Ren, Sun (CR26) 2015; 37 Ren, He, Girshick, Sun (CR8) 2017; 28 Shao, Zhang, Chu, Zhang, Zhang, Rao (CR59) 2022; 12 Lan, Lin, Guo, Deng (CR68) 2022; 14 Zhu, Zhou, Yang, Liu, Liu, Kong (CR60) 2022; 14 CR19 CR18 CR17 CR16 CR15 Jawaharlalnehru (CR56) 2022; 11 Nuijten, Kooistra, De Deyn (CR4) 2019; 3 CR14 CR58 CR13 CR12 CR11 CR55 CR10 CR54 CR53 CR52 CR50 Zeng, Zhang, He, Zhang (CR71) 2023; 12 Zhang, Wen (CR66) 2022; 5 CR29 CR28 CR27 CR25 CR24 CR23 CR22 CR21 Liu, Quijano, Crawford (CR62) 2022; 15 CR20 CR64 Kyrkou, Theocharides (CR5) 2020; 13 Qiu, Huang, Tang (CR63) 2022; 14 CR61 Ru, Zhang, Qu, Zhang (CR70) 2022; 12 388_CR18 388_CR19 C Ru (388_CR70) 2022; 12 388_CR16 388_CR17 A Jawaharlalnehru (388_CR56) 2022; 11 X Wang (388_CR69) 2023; 135 C Feng (388_CR36) 2021; 2021 RJ Nuijten (388_CR4) 2019; 3 388_CR61 388_CR21 388_CR22 388_CR20 388_CR64 388_CR25 388_CR23 388_CR24 388_CR49 M Qiu (388_CR63) 2022; 14 C Kyrkou (388_CR5) 2020; 13 W Liu (388_CR62) 2022; 15 Z Li (388_CR65) 2022; 12 388_CR50 L Zhao (388_CR73) 2023; 7 388_CR10 388_CR54 388_CR11 388_CR55 388_CR52 Y Li (388_CR67) 2022; 6 Z Deng (388_CR43) 2018; 145 388_CR53 388_CR14 388_CR58 388_CR15 388_CR12 388_CR13 Y Zeng (388_CR71) 2023; 12 388_CR38 388_CR39 Y Zhu (388_CR60) 2022; 14 J Hwang (388_CR1) 2019; 28 388_CR40 388_CR41 388_CR42 388_CR47 388_CR48 388_CR45 388_CR46 Y Lan (388_CR68) 2022; 14 388_CR29 388_CR27 388_CR28 K He (388_CR26) 2015; 37 B Bosquet (388_CR51) 2023; 133 S Ren (388_CR8) 2017; 28 Y Shao (388_CR59) 2022; 12 388_CR9 388_CR7 388_CR72 388_CR6 T Moranduzzo (388_CR44) 2015; 36 MG Javed (388_CR57) 2021; 2021 388_CR3 388_CR32 388_CR2 388_CR33 388_CR30 R Zhang (388_CR66) 2022; 5 388_CR74 388_CR31 388_CR37 388_CR34 388_CR35 |
| References_xml | – ident: CR45 – volume: 15 start-page: 8085 year: 2022 end-page: 8094 ident: CR62 article-title: YOLOv5-tassel: detecting tassels in RGB UAV imagery with improved YOLOv5 based on transfer learning publication-title: IEEE J Sel Top Appl Earth Observ Remote Sens doi: 10.1109/JSTARS.2022.3206399 – ident: CR22 – ident: CR49 – ident: CR74 – volume: 36 start-page: 2713 year: 2015 end-page: 2733 ident: CR44 article-title: A fast object detector based on high-order gradients and Gaussian process regression for UAV images publication-title: Int J Remote Sens doi: 10.1080/01431161.2015.1043760 – volume: 12 start-page: 3141 year: 2023 ident: CR71 article-title: Yolov7-uav: an unmanned aerial vehicle image object detection algorithm based on improved yolov7 publication-title: Electronics doi: 10.3390/electronics12143141 – ident: CR39 – ident: CR16 – ident: CR12 – volume: 135 start-page: 104697 year: 2023 ident: CR69 article-title: Improved YOLOX-X based UAV aerial photography object detection algorithm publication-title: Image Vis Comput doi: 10.1016/j.imavis.2023.104697 – volume: 14 start-page: 5806 year: 2022 ident: CR68 article-title: Real-time UAV patrol technology in orchard based on the swin-T YOLOX lightweight model publication-title: Remote Sens doi: 10.3390/rs14225806 – ident: CR35 – ident: CR29 – ident: CR54 – ident: CR61 – ident: CR58 – ident: CR25 – ident: CR42 – ident: CR21 – ident: CR46 – ident: CR19 – volume: 145 start-page: 3 year: 2018 end-page: 22 ident: CR43 article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2018.04.003 – volume: 28 start-page: 1137 year: 2017 end-page: 1149 ident: CR8 article-title: Faster r-cnn: towards real-time object detection with region proposal networks publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – volume: 37 start-page: 1904 year: 2015 end-page: 1916 ident: CR26 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2389824 – ident: CR15 – ident: CR50 – ident: CR11 – ident: CR9 – ident: CR32 – volume: 12 start-page: 8314 year: 2022 ident: CR65 article-title: Application of low-altitude UAV remote sensing image object detection based on improved YOLOv5 publication-title: Appl Sci doi: 10.3390/app12168314 – volume: 3 start-page: 54 year: 2019 ident: CR4 article-title: Using unmanned aerial systems (UAS) and object-based image analysis (OBIA) for measuring plant-soil feedback effects on crop productivity publication-title: Drones doi: 10.3390/drones3030054 – ident: CR64 – ident: CR18 – ident: CR47 – ident: CR72 – ident: CR14 – ident: CR2 – ident: CR37 – ident: CR53 – volume: 11 start-page: 2343 year: 2022 ident: CR56 article-title: Target object detection from unmanned aerial vehicle (UAV) images based on improved YOLO algorithm publication-title: Electronics doi: 10.3390/electronics11152343 – ident: CR30 – volume: 7 start-page: 188 year: 2023 ident: CR73 article-title: MS-YOLOv7: YOLOv7 based on multi-scale for object detection on UAV aerial photography publication-title: Drones doi: 10.3390/drones7030188 – ident: CR10 – ident: CR33 – volume: 2021 start-page: 1 year: 2021 end-page: 8 ident: CR57 article-title: "QuantYOLO: a high-throughput and power-efficient object detection network for resource and power constrained UAVs publication-title: Digit Image Comput Tech Appl – ident: CR6 – volume: 14 start-page: 4324 year: 2022 ident: CR60 article-title: Rapid target detection of fruit trees using UAV imaging and improved light YOLOv4 algorithm publication-title: Remote Sens doi: 10.3390/rs14174324 – ident: CR40 – volume: 2021 start-page: 3490 year: 2021 end-page: 3499 ident: CR36 article-title: Tood: task-aligned one-stage object detection publication-title: IEEE/CVF Int Conf Comput Vis – ident: CR27 – volume: 14 start-page: 3498 year: 2022 ident: CR63 article-title: ASFF-YOLOv5: multielement detection method for road traffic in UAV images based on multiscale feature fusion publication-title: Remote Sens doi: 10.3390/rs14143498 – ident: CR23 – volume: 28 start-page: 872 year: 2019 end-page: 884 ident: CR1 article-title: Consequences of a green image of drone food delivery services: the moderating role of gender and age publication-title: Bus Strat Environ doi: 10.1002/bse.2289 – ident: CR48 – volume: 133 start-page: 108998 year: 2023 ident: CR51 article-title: A full data augmentation pipeline for small object detection based on generative adversarial networks publication-title: Pattern Recogn doi: 10.1016/j.patcog.2022.108998 – ident: CR3 – ident: CR38 – volume: 12 start-page: 9314 year: 2022 ident: CR70 article-title: The high-precision detection method for insulators’ self-explosion defect based on the unmanned aerial vehicle with improved lightweight ECA-YOLOX-Tiny model publication-title: Appl Sci doi: 10.3390/app12189314 – ident: CR52 – volume: 13 start-page: 1687 year: 2020 end-page: 1699 ident: CR5 article-title: Emergencynet: efficient aerial image classification for drone-based emergency monitoring using atrous convolutional feature fusion publication-title: IEEE J Sel Top App Earth Observ Remote Sens doi: 10.1109/JSTARS.2020.2969809 – ident: CR17 – volume: 6 start-page: 335 year: 2022 ident: CR67 article-title: GGT-YOLO: a novel object detection algorithm for drone-based maritime cruising publication-title: Drones doi: 10.3390/drones6110335 – ident: CR31 – volume: 12 start-page: 3627 year: 2022 ident: CR59 article-title: AIR-YOLOv3: Aerial infrared pedestrian detection via an improved YOLOv3 with network pruning publication-title: Appl Sci doi: 10.3390/app12073627 – ident: CR13 – ident: CR34 – ident: CR55 – ident: CR7 – ident: CR28 – ident: CR41 – ident: CR24 – ident: CR20 – volume: 5 start-page: 2100631 year: 2022 ident: CR66 article-title: SOD-YOLO: a small target defect detection algorithm for wind turbine blades based on improved YOLOv5 publication-title: Adv Theory Simul doi: 10.1002/adts.202100631 – ident: 388_CR27 doi: 10.1007/978-3-030-01234-2_1 – volume: 14 start-page: 3498 year: 2022 ident: 388_CR63 publication-title: Remote Sens doi: 10.3390/rs14143498 – volume: 12 start-page: 9314 year: 2022 ident: 388_CR70 publication-title: Appl Sci doi: 10.3390/app12189314 – ident: 388_CR23 – ident: 388_CR14 doi: 10.1109/ICCV.2017.322 – volume: 2021 start-page: 3490 year: 2021 ident: 388_CR36 publication-title: IEEE/CVF Int Conf Comput Vis – volume: 14 start-page: 5806 year: 2022 ident: 388_CR68 publication-title: Remote Sens doi: 10.3390/rs14225806 – ident: 388_CR49 doi: 10.1109/WACV48630.2021.00120 – ident: 388_CR21 doi: 10.1109/CVPR.2016.91 – ident: 388_CR48 doi: 10.1109/CVPR52688.2022.01330 – ident: 388_CR39 doi: 10.1109/CVPR46437.2021.01283 – ident: 388_CR47 doi: 10.5121/csit.2019.91713 – volume: 28 start-page: 1137 year: 2017 ident: 388_CR8 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – ident: 388_CR32 – volume: 5 start-page: 2100631 year: 2022 ident: 388_CR66 publication-title: Adv Theory Simul doi: 10.1002/adts.202100631 – ident: 388_CR41 – ident: 388_CR13 doi: 10.1007/978-3-319-46448-0_2 – ident: 388_CR18 – ident: 388_CR15 doi: 10.1109/ICCV.2017.324 – volume: 3 start-page: 54 year: 2019 ident: 388_CR4 publication-title: Drones doi: 10.3390/drones3030054 – ident: 388_CR24 – ident: 388_CR54 doi: 10.1109/ICCV.2017.324 – volume: 12 start-page: 3141 year: 2023 ident: 388_CR71 publication-title: Electronics doi: 10.3390/electronics12143141 – ident: 388_CR20 – ident: 388_CR37 doi: 10.1109/CVPR52729.2023.00721 – ident: 388_CR42 doi: 10.1109/IWCMC.2019.8766519 – volume: 7 start-page: 188 year: 2023 ident: 388_CR73 publication-title: Drones doi: 10.3390/drones7030188 – ident: 388_CR52 doi: 10.1109/CVPR.2018.00377 – volume: 12 start-page: 3627 year: 2022 ident: 388_CR59 publication-title: Appl Sci doi: 10.3390/app12073627 – volume: 6 start-page: 335 year: 2022 ident: 388_CR67 publication-title: Drones doi: 10.3390/drones6110335 – ident: 388_CR38 doi: 10.1109/CVPRW.2019.00103 – ident: 388_CR45 doi: 10.1109/ITNEC.2017.8284767 – ident: 388_CR6 doi: 10.1109/URAI.2015.7358813 – volume: 28 start-page: 872 year: 2019 ident: 388_CR1 publication-title: Bus Strat Environ doi: 10.1002/bse.2289 – volume: 145 start-page: 3 year: 2018 ident: 388_CR43 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2018.04.003 – ident: 388_CR11 doi: 10.1109/CVPR.2017.106 – ident: 388_CR40 – ident: 388_CR22 doi: 10.1109/CVPR.2015.7298594 – ident: 388_CR35 doi: 10.1109/CVPR46437.2021.01352 – ident: 388_CR29 doi: 10.1109/CVPR.2019.00075 – ident: 388_CR53 – ident: 388_CR61 doi: 10.1155/2022/7408265 – ident: 388_CR7 doi: 10.1109/CVPR.2014.81 – ident: 388_CR2 doi: 10.1016/j.techfore.2020.120433 – ident: 388_CR25 – volume: 12 start-page: 8314 year: 2022 ident: 388_CR65 publication-title: Appl Sci doi: 10.3390/app12168314 – ident: 388_CR34 – volume: 14 start-page: 4324 year: 2022 ident: 388_CR60 publication-title: Remote Sens doi: 10.3390/rs14174324 – ident: 388_CR64 doi: 10.1109/ICCVW54120.2021.00312 – ident: 388_CR33 doi: 10.1109/CVPR46437.2021.00037 – ident: 388_CR28 doi: 10.1145/2964284.2967274 – ident: 388_CR74 doi: 10.1109/ICCVW54120.2021.00319 – ident: 388_CR3 doi: 10.23919/DATE.2018.8342149 – ident: 388_CR31 doi: 10.1109/ICPR.2006.479 – volume: 2021 start-page: 1 year: 2021 ident: 388_CR57 publication-title: Digit Image Comput Tech Appl – volume: 37 start-page: 1904 year: 2015 ident: 388_CR26 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2389824 – ident: 388_CR50 doi: 10.1109/CVPR42600.2020.01261 – ident: 388_CR58 doi: 10.1109/ICCVW.2019.00011 – ident: 388_CR55 doi: 10.1109/ICCV.2017.593 – ident: 388_CR46 doi: 10.23919/ELINFOCOM.2018.8330557 – ident: 388_CR16 doi: 10.1109/CVPR.2017.690 – ident: 388_CR30 doi: 10.1609/aaai.v34i07.6999 – volume: 11 start-page: 2343 year: 2022 ident: 388_CR56 publication-title: Electronics doi: 10.3390/electronics11152343 – volume: 13 start-page: 1687 year: 2020 ident: 388_CR5 publication-title: IEEE J Sel Top App Earth Observ Remote Sens doi: 10.1109/JSTARS.2020.2969809 – ident: 388_CR9 – ident: 388_CR10 doi: 10.1109/CVPR.2016.90 – ident: 388_CR19 doi: 10.1109/CVPR.2018.00378 – volume: 15 start-page: 8085 year: 2022 ident: 388_CR62 publication-title: IEEE J Sel Top Appl Earth Observ Remote Sens doi: 10.1109/JSTARS.2022.3206399 – volume: 36 start-page: 2713 year: 2015 ident: 388_CR44 publication-title: Int J Remote Sens doi: 10.1080/01431161.2015.1043760 – volume: 133 start-page: 108998 year: 2023 ident: 388_CR51 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2022.108998 – volume: 135 start-page: 104697 year: 2023 ident: 388_CR69 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2023.104697 – ident: 388_CR72 doi: 10.1109/WACVW58289.2023.00029 – ident: 388_CR17 doi: 10.1007/978-3-030-01264-9_45 – ident: 388_CR12 doi: 10.1109/CVPR.2018.00913 |
| SSID | ssj0000327867 |
| Score | 2.3871107 |
| Snippet | YOLO series algorithms are widely used in unmanned aerial vehicles (UAV) object detection scenarios due to their fast and lightweight properties. This article... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 269 |
| SubjectTerms | Accuracy Algorithms Boxes Computer Appl. in Administrative Data Processing Computer Science Computer Systems Organization and Communication Networks e-Commerce/e-business IT in Business Management of Computing and Information Systems Object recognition Real time Software Engineering/Programming and Operating Systems Special Issue Paper Surveillance Telematics Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA86PXhxPnE6JQdvGlibpkm8iTg8iA5f6KnkVR3MTtpu4n9vEtsVRQW9No-WL9-X79fvCcA-DqRSlAuUKixRhCVHLCIYhYQFJBWcGG_MuTunFxfs_p4PqqSwoo52r12S_qZukt0C-8uNrE5Bzp3F0Os8WLDqjjlxvLq-m1lWejikzLeODVhs34pZXGXLfL_NZ43UwMwvnlGvcPrt_33qCliuACY8_uCIVTBnsjXQrps3wEqW18Hg4fL8EjoGNAUUo8dxPiyfngs4zOBYOuMM1Kb0cVr2QQon2bNwVzIUnmXh1Dz5gLojKGAxyafmbQPc9k9vTs5Q1V4BKSt3JdKE4AjrVEU45mnYMyRWqVAuPT6URBuurDKnWiuhAxNoFSmL1qgMY4y5oKKHN0ErG2dmC0BjcZ7WUZzGytX_i5m0y6jUkocqDSjtgKAmcaKq2uOuBcYoaaomO5IllmSJJ1ny2gEHszUvH5U3fp3drU8uqaSwSLDFc5wSi5g64LA-qWb45922_zZ9ByyF_rBd6FkXtMp8YnbBopqWwyLf89z5DrDx3s0 priority: 102 providerName: Springer Nature |
| Title | YOLO series algorithms in object detection of unmanned aerial vehicles: a survey |
| URI | https://link.springer.com/article/10.1007/s11761-024-00388-w https://www.proquest.com/docview/3256975554 |
| Volume | 18 |
| WOSCitedRecordID | wos001186196000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1863-2394 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: P5Z dateStart: 20230301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1863-2394 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: K7- dateStart: 20230301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1863-2394 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: M7S dateStart: 20230301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1863-2394 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: BENPR dateStart: 20230301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1863-2394 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: RSV dateStart: 20070401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1LT9sw-NMGO-wCe2rlUfnAbbNW23Ecc0GAQJOGSgUbYrtEfmUgQQpNWsS_x3Ydqk0aFy4-JPGXKN_T3xNgixFtjJAKV4ZpnDEtcZFxhikvCK-U5C46c86OxHBYnJ_LUXK4NSmtspOJUVDbsQk-8q_M62YpuNd-Oze3OEyNCtHVNELjJSwTSkmg8-8CP_pYBoyKIg6RJUXu38-KPNXNzKvniD_DY6-kcIiPFfjub920MDj_iZFG1XO4-tyPfgMryehEu3MqeQsvXP0OVruBDijx93sY_To-OkaBKF2D1NUfD6q9uG7QZY3GOjhskHVtzN3yFyo0ra9VENNIRTJGM3cRk-y2kULNdDJz9x_g5-HBj_1vOI1cwMbzYost5yxjtjIZy2VFB47nplImlMxTza2Txit4Ya1RljhiTWa8BSc0zRmTSqgB-whL9bh2nwA5b_tZm-VVbkJPwLzQfpvQVktqKiJED0j3s0uT-pGHsRhX5aKTckBQ6RFURgSVdz34_LjnZt6N48mnNzqslIkzm3KBkh586fC6uP1_aGtPQ1uH1zSSUkg_24CldjJ1m_DKzNrLZtKH5b2D4eikH-mzHxJMT_064r_9enJ69gCA5OyC |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTxQxGP-CYCIXwFdYQOxBT9q4007bKYkhRiEQ1oVENHga-xoggVnYmd0N_5R_I213ho0mcuPgdWbaTNvf9-j3BHhDE22MkAoXhmqcUi1xljKKCcsSVijJXDTm_OiJfj87OZFHc_C7zYUJYZUtT4yM2g5MsJF_oF42S8G89Nu-usaha1TwrrYtNKawOHA3E39lqz7uf_Hn-5aQ3Z3jz3u46SqAjYdbjS1jNKW2MCnlsiBdx7gplAlZ4UQz66TxMkxYa5RNXGJNarySIjThlEolVJf6eR_BQhq4fwwV_HZn0-lSIrLYtDbJuF8vzXiTpzPN1ksE93d3kuLgj8vw5E9ZOFNw__LJRlG3u_y_bdIKLDVKNfo0pYKnMOfKZ7DcNqxADf96Dkc_D3uHKBCdq5C6OPW_Xp9dVui8RAMdDFLIujrGpvkHBRqVlyqIIaQimaKxO4tBhFtIoWo0HLubF_D9Qdb1EubLQelWATmv21qb8oKbUPOQZ9oPE9pqSUyRCNGBpD3c3DT11kPbj4t8Vik6ACL3gMgjIPJJB97djbmaVhu59-uNFgV5w3mqfAaBDrxvcTR7_e_Z1u6f7TU82Tv-2st7-_2DdVgkEcYh1G4D5uvhyL2Cx2Zcn1fDzUgTCH49NL5uAcKUReA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD4abEK8wLiJMhh-2BuzaOI4jnmbgGrTqlJpDMFT5CtUghQ1aRH_HttNKJsACfGa2JZ1Lj6ffW4A30gklWJcYKuIxAmRHGcJJTimWUSt4NSEx5yzLuv1svNz3n-SxR-i3RuX5DSnwVdpKqr9W233Z4lvkbt-Y2dfsHdtZfhuDj4mvmmQv6__OXt8ZWmTmGWhjWyUpW4HJEvrzJnnl_nXOs0g539e0mB8Osvv3_ZnWKqBJ_oxlZQV-GCKVVhumjqgWsfXoH9x0j1BXjBNicT15XA0qK5uSjQo0FD6RxukTRXit9wHi8bFjfBHNRJBlNHEXIVAuwMkUDkeTcz9OvztHJ8e_sR12wWsnD5WWFNKEqKtSkjKbdw2NFVWKJ82H0uqDVfOyDOtldCRibRKlENxTMYpIVww0SYbMF8MC7MJyDj8p3WS2lT5uoBpJt00JrXksbIRYy2IGnLnqq5J7ltjXOezasqeZLkjWR5Ilt-1YO9xzu20Isero7cbLua1dpY5cTiPM-qQVAu-N1yb_X55ta23Dd-Fhf5RJ-_-6v3-Aotx4LuPTtuG-Wo0NjvwSU2qQTn6GoT2Aaw66pU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLO+series+algorithms+in+object+detection+of+unmanned+aerial+vehicles%3A+a+survey&rft.jtitle=Service+oriented+computing+and+applications&rft.au=Jiao%2C+Li&rft.au=Abdullah%2C+Muhammad+Irsyad&rft.date=2024-09-01&rft.issn=1863-2386&rft.eissn=1863-2394&rft.volume=18&rft.issue=3&rft.spage=269&rft.epage=298&rft_id=info:doi/10.1007%2Fs11761-024-00388-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11761_024_00388_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2386&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2386&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2386&client=summon |