Multi-Stream 3D latent feature clustering for abnormality detection in videos

Detection of abnormal behavior in surveillance videos is essential for public safety and monitoring. However, it needs constant human focus and attention for human-based surveillance systems, which is a challenging process. Therefore, automatic detection of such events is of great significance. Abno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Jg. 52; H. 1; S. 1126 - 1143
Hauptverfasser: Asad, Mujtaba, Jiang, He, Yang, Jie, Tu, Enmei, Malik, Aftab Ahmad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.01.2022
Springer Nature B.V
Schlagworte:
ISSN:0924-669X, 1573-7497
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Detection of abnormal behavior in surveillance videos is essential for public safety and monitoring. However, it needs constant human focus and attention for human-based surveillance systems, which is a challenging process. Therefore, automatic detection of such events is of great significance. Abnormal event detection is a challenging problem due to the scarceness of labelled data and the low probability of occurrence of such events. In this paper, we propose a novel multi-stream two-stage architecture to detect abnormal behavior in videos. Our contributions are three-fold: 1) In the first stage, we propose a 3D Convolutional Autoencoder (3DCAE) architecture for appearance and motion feature extraction from both video frame input and dynamic flow input streams of normal event training videos in an unsupervised manner. 2) We have used a multi-objective loss function for 3DCAE reconstruction which can focus more on foreground moving objects rather that the stationary background information. 3) In the second stage, the fused latent features from both video frames and dynamic flow inputs are grouped together into different clusters of normality. Then we eliminate the smaller or sparse clusters, which are supposed to contain noisy patterns in the training data, to represent stronger normality patterns. A Deep one-class Support Vector Data Description (SVDD) classifier is then trained on these 3D normality clusters to generate anomaly scores for each sample in 3D clusters to differentiate between normal and abnormal occurrences. Experimental results on three benchmarking datasets: UCSD Pedestrian, Shanghai Tech, and Avenue, show significant improvement in the performance compared to the state-of-the-art approaches.
AbstractList Detection of abnormal behavior in surveillance videos is essential for public safety and monitoring. However, it needs constant human focus and attention for human-based surveillance systems, which is a challenging process. Therefore, automatic detection of such events is of great significance. Abnormal event detection is a challenging problem due to the scarceness of labelled data and the low probability of occurrence of such events. In this paper, we propose a novel multi-stream two-stage architecture to detect abnormal behavior in videos. Our contributions are three-fold: 1) In the first stage, we propose a 3D Convolutional Autoencoder (3DCAE) architecture for appearance and motion feature extraction from both video frame input and dynamic flow input streams of normal event training videos in an unsupervised manner. 2) We have used a multi-objective loss function for 3DCAE reconstruction which can focus more on foreground moving objects rather that the stationary background information. 3) In the second stage, the fused latent features from both video frames and dynamic flow inputs are grouped together into different clusters of normality. Then we eliminate the smaller or sparse clusters, which are supposed to contain noisy patterns in the training data, to represent stronger normality patterns. A Deep one-class Support Vector Data Description (SVDD) classifier is then trained on these 3D normality clusters to generate anomaly scores for each sample in 3D clusters to differentiate between normal and abnormal occurrences. Experimental results on three benchmarking datasets: UCSD Pedestrian, Shanghai Tech, and Avenue, show significant improvement in the performance compared to the state-of-the-art approaches.
Author Asad, Mujtaba
Jiang, He
Tu, Enmei
Yang, Jie
Malik, Aftab Ahmad
Author_xml – sequence: 1
  givenname: Mujtaba
  surname: Asad
  fullname: Asad, Mujtaba
  organization: Institute of Image Processing & Pattern Recognition, Shanghai Jiao Tong University
– sequence: 2
  givenname: He
  surname: Jiang
  fullname: Jiang, He
  organization: Institute of Image Processing & Pattern Recognition, Shanghai Jiao Tong University
– sequence: 3
  givenname: Jie
  surname: Yang
  fullname: Yang, Jie
  email: jieyang@sjtu.edu.cn
  organization: Institute of Image Processing & Pattern Recognition, Shanghai Jiao Tong University
– sequence: 4
  givenname: Enmei
  surname: Tu
  fullname: Tu, Enmei
  email: tuen@sjtu.edu.cn
  organization: Institute of Image Processing & Pattern Recognition, Shanghai Jiao Tong University
– sequence: 5
  givenname: Aftab Ahmad
  surname: Malik
  fullname: Malik, Aftab Ahmad
  organization: Department of Software Engineering, Lahore Garrison University
BookMark eNp9kMtKAzEUhoNUsK2-gKuA69HcJjNZSr1CiwsV3IU0F0mZJjXJCH17p44guHBxOJv_O5dvBiYhBgvAOUaXGKHmKmPEWlEhgoeiNa_EEZjiuqFVw0QzAVMkCKs4F28nYJbzBiFEKcJTsFr1XfHVc0lWbSG9gZ0qNhTorCp9slB3fS42-fAOXUxQrUNMW9X5sofGFquLjwH6AD-9sTGfgmOnumzPfvocvN7dviwequXT_ePiellpikWpDCONMWutVdM6JGpnqcKN4gS3hirFjFjXBGumBCPECM6sYQ45VteIaoM4nYOLce4uxY_e5iI3sU9hWCkJx4JjLHA7pMiY0inmnKyTu-S3Ku0lRvKgTY7a5KBNfmuTYoDaP5D2RR3eLEn57n-UjmjeHYTZ9HvVP9QXdGSEJQ
CitedBy_id crossref_primary_10_1007_s11063_023_11347_5
crossref_primary_10_1007_s00521_024_09611_3
crossref_primary_10_1007_s11227_025_07016_0
crossref_primary_10_1007_s11042_023_14827_x
crossref_primary_10_1002_ett_70045
crossref_primary_10_1007_s00371_024_03361_y
crossref_primary_10_1016_j_aei_2025_103285
crossref_primary_10_1016_j_eswa_2024_125504
crossref_primary_10_1016_j_compeleceng_2024_109879
crossref_primary_10_1007_s00034_024_02725_y
crossref_primary_10_1007_s11042_025_20608_5
crossref_primary_10_1007_s10489_024_06066_w
crossref_primary_10_1007_s10489_025_06485_3
crossref_primary_10_1007_s10489_024_05294_4
crossref_primary_10_1109_ACCESS_2022_3190505
crossref_primary_10_1007_s10489_021_03112_9
crossref_primary_10_1109_ACCESS_2025_3589620
crossref_primary_10_1007_s10489_022_03903_8
Cites_doi 10.1109/CVPR.2011.5995524
10.1109/ICIP.2007.4379786
10.1016/j.cviu.2016.10.010
10.1109/TNNLS.2016.2521602
10.1145/1541880.1541882
10.1109/TIT.1982.1056489
10.1109/CVPR.2010.5539872
10.1109/CVPR.2016.331
10.1109/TIFS.2019.2900907
10.1109/CVPRW.2016.163
10.1007/978-3-319-59081-3_23
10.1007/978-3-319-46454-1_21
10.1109/CVPR.2009.5206641
10.1109/TGRS.2019.2908756
10.1109/CVPR.2016.213
10.1109/TFUZZ.2012.2233479
10.1109/CVPR.2018.00678
10.1007/11744078_9
10.1007/s00371-020-01878-6
10.1016/j.sigpro.2009.03.016
10.1109/CVPR.2018.00684
10.1109/CVPR.2012.6247917
10.1007/978-3-030-27684-3_7
10.1016/j.patcog.2016.06.001
10.1109/CVPR.2009.5206569
10.1007/978-3-030-66096-3_28
10.1016/j.cviu.2010.10.008
10.1109/WACV.2018.00188
10.1109/ICCV.2017.391
10.1007/s11042-019-7332-y
10.1007/s10559-019-00124-9
10.1109/CVPR.2016.86
10.1109/ICCV.2013.338
10.1109/TPAMI.2007.70825
10.1109/ICCV.2017.45
10.1109/CVPR.2011.5995434
10.1109/ICCV.2015.510
10.1109/CVPR.2019.00133
10.1109/WACV.2017.26
10.1016/j.knosys.2020.105590
10.1109/TIP.2014.2332764
10.1109/ICCV.2015.123
10.1109/WACV.2019.00212
10.1109/TCSVT.2019.2962229
10.1109/ICME.2017.8019325
10.1109/ICCV.2017.315
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-021-02356-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 1143
ExternalDocumentID 10_1007_s10489_021_02356_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-d427ddbcca78f095fe3a17a6218d3aa4d9b521c4a9422d964ed4f0f45503cd063
IEDL.DBID K7-
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000651027400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:51:00 EST 2025
Tue Nov 18 21:10:27 EST 2025
Sat Nov 29 05:33:24 EST 2025
Fri Feb 21 02:46:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multi-stream 3D features
Feature clustering
Autonomous video surveillance
Anomaly detection
3D convolutional autoencoders
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d427ddbcca78f095fe3a17a6218d3aa4d9b521c4a9422d964ed4f0f45503cd063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2619611918
PQPubID 326365
PageCount 18
ParticipantIDs proquest_journals_2619611918
crossref_primary_10_1007_s10489_021_02356_9
crossref_citationtrail_10_1007_s10489_021_02356_9
springer_journals_10_1007_s10489_021_02356_9
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Cong Y, Yuan J, Liu J (2011) Sparse reconstruction cost for abnormal event detection. In: CVPR 2011. IEEE, pp 3449–3456
IzakianHPedryczWJamalIClustering spatiotemporal data: an augmented fuzzy c-meansIEEE Trans Fuzzy Syst201321585586810.1109/TFUZZ.2012.2233479
Hinami R, Mei T, Satoh S (2017) Joint detection and recounting of abnormal events by learning deep generic knowledge. In: Proceedings of the IEEE international conference on computer vision, pp 3619–3627
Wang X, Tieu K, Grimson E (2006) Learning semantic scene models by trajectory analysis. In: European conference on computer vision. Springer, pp 110–123
Wang J, Cherian A, Porikli F (2017) Ordered pooling of optical flow sequences for action recognition. In: 2017 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 168–176
Mei S, Ji J, Geng Y, Zhang Z, Li X, Du Q (2019) Unsupervised spatial-spectral feature learning by 3d convolutional autoencoder for hyperspectral classification. IEEE Trans Geosci Remote Sens
AthanesiousJJChakkaravarthySSVasuhiSVaidehiVTrajectory based abnormal event detection in video traffic surveillance using general potential data field with spectral clusteringMultimed Tools Appl20197814198771990310.1007/s11042-019-7332-y
Luo W, Liu W, Gao S (2017) A revisit of sparse coding based anomaly detection in stacked rnn framework. In: Proceedings of the ieee international conference on computer vision, pp 341–349
ZhuXLiXZhangSJuCWuXRobust joint graph sparse coding for unsupervised spectral feature selectionIEEE Trans Neural Netw Learn Syst201628612631275366177010.1109/TNNLS.2016.2521602
Asad M, Yang J, He J, Shamsolmoali P, He X (2020) Multi-frame feature-fusion-based model for violence detection. Vis Comput:1–17. https://doi.org/10.1007/s00371-020-01878-6
Bilen H, Fernando B, Gavves E, Vedaldi A, Gould S (2016) Dynamic image networks for action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3034–3042
JiangFYuanJTsaftarisSAKatsaggelosAKAnomalous video event detection using spatiotemporal contextComput Vis Image Underst2011115332333310.1016/j.cviu.2010.10.008
Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1933–1941
MashtalirSVStolbovyiMIYakovlevSVClustering video sequences by the method of harmonic k-meansCybern Syst Anal201955220020610.1007/s10559-019-00124-9
Fu Z, Hu W, Tan T (2005) Similarity based vehicle trajectory clustering and anomaly detection. In: IEEE international conference on image processing 2005, vol 20 IEEE, pp II–602
Zhong J-X, Li N, Kong W, Liu S, Li T H, Li G (2019) Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1237–1246
Gu Q, Han J (2013) Clustered support vector machines. In: Artificial intelligence and statistics, pp 307–315
Lu C, Shi J, Jia J (2013) Abnormal event detection at 150 fps in matlab. In: Proceedings of the IEEE international conference on computer vision, pp 2720–2727
WangDTanXUnsupervised feature learning with c-svddnetPattern Recogn20166047348510.1016/j.patcog.2016.06.001
XuDYanYRicciESebeNDetecting anomalous events in videos by learning deep representations of appearance and motionComput Vis Image Underst201715611712710.1016/j.cviu.2016.10.010
Tudor Ionescu R, Smeureanu S, Alexe B, Popescu M (2017) Unmasking the abnormal events in video. In: Proceedings of the IEEE international conference on computer vision, pp 2895– 2903
Abedalla L, Badarna M, Khalifa W, Yousef M (2019) K–means based one-class svm classifier. In: International conference on database and expert systems applications. Springer, pp 45–53
Ravanbakhsh M, Nabi M, Mousavi H, Sangineto E, Sebe N (2018) Plug-and-play cnn for crowd motion analysis: an application in abnormal event detection. In: 2018 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 1689–1698
ZhuXZhangLHuangZA sparse embedding and least variance encoding approach to hashingIEEE Trans Image Process201423937373750324611410.1109/TIP.2014.2332764
Jiang F, Wu Y, Katsaggelos A K (2007) Abnormal event detection from surveillance video by dynamic hierarchical clustering. In: 2007 IEEE international conference on image processing, vol 5. IEEE, pp V–145
Zhou J T, Zhang L, Fang Z, Du J, Peng X, Yang X (2019) Attention-driven loss for anomaly detection in video surveillance. IEEE transactions on circuits and systems for video technology
ZhouJTDuJZhuHPengXLiuYGohRSMAnomalynet: an anomaly detection network for video surveillanceIEEE Trans Inf Forensic Secur201914102537255010.1109/TIFS.2019.2900907
Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 4489–4497
LloydSLeast squares quantization in pcmIEEE Trans Inf Theory198228212913765180710.1109/TIT.1982.1056489
He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034
Mehran R, Oyama A, Shah M (2009) Abnormal crowd behavior detection using social force model. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 935–942
Bera A, Kim S, Manocha D (2016) Realtime anomaly detection using trajectory-level crowd behavior learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 50–57
Zhao B, Fei-Fei L, Xing E P (2011) Online detection of unusual events in videos via dynamic sparse coding. In: CVPR 2011. IEEE, pp 3313–3320
Hasan M, Choi J, Neumann J, Roy-Chowdhury A K, Davis L S (2016) Learning temporal regularity in video sequences. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 733–742
Chong Y S, Tay Y H (2017) Abnormal event detection in videos using spatiotemporal autoencoder. In: International symposium on neural networks. Springer, pp 189–196
Kim J, Grauman K (2009) Observe locally, infer globally: a space-time mrf for detecting abnormal activities with incremental updates. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 2921–2928
Saligrama V, Chen Z (2012) Video anomaly detection based on local statistical aggregates. In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, pp 2112–2119
Luo W, Liu W, Gao S (2017) Remembering history with convolutional lstm for anomaly detection. In: 2017 IEEE International conference on multimedia and expo (ICME). IEEE, pp 439–444
Liu W, Luo W, Lian D, Gao S (2018) Future frame prediction for anomaly detection–a new baseline. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6536–6545
Tokmakov P, Hebert M, Schmid C (2020) Unsupervised learning of video representations via dense trajectory clustering. arXiv:2006.15731
Sultani W, Chen C, Shah M (2018) Real-world anomaly detection in surveillance videos. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6479–6488
Krizhevsky A, Sutskever I, Hinton G E (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
Ruff L, Vandermeulen R, Goernitz N, Deecke L, Siddiqui S A, Binder A, Müller E, Kloft M (2018) Deep one-class classification. In: International conference on machine learning, pp 4393– 4402
Ionescu R T, Smeureanu S, Popescu M, Alexe B (2019) Detecting abnormal events in video using narrowed normality clusters. In: 2019 IEEE winter conference on applications of computer vision (WACV) IEEE, pp 1951–1960
Del Giorno A, Bagnell J A, Hebert M (2016) A discriminative framework for anomaly detection in large videos. In: European conference on computer vision. Springer, pp 334–349
AntonakakiPKosmopoulosDPerantonisSJDetecting abnormal human behaviour using multiple camerasSignal Process20098991723173810.1016/j.sigpro.2009.03.016
Vedaldi A, Fulkerson B (2008) VLFeat: An open and portable library of computer vision algorithms. http://www.vlfeat.org
Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010) Anomaly detection in crowded scenes. In: 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE, pp 1975–1981
ChandolaVBanerjeeAKumarVAnomaly detection: a surveyACM Comput Surv (CSUR)20094131510.1145/1541880.1541882
AdamARivlinEShimshoniIReinitzDRobust real-time unusual event detection using multiple fixed-location monitorsIEEE Trans Pattern Anal Mach Intell200830355556010.1109/TPAMI.2007.70825
Pérez-HernándezFTabikSLamasAOlmosRFujitaHHerreraFObject detection binary classifiers methodology based on deep learning to identify small objects handled similarly: application in video surveillanceKnowl-Based Syst202019410559010.1016/j.knosys.2020.105590
2356_CR21
2356_CR20
2356_CR24
2356_CR23
2356_CR29
2356_CR28
A Adam (2356_CR27) 2008; 30
2356_CR50
X Zhu (2356_CR17) 2016; 28
2356_CR51
2356_CR14
H Izakian (2356_CR35) 2013; 21
2356_CR13
2356_CR12
2356_CR11
2356_CR16
2356_CR15
SV Mashtalir (2356_CR36) 2019; 55
2356_CR19
F Pérez-Hernández (2356_CR22) 2020; 194
D Wang (2356_CR43) 2016; 60
F Jiang (2356_CR26) 2011; 115
X Zhu (2356_CR18) 2014; 23
2356_CR42
P Antonakaki (2356_CR25) 2009; 89
2356_CR47
2356_CR46
2356_CR45
2356_CR44
2356_CR48
S Lloyd (2356_CR40) 1982; 28
2356_CR8
2356_CR9
2356_CR6
JT Zhou (2356_CR49) 2019; 14
2356_CR7
2356_CR4
2356_CR5
2356_CR2
2356_CR32
2356_CR3
2356_CR31
2356_CR30
2356_CR1
D Xu (2356_CR10) 2017; 156
2356_CR34
2356_CR39
JJ Athanesious (2356_CR33) 2019; 78
2356_CR38
2356_CR37
V Chandola (2356_CR41) 2009; 41
References_xml – reference: Vedaldi A, Fulkerson B (2008) VLFeat: An open and portable library of computer vision algorithms. http://www.vlfeat.org/
– reference: Sultani W, Chen C, Shah M (2018) Real-world anomaly detection in surveillance videos. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6479–6488
– reference: JiangFYuanJTsaftarisSAKatsaggelosAKAnomalous video event detection using spatiotemporal contextComput Vis Image Underst2011115332333310.1016/j.cviu.2010.10.008
– reference: Zhou J T, Zhang L, Fang Z, Du J, Peng X, Yang X (2019) Attention-driven loss for anomaly detection in video surveillance. IEEE transactions on circuits and systems for video technology
– reference: WangDTanXUnsupervised feature learning with c-svddnetPattern Recogn20166047348510.1016/j.patcog.2016.06.001
– reference: Gu Q, Han J (2013) Clustered support vector machines. In: Artificial intelligence and statistics, pp 307–315
– reference: MashtalirSVStolbovyiMIYakovlevSVClustering video sequences by the method of harmonic k-meansCybern Syst Anal201955220020610.1007/s10559-019-00124-9
– reference: Ravanbakhsh M, Nabi M, Mousavi H, Sangineto E, Sebe N (2018) Plug-and-play cnn for crowd motion analysis: an application in abnormal event detection. In: 2018 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 1689–1698
– reference: Ionescu R T, Smeureanu S, Popescu M, Alexe B (2019) Detecting abnormal events in video using narrowed normality clusters. In: 2019 IEEE winter conference on applications of computer vision (WACV) IEEE, pp 1951–1960
– reference: He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034
– reference: Chong Y S, Tay Y H (2017) Abnormal event detection in videos using spatiotemporal autoencoder. In: International symposium on neural networks. Springer, pp 189–196
– reference: Mei S, Ji J, Geng Y, Zhang Z, Li X, Du Q (2019) Unsupervised spatial-spectral feature learning by 3d convolutional autoencoder for hyperspectral classification. IEEE Trans Geosci Remote Sens
– reference: IzakianHPedryczWJamalIClustering spatiotemporal data: an augmented fuzzy c-meansIEEE Trans Fuzzy Syst201321585586810.1109/TFUZZ.2012.2233479
– reference: Liu W, Luo W, Lian D, Gao S (2018) Future frame prediction for anomaly detection–a new baseline. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6536–6545
– reference: Wang J, Cherian A, Porikli F (2017) Ordered pooling of optical flow sequences for action recognition. In: 2017 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 168–176
– reference: Cong Y, Yuan J, Liu J (2011) Sparse reconstruction cost for abnormal event detection. In: CVPR 2011. IEEE, pp 3449–3456
– reference: Del Giorno A, Bagnell J A, Hebert M (2016) A discriminative framework for anomaly detection in large videos. In: European conference on computer vision. Springer, pp 334–349
– reference: Bilen H, Fernando B, Gavves E, Vedaldi A, Gould S (2016) Dynamic image networks for action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3034–3042
– reference: Ruff L, Vandermeulen R, Goernitz N, Deecke L, Siddiqui S A, Binder A, Müller E, Kloft M (2018) Deep one-class classification. In: International conference on machine learning, pp 4393– 4402
– reference: Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010) Anomaly detection in crowded scenes. In: 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE, pp 1975–1981
– reference: Pérez-HernándezFTabikSLamasAOlmosRFujitaHHerreraFObject detection binary classifiers methodology based on deep learning to identify small objects handled similarly: application in video surveillanceKnowl-Based Syst202019410559010.1016/j.knosys.2020.105590
– reference: Jiang F, Wu Y, Katsaggelos A K (2007) Abnormal event detection from surveillance video by dynamic hierarchical clustering. In: 2007 IEEE international conference on image processing, vol 5. IEEE, pp V–145
– reference: Zhao B, Fei-Fei L, Xing E P (2011) Online detection of unusual events in videos via dynamic sparse coding. In: CVPR 2011. IEEE, pp 3313–3320
– reference: Asad M, Yang J, He J, Shamsolmoali P, He X (2020) Multi-frame feature-fusion-based model for violence detection. Vis Comput:1–17. https://doi.org/10.1007/s00371-020-01878-6
– reference: AdamARivlinEShimshoniIReinitzDRobust real-time unusual event detection using multiple fixed-location monitorsIEEE Trans Pattern Anal Mach Intell200830355556010.1109/TPAMI.2007.70825
– reference: Saligrama V, Chen Z (2012) Video anomaly detection based on local statistical aggregates. In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, pp 2112–2119
– reference: ChandolaVBanerjeeAKumarVAnomaly detection: a surveyACM Comput Surv (CSUR)20094131510.1145/1541880.1541882
– reference: Zhong J-X, Li N, Kong W, Liu S, Li T H, Li G (2019) Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1237–1246
– reference: XuDYanYRicciESebeNDetecting anomalous events in videos by learning deep representations of appearance and motionComput Vis Image Underst201715611712710.1016/j.cviu.2016.10.010
– reference: ZhuXZhangLHuangZA sparse embedding and least variance encoding approach to hashingIEEE Trans Image Process201423937373750324611410.1109/TIP.2014.2332764
– reference: Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1933–1941
– reference: Lu C, Shi J, Jia J (2013) Abnormal event detection at 150 fps in matlab. In: Proceedings of the IEEE international conference on computer vision, pp 2720–2727
– reference: Bera A, Kim S, Manocha D (2016) Realtime anomaly detection using trajectory-level crowd behavior learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 50–57
– reference: Hasan M, Choi J, Neumann J, Roy-Chowdhury A K, Davis L S (2016) Learning temporal regularity in video sequences. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 733–742
– reference: Krizhevsky A, Sutskever I, Hinton G E (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
– reference: Kim J, Grauman K (2009) Observe locally, infer globally: a space-time mrf for detecting abnormal activities with incremental updates. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 2921–2928
– reference: AthanesiousJJChakkaravarthySSVasuhiSVaidehiVTrajectory based abnormal event detection in video traffic surveillance using general potential data field with spectral clusteringMultimed Tools Appl20197814198771990310.1007/s11042-019-7332-y
– reference: AntonakakiPKosmopoulosDPerantonisSJDetecting abnormal human behaviour using multiple camerasSignal Process20098991723173810.1016/j.sigpro.2009.03.016
– reference: Mehran R, Oyama A, Shah M (2009) Abnormal crowd behavior detection using social force model. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 935–942
– reference: Fu Z, Hu W, Tan T (2005) Similarity based vehicle trajectory clustering and anomaly detection. In: IEEE international conference on image processing 2005, vol 20 IEEE, pp II–602
– reference: ZhuXLiXZhangSJuCWuXRobust joint graph sparse coding for unsupervised spectral feature selectionIEEE Trans Neural Netw Learn Syst201628612631275366177010.1109/TNNLS.2016.2521602
– reference: Luo W, Liu W, Gao S (2017) A revisit of sparse coding based anomaly detection in stacked rnn framework. In: Proceedings of the ieee international conference on computer vision, pp 341–349
– reference: ZhouJTDuJZhuHPengXLiuYGohRSMAnomalynet: an anomaly detection network for video surveillanceIEEE Trans Inf Forensic Secur201914102537255010.1109/TIFS.2019.2900907
– reference: Hinami R, Mei T, Satoh S (2017) Joint detection and recounting of abnormal events by learning deep generic knowledge. In: Proceedings of the IEEE international conference on computer vision, pp 3619–3627
– reference: Tudor Ionescu R, Smeureanu S, Alexe B, Popescu M (2017) Unmasking the abnormal events in video. In: Proceedings of the IEEE international conference on computer vision, pp 2895– 2903
– reference: Tokmakov P, Hebert M, Schmid C (2020) Unsupervised learning of video representations via dense trajectory clustering. arXiv:2006.15731
– reference: LloydSLeast squares quantization in pcmIEEE Trans Inf Theory198228212913765180710.1109/TIT.1982.1056489
– reference: Abedalla L, Badarna M, Khalifa W, Yousef M (2019) K–means based one-class svm classifier. In: International conference on database and expert systems applications. Springer, pp 45–53
– reference: Luo W, Liu W, Gao S (2017) Remembering history with convolutional lstm for anomaly detection. In: 2017 IEEE International conference on multimedia and expo (ICME). IEEE, pp 439–444
– reference: Wang X, Tieu K, Grimson E (2006) Learning semantic scene models by trajectory analysis. In: European conference on computer vision. Springer, pp 110–123
– reference: Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 4489–4497
– ident: 2356_CR14
  doi: 10.1109/CVPR.2011.5995524
– ident: 2356_CR31
  doi: 10.1109/ICIP.2007.4379786
– volume: 156
  start-page: 117
  year: 2017
  ident: 2356_CR10
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2016.10.010
– volume: 28
  start-page: 1263
  issue: 6
  year: 2016
  ident: 2356_CR17
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2521602
– volume: 41
  start-page: 15
  issue: 3
  year: 2009
  ident: 2356_CR41
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/1541880.1541882
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 2356_CR40
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1982.1056489
– ident: 2356_CR24
  doi: 10.1109/CVPR.2010.5539872
– ident: 2356_CR38
  doi: 10.1109/CVPR.2016.331
– volume: 14
  start-page: 2537
  issue: 10
  year: 2019
  ident: 2356_CR49
  publication-title: IEEE Trans Inf Forensic Secur
  doi: 10.1109/TIFS.2019.2900907
– ident: 2356_CR32
  doi: 10.1109/CVPRW.2016.163
– ident: 2356_CR46
– ident: 2356_CR47
  doi: 10.1007/978-3-319-59081-3_23
– ident: 2356_CR4
  doi: 10.1007/978-3-319-46454-1_21
– ident: 2356_CR51
  doi: 10.1109/CVPR.2009.5206641
– ident: 2356_CR23
  doi: 10.1109/TGRS.2019.2908756
– ident: 2356_CR29
  doi: 10.1109/CVPR.2016.213
– ident: 2356_CR1
– ident: 2356_CR21
– volume: 21
  start-page: 855
  issue: 5
  year: 2013
  ident: 2356_CR35
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2012.2233479
– ident: 2356_CR11
  doi: 10.1109/CVPR.2018.00678
– ident: 2356_CR13
  doi: 10.1007/11744078_9
– ident: 2356_CR20
  doi: 10.1007/s00371-020-01878-6
– volume: 89
  start-page: 1723
  issue: 9
  year: 2009
  ident: 2356_CR25
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2009.03.016
– ident: 2356_CR8
  doi: 10.1109/CVPR.2018.00684
– ident: 2356_CR28
  doi: 10.1109/CVPR.2012.6247917
– ident: 2356_CR42
  doi: 10.1007/978-3-030-27684-3_7
– volume: 60
  start-page: 473
  year: 2016
  ident: 2356_CR43
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2016.06.001
– ident: 2356_CR50
  doi: 10.1109/CVPR.2009.5206569
– ident: 2356_CR34
  doi: 10.1007/978-3-030-66096-3_28
– volume: 115
  start-page: 323
  issue: 3
  year: 2011
  ident: 2356_CR26
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2010.10.008
– ident: 2356_CR2
  doi: 10.1109/WACV.2018.00188
– ident: 2356_CR5
  doi: 10.1109/ICCV.2017.391
– volume: 78
  start-page: 19877
  issue: 14
  year: 2019
  ident: 2356_CR33
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7332-y
– volume: 55
  start-page: 200
  issue: 2
  year: 2019
  ident: 2356_CR36
  publication-title: Cybern Syst Anal
  doi: 10.1007/s10559-019-00124-9
– ident: 2356_CR9
  doi: 10.1109/CVPR.2016.86
– ident: 2356_CR44
– ident: 2356_CR16
  doi: 10.1109/ICCV.2013.338
– volume: 30
  start-page: 555
  issue: 3
  year: 2008
  ident: 2356_CR27
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.70825
– ident: 2356_CR3
  doi: 10.1109/ICCV.2017.45
– ident: 2356_CR15
  doi: 10.1109/CVPR.2011.5995434
– ident: 2356_CR19
  doi: 10.1109/ICCV.2015.510
– ident: 2356_CR30
  doi: 10.1109/CVPR.2019.00133
– ident: 2356_CR37
  doi: 10.1109/WACV.2017.26
– volume: 194
  start-page: 105590
  year: 2020
  ident: 2356_CR22
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.105590
– volume: 23
  start-page: 3737
  issue: 9
  year: 2014
  ident: 2356_CR18
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2014.2332764
– ident: 2356_CR45
  doi: 10.1109/ICCV.2015.123
– ident: 2356_CR7
  doi: 10.1109/WACV.2019.00212
– ident: 2356_CR39
  doi: 10.1109/TCSVT.2019.2962229
– ident: 2356_CR48
  doi: 10.1109/ICME.2017.8019325
– ident: 2356_CR12
– ident: 2356_CR6
  doi: 10.1109/ICCV.2017.315
SSID ssj0003301
Score 2.4095857
Snippet Detection of abnormal behavior in surveillance videos is essential for public safety and monitoring. However, it needs constant human focus and attention for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1126
SubjectTerms Artificial Intelligence
Clustering
Computer Science
Feature extraction
Machines
Manufacturing
Mechanical Engineering
Normality
Processes
Public safety
Surveillance
Surveillance systems
Training
Video
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcODCeIrBQDlwg0hrkqXLEQETFybES7tVeUqTRofWjt-Pk7UbIECCc92kcuL4c53PRug06TrrpZcEoh9GuDcdIjXVRAvXER2XKpWo2GwiHQx6w6G8q0hhRX3bvU5JxpP6A9mNh-s9FMJfyrqCyFW0Bu6uF8zx_uF5cf5ChB775EFkQYSQw4oq8_0Yn93REmN-SYtGb9Nv_u87t9BmhS7xxXw7bKMVl--gZt25AVeGvItuI--WhJS0esHsCo8BcuYl9i7W-cRmPAsFFGBaDKAWK50HaBsQO7aujLe3cjzKcSDxTYo99NS_fry8IVVjBWLA4kpiOU2t1bB4ac8DxvKOqSRVAty9ZUpxKzV4dcOV5JRaKbiz3Hd8IEAzYwHU7KNGPsndAcIS4pEuZ54JkLfGa81sogE0pIwZSk0LJbV-M1NVHQ_NL8bZsl5y0FcG-sqivjLZQmeLd17nNTd-lW7Xy5ZV9ldkIS4UoXZdr4XO62VaPv55tMO_iR-hDRr4EPGfTBs1yunMHaN181aOiulJ3JfvSUPbrQ
  priority: 102
  providerName: Springer Nature
Title Multi-Stream 3D latent feature clustering for abnormality detection in videos
URI https://link.springer.com/article/10.1007/s10489-021-02356-9
https://www.proquest.com/docview/2619611918
Volume 52
WOSCitedRecordID wos000651027400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB71wYELpTxE2hL50BtY7NqOHZ9QKa2QqkZRS0vgsvJTqhQ2pdn29zN2vY1Aohcuc1nbsvbz4xvbMx_Afj0KPuqoKXo_nIroKqots9TKUMkqKGNqk8Um1GQyns30tBy4Lcuzyn5NzAu1X7h0Rv4hMX2ZspGNP17_okk1Kt2uFgmNddisGavTOD9R9GElRl89K-ahj0Gl1LMSNFNC50R6LMTQmWZ8JKn-c2Nasc2_LkjzvnO89b89fg7PCuMkB_dDZBvWQvsCtno1B1Im90s4zbG4NF1Tm5-EfyZzpKFtR2LIuT-Jm9-mpArYSYJElxjbJrqbWDzxocsvulpy1ZIU2LdYvoKL46Ovh19oEVugDmdhR71gynuLgKpxRN4VAze1MhIpgOfGCK8t7vROGC0Y81qK4EWsYgqK5s4j0XkNG-2iDW-AaPRRRoJHLrG8d9Fa7muLREJx7hhzA6j7P924kok8CWLMm1UO5YROg-g0GZ1GD-DdQ53r-zwcj5be6yFpypxcNis8BvC-B3X1-d-t7Tze2i48ZSkmIp_L7MFGd3Mb3sITd9ddLW-GsK6-fR_C5qejyfRsmMcn2tPqMFl1jnY6-oH27PzyN8r36_A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvlFfFQgEf4AQWie111geEqpaqVdsVhyLtLfgpVVqybTcF9U_1NzLjTboqEr31wDmOlXg-z3xjzwPgXTmMIZlkOHo_kqvkC26ccNzpWOgiVtaWNjebqMbj0WRivq3AVZ8LQ2GVvU7MijrMPJ2RfyKmr6ka2ejL6RmnrlF0u9q30FjA4iBe_kaXbf55fwfl-16I3a_H23u86yrAPcKt5UGJKgSHX16NEhKMFKUtK6vR1gVprQrGoUnzyholRDBaxaBSkSj7V_qAFh3nvQf3lcLtQKGCxfa15pcyt1su0KfhWptJl6TTpeopCk4S6LwLOdTc3DSES3b714VstnO76__bCj2GRx2jZluLLfAEVmLzFNb7bhWsU17P4CjnGnO6hrc_mdxhU6TZTctSzLVNmZ9eUNEIXBSGRJ5Z1xCdJy-FhdjmiLWGnTSMEhdn8-fw_U5-agNWm1kTXwAz6IMNlUxS4_jgk3MylA6JUiWlF8IPoOwlW_uu0jo1_JjWyxrRhIYa0VBnNNRmAB-u3zld1Bm5dfRmD4G60znzein_AXzsQbR8_O_ZXt4-21t4uHd8dFgf7o8PXsGaoPyPfAa1Cavt-UV8DQ_8r_Zkfv4m7wYGP-4aXH8A2yhDJQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VgrhRnmqgLT7ACazu2o43PiBUESKqQNQDSLktfkqVwqY0WxB_jV_HjLPbiEr01gPS3ta2ZPvzzDf2PABelMMYkkmGo_UjuUq-4MYJx52OhS5iZW1pc7GJajYbzefmZAt-97Ew5FbZy8QsqMPS0x35ITF9TdnIRoepc4s4GU_enn3nVEGKXlr7chpriEzjr59ovq3eHI9xr18KMXn_-d0H3lUY4B6h1_KgRBWCw1lUo4RkI0Vpy8pq1HtBWquCcajevLJGCRGMVjGoVCSKBJY-oHbHcW_BbdTCQzpj04pfagEpc-nlAu0brrWZdwE7XdieIkclgYa8kEPNzd9KccN0rzzOZp032fmfV-s-3OuYNjtaH40HsBWbh7DTV7FgnVB7BJ9yDDKn53n7jckxWyD9blqWYs55yvzigpJJ4AIxJPjMuoZoPlkvLMQ2e7I17LRhFNC4XD2GLzcyqSew3SybuAvMoG02VDJJje2DT87JUDokUJWUXgg_gLLf5dp3GdipEMii3uSOJmTUiIw6I6M2A3h12edsnX_k2tZ7PRzqThat6g0WBvC6B9Tm979He3r9aM_hLmKq_ng8mz6j6458L4XfHmy35xdxH-74H-3p6vwgHwwGX28aW38AetBLxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Stream+3D+latent+feature+clustering+for+abnormality+detection+in+videos&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Mujtaba%2C+Asad&rft.au=He%2C+Jiang&rft.au=Yang%2C+Jie&rft.au=Tu+Enmei&rft.date=2022-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=1&rft.spage=1126&rft.epage=1143&rft_id=info:doi/10.1007%2Fs10489-021-02356-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon