Multi-Stream 3D latent feature clustering for abnormality detection in videos
Detection of abnormal behavior in surveillance videos is essential for public safety and monitoring. However, it needs constant human focus and attention for human-based surveillance systems, which is a challenging process. Therefore, automatic detection of such events is of great significance. Abno...
Saved in:
| Published in: | Applied intelligence (Dordrecht, Netherlands) Vol. 52; no. 1; pp. 1126 - 1143 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.01.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0924-669X, 1573-7497 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Detection of abnormal behavior in surveillance videos is essential for public safety and monitoring. However, it needs constant human focus and attention for human-based surveillance systems, which is a challenging process. Therefore, automatic detection of such events is of great significance. Abnormal event detection is a challenging problem due to the scarceness of labelled data and the low probability of occurrence of such events. In this paper, we propose a novel multi-stream two-stage architecture to detect abnormal behavior in videos. Our contributions are three-fold: 1) In the first stage, we propose a 3D Convolutional Autoencoder (3DCAE) architecture for appearance and motion feature extraction from both video frame input and dynamic flow input streams of normal event training videos in an unsupervised manner. 2) We have used a multi-objective loss function for 3DCAE reconstruction which can focus more on foreground moving objects rather that the stationary background information. 3) In the second stage, the fused latent features from both video frames and dynamic flow inputs are grouped together into different clusters of normality. Then we eliminate the smaller or sparse clusters, which are supposed to contain noisy patterns in the training data, to represent stronger normality patterns. A Deep one-class Support Vector Data Description (SVDD) classifier is then trained on these 3D normality clusters to generate anomaly scores for each sample in 3D clusters to differentiate between normal and abnormal occurrences. Experimental results on three benchmarking datasets: UCSD Pedestrian, Shanghai Tech, and Avenue, show significant improvement in the performance compared to the state-of-the-art approaches. |
|---|---|
| AbstractList | Detection of abnormal behavior in surveillance videos is essential for public safety and monitoring. However, it needs constant human focus and attention for human-based surveillance systems, which is a challenging process. Therefore, automatic detection of such events is of great significance. Abnormal event detection is a challenging problem due to the scarceness of labelled data and the low probability of occurrence of such events. In this paper, we propose a novel multi-stream two-stage architecture to detect abnormal behavior in videos. Our contributions are three-fold: 1) In the first stage, we propose a 3D Convolutional Autoencoder (3DCAE) architecture for appearance and motion feature extraction from both video frame input and dynamic flow input streams of normal event training videos in an unsupervised manner. 2) We have used a multi-objective loss function for 3DCAE reconstruction which can focus more on foreground moving objects rather that the stationary background information. 3) In the second stage, the fused latent features from both video frames and dynamic flow inputs are grouped together into different clusters of normality. Then we eliminate the smaller or sparse clusters, which are supposed to contain noisy patterns in the training data, to represent stronger normality patterns. A Deep one-class Support Vector Data Description (SVDD) classifier is then trained on these 3D normality clusters to generate anomaly scores for each sample in 3D clusters to differentiate between normal and abnormal occurrences. Experimental results on three benchmarking datasets: UCSD Pedestrian, Shanghai Tech, and Avenue, show significant improvement in the performance compared to the state-of-the-art approaches. |
| Author | Asad, Mujtaba Jiang, He Tu, Enmei Yang, Jie Malik, Aftab Ahmad |
| Author_xml | – sequence: 1 givenname: Mujtaba surname: Asad fullname: Asad, Mujtaba organization: Institute of Image Processing & Pattern Recognition, Shanghai Jiao Tong University – sequence: 2 givenname: He surname: Jiang fullname: Jiang, He organization: Institute of Image Processing & Pattern Recognition, Shanghai Jiao Tong University – sequence: 3 givenname: Jie surname: Yang fullname: Yang, Jie email: jieyang@sjtu.edu.cn organization: Institute of Image Processing & Pattern Recognition, Shanghai Jiao Tong University – sequence: 4 givenname: Enmei surname: Tu fullname: Tu, Enmei email: tuen@sjtu.edu.cn organization: Institute of Image Processing & Pattern Recognition, Shanghai Jiao Tong University – sequence: 5 givenname: Aftab Ahmad surname: Malik fullname: Malik, Aftab Ahmad organization: Department of Software Engineering, Lahore Garrison University |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKuA69HcJjNZSr1CiwsV3IU0F0mZJjXJCH17p44guHBxOJv_O5dvBiYhBgvAOUaXGKHmKmPEWlEhgoeiNa_EEZjiuqFVw0QzAVMkCKs4F28nYJbzBiFEKcJTsFr1XfHVc0lWbSG9gZ0qNhTorCp9slB3fS42-fAOXUxQrUNMW9X5sofGFquLjwH6AD-9sTGfgmOnumzPfvocvN7dviwequXT_ePiellpikWpDCONMWutVdM6JGpnqcKN4gS3hirFjFjXBGumBCPECM6sYQ45VteIaoM4nYOLce4uxY_e5iI3sU9hWCkJx4JjLHA7pMiY0inmnKyTu-S3Ku0lRvKgTY7a5KBNfmuTYoDaP5D2RR3eLEn57n-UjmjeHYTZ9HvVP9QXdGSEJQ |
| CitedBy_id | crossref_primary_10_1007_s11063_023_11347_5 crossref_primary_10_1007_s00521_024_09611_3 crossref_primary_10_1007_s11227_025_07016_0 crossref_primary_10_1007_s11042_023_14827_x crossref_primary_10_1002_ett_70045 crossref_primary_10_1007_s00371_024_03361_y crossref_primary_10_1016_j_aei_2025_103285 crossref_primary_10_1016_j_eswa_2024_125504 crossref_primary_10_1016_j_compeleceng_2024_109879 crossref_primary_10_1007_s00034_024_02725_y crossref_primary_10_1007_s11042_025_20608_5 crossref_primary_10_1007_s10489_024_06066_w crossref_primary_10_1007_s10489_025_06485_3 crossref_primary_10_1007_s10489_024_05294_4 crossref_primary_10_1109_ACCESS_2022_3190505 crossref_primary_10_1007_s10489_021_03112_9 crossref_primary_10_1109_ACCESS_2025_3589620 crossref_primary_10_1007_s10489_022_03903_8 |
| Cites_doi | 10.1109/CVPR.2011.5995524 10.1109/ICIP.2007.4379786 10.1016/j.cviu.2016.10.010 10.1109/TNNLS.2016.2521602 10.1145/1541880.1541882 10.1109/TIT.1982.1056489 10.1109/CVPR.2010.5539872 10.1109/CVPR.2016.331 10.1109/TIFS.2019.2900907 10.1109/CVPRW.2016.163 10.1007/978-3-319-59081-3_23 10.1007/978-3-319-46454-1_21 10.1109/CVPR.2009.5206641 10.1109/TGRS.2019.2908756 10.1109/CVPR.2016.213 10.1109/TFUZZ.2012.2233479 10.1109/CVPR.2018.00678 10.1007/11744078_9 10.1007/s00371-020-01878-6 10.1016/j.sigpro.2009.03.016 10.1109/CVPR.2018.00684 10.1109/CVPR.2012.6247917 10.1007/978-3-030-27684-3_7 10.1016/j.patcog.2016.06.001 10.1109/CVPR.2009.5206569 10.1007/978-3-030-66096-3_28 10.1016/j.cviu.2010.10.008 10.1109/WACV.2018.00188 10.1109/ICCV.2017.391 10.1007/s11042-019-7332-y 10.1007/s10559-019-00124-9 10.1109/CVPR.2016.86 10.1109/ICCV.2013.338 10.1109/TPAMI.2007.70825 10.1109/ICCV.2017.45 10.1109/CVPR.2011.5995434 10.1109/ICCV.2015.510 10.1109/CVPR.2019.00133 10.1109/WACV.2017.26 10.1016/j.knosys.2020.105590 10.1109/TIP.2014.2332764 10.1109/ICCV.2015.123 10.1109/WACV.2019.00212 10.1109/TCSVT.2019.2962229 10.1109/ICME.2017.8019325 10.1109/ICCV.2017.315 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
| DOI | 10.1007/s10489-021-02356-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 1143 |
| ExternalDocumentID | 10_1007_s10489_021_02356_9 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-d427ddbcca78f095fe3a17a6218d3aa4d9b521c4a9422d964ed4f0f45503cd063 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000651027400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-669X |
| IngestDate | Wed Nov 05 14:51:00 EST 2025 Tue Nov 18 21:10:27 EST 2025 Sat Nov 29 05:33:24 EST 2025 Fri Feb 21 02:46:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Multi-stream 3D features Feature clustering Autonomous video surveillance Anomaly detection 3D convolutional autoencoders |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-d427ddbcca78f095fe3a17a6218d3aa4d9b521c4a9422d964ed4f0f45503cd063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2619611918 |
| PQPubID | 326365 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2619611918 crossref_primary_10_1007_s10489_021_02356_9 crossref_citationtrail_10_1007_s10489_021_02356_9 springer_journals_10_1007_s10489_021_02356_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20220100 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Cong Y, Yuan J, Liu J (2011) Sparse reconstruction cost for abnormal event detection. In: CVPR 2011. IEEE, pp 3449–3456 IzakianHPedryczWJamalIClustering spatiotemporal data: an augmented fuzzy c-meansIEEE Trans Fuzzy Syst201321585586810.1109/TFUZZ.2012.2233479 Hinami R, Mei T, Satoh S (2017) Joint detection and recounting of abnormal events by learning deep generic knowledge. In: Proceedings of the IEEE international conference on computer vision, pp 3619–3627 Wang X, Tieu K, Grimson E (2006) Learning semantic scene models by trajectory analysis. In: European conference on computer vision. Springer, pp 110–123 Wang J, Cherian A, Porikli F (2017) Ordered pooling of optical flow sequences for action recognition. In: 2017 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 168–176 Mei S, Ji J, Geng Y, Zhang Z, Li X, Du Q (2019) Unsupervised spatial-spectral feature learning by 3d convolutional autoencoder for hyperspectral classification. IEEE Trans Geosci Remote Sens AthanesiousJJChakkaravarthySSVasuhiSVaidehiVTrajectory based abnormal event detection in video traffic surveillance using general potential data field with spectral clusteringMultimed Tools Appl20197814198771990310.1007/s11042-019-7332-y Luo W, Liu W, Gao S (2017) A revisit of sparse coding based anomaly detection in stacked rnn framework. In: Proceedings of the ieee international conference on computer vision, pp 341–349 ZhuXLiXZhangSJuCWuXRobust joint graph sparse coding for unsupervised spectral feature selectionIEEE Trans Neural Netw Learn Syst201628612631275366177010.1109/TNNLS.2016.2521602 Asad M, Yang J, He J, Shamsolmoali P, He X (2020) Multi-frame feature-fusion-based model for violence detection. Vis Comput:1–17. https://doi.org/10.1007/s00371-020-01878-6 Bilen H, Fernando B, Gavves E, Vedaldi A, Gould S (2016) Dynamic image networks for action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3034–3042 JiangFYuanJTsaftarisSAKatsaggelosAKAnomalous video event detection using spatiotemporal contextComput Vis Image Underst2011115332333310.1016/j.cviu.2010.10.008 Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1933–1941 MashtalirSVStolbovyiMIYakovlevSVClustering video sequences by the method of harmonic k-meansCybern Syst Anal201955220020610.1007/s10559-019-00124-9 Fu Z, Hu W, Tan T (2005) Similarity based vehicle trajectory clustering and anomaly detection. In: IEEE international conference on image processing 2005, vol 20 IEEE, pp II–602 Zhong J-X, Li N, Kong W, Liu S, Li T H, Li G (2019) Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1237–1246 Gu Q, Han J (2013) Clustered support vector machines. In: Artificial intelligence and statistics, pp 307–315 Lu C, Shi J, Jia J (2013) Abnormal event detection at 150 fps in matlab. In: Proceedings of the IEEE international conference on computer vision, pp 2720–2727 WangDTanXUnsupervised feature learning with c-svddnetPattern Recogn20166047348510.1016/j.patcog.2016.06.001 XuDYanYRicciESebeNDetecting anomalous events in videos by learning deep representations of appearance and motionComput Vis Image Underst201715611712710.1016/j.cviu.2016.10.010 Tudor Ionescu R, Smeureanu S, Alexe B, Popescu M (2017) Unmasking the abnormal events in video. In: Proceedings of the IEEE international conference on computer vision, pp 2895– 2903 Abedalla L, Badarna M, Khalifa W, Yousef M (2019) K–means based one-class svm classifier. In: International conference on database and expert systems applications. Springer, pp 45–53 Ravanbakhsh M, Nabi M, Mousavi H, Sangineto E, Sebe N (2018) Plug-and-play cnn for crowd motion analysis: an application in abnormal event detection. In: 2018 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 1689–1698 ZhuXZhangLHuangZA sparse embedding and least variance encoding approach to hashingIEEE Trans Image Process201423937373750324611410.1109/TIP.2014.2332764 Jiang F, Wu Y, Katsaggelos A K (2007) Abnormal event detection from surveillance video by dynamic hierarchical clustering. In: 2007 IEEE international conference on image processing, vol 5. IEEE, pp V–145 Zhou J T, Zhang L, Fang Z, Du J, Peng X, Yang X (2019) Attention-driven loss for anomaly detection in video surveillance. IEEE transactions on circuits and systems for video technology ZhouJTDuJZhuHPengXLiuYGohRSMAnomalynet: an anomaly detection network for video surveillanceIEEE Trans Inf Forensic Secur201914102537255010.1109/TIFS.2019.2900907 Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 4489–4497 LloydSLeast squares quantization in pcmIEEE Trans Inf Theory198228212913765180710.1109/TIT.1982.1056489 He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034 Mehran R, Oyama A, Shah M (2009) Abnormal crowd behavior detection using social force model. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 935–942 Bera A, Kim S, Manocha D (2016) Realtime anomaly detection using trajectory-level crowd behavior learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 50–57 Zhao B, Fei-Fei L, Xing E P (2011) Online detection of unusual events in videos via dynamic sparse coding. In: CVPR 2011. IEEE, pp 3313–3320 Hasan M, Choi J, Neumann J, Roy-Chowdhury A K, Davis L S (2016) Learning temporal regularity in video sequences. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 733–742 Chong Y S, Tay Y H (2017) Abnormal event detection in videos using spatiotemporal autoencoder. In: International symposium on neural networks. Springer, pp 189–196 Kim J, Grauman K (2009) Observe locally, infer globally: a space-time mrf for detecting abnormal activities with incremental updates. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 2921–2928 Saligrama V, Chen Z (2012) Video anomaly detection based on local statistical aggregates. In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, pp 2112–2119 Luo W, Liu W, Gao S (2017) Remembering history with convolutional lstm for anomaly detection. In: 2017 IEEE International conference on multimedia and expo (ICME). IEEE, pp 439–444 Liu W, Luo W, Lian D, Gao S (2018) Future frame prediction for anomaly detection–a new baseline. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6536–6545 Tokmakov P, Hebert M, Schmid C (2020) Unsupervised learning of video representations via dense trajectory clustering. arXiv:2006.15731 Sultani W, Chen C, Shah M (2018) Real-world anomaly detection in surveillance videos. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6479–6488 Krizhevsky A, Sutskever I, Hinton G E (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Ruff L, Vandermeulen R, Goernitz N, Deecke L, Siddiqui S A, Binder A, Müller E, Kloft M (2018) Deep one-class classification. In: International conference on machine learning, pp 4393– 4402 Ionescu R T, Smeureanu S, Popescu M, Alexe B (2019) Detecting abnormal events in video using narrowed normality clusters. In: 2019 IEEE winter conference on applications of computer vision (WACV) IEEE, pp 1951–1960 Del Giorno A, Bagnell J A, Hebert M (2016) A discriminative framework for anomaly detection in large videos. In: European conference on computer vision. Springer, pp 334–349 AntonakakiPKosmopoulosDPerantonisSJDetecting abnormal human behaviour using multiple camerasSignal Process20098991723173810.1016/j.sigpro.2009.03.016 Vedaldi A, Fulkerson B (2008) VLFeat: An open and portable library of computer vision algorithms. http://www.vlfeat.org Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010) Anomaly detection in crowded scenes. In: 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE, pp 1975–1981 ChandolaVBanerjeeAKumarVAnomaly detection: a surveyACM Comput Surv (CSUR)20094131510.1145/1541880.1541882 AdamARivlinEShimshoniIReinitzDRobust real-time unusual event detection using multiple fixed-location monitorsIEEE Trans Pattern Anal Mach Intell200830355556010.1109/TPAMI.2007.70825 Pérez-HernándezFTabikSLamasAOlmosRFujitaHHerreraFObject detection binary classifiers methodology based on deep learning to identify small objects handled similarly: application in video surveillanceKnowl-Based Syst202019410559010.1016/j.knosys.2020.105590 2356_CR21 2356_CR20 2356_CR24 2356_CR23 2356_CR29 2356_CR28 A Adam (2356_CR27) 2008; 30 2356_CR50 X Zhu (2356_CR17) 2016; 28 2356_CR51 2356_CR14 H Izakian (2356_CR35) 2013; 21 2356_CR13 2356_CR12 2356_CR11 2356_CR16 2356_CR15 SV Mashtalir (2356_CR36) 2019; 55 2356_CR19 F Pérez-Hernández (2356_CR22) 2020; 194 D Wang (2356_CR43) 2016; 60 F Jiang (2356_CR26) 2011; 115 X Zhu (2356_CR18) 2014; 23 2356_CR42 P Antonakaki (2356_CR25) 2009; 89 2356_CR47 2356_CR46 2356_CR45 2356_CR44 2356_CR48 S Lloyd (2356_CR40) 1982; 28 2356_CR8 2356_CR9 2356_CR6 JT Zhou (2356_CR49) 2019; 14 2356_CR7 2356_CR4 2356_CR5 2356_CR2 2356_CR32 2356_CR3 2356_CR31 2356_CR30 2356_CR1 D Xu (2356_CR10) 2017; 156 2356_CR34 2356_CR39 JJ Athanesious (2356_CR33) 2019; 78 2356_CR38 2356_CR37 V Chandola (2356_CR41) 2009; 41 |
| References_xml | – reference: Vedaldi A, Fulkerson B (2008) VLFeat: An open and portable library of computer vision algorithms. http://www.vlfeat.org/ – reference: Sultani W, Chen C, Shah M (2018) Real-world anomaly detection in surveillance videos. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6479–6488 – reference: JiangFYuanJTsaftarisSAKatsaggelosAKAnomalous video event detection using spatiotemporal contextComput Vis Image Underst2011115332333310.1016/j.cviu.2010.10.008 – reference: Zhou J T, Zhang L, Fang Z, Du J, Peng X, Yang X (2019) Attention-driven loss for anomaly detection in video surveillance. IEEE transactions on circuits and systems for video technology – reference: WangDTanXUnsupervised feature learning with c-svddnetPattern Recogn20166047348510.1016/j.patcog.2016.06.001 – reference: Gu Q, Han J (2013) Clustered support vector machines. In: Artificial intelligence and statistics, pp 307–315 – reference: MashtalirSVStolbovyiMIYakovlevSVClustering video sequences by the method of harmonic k-meansCybern Syst Anal201955220020610.1007/s10559-019-00124-9 – reference: Ravanbakhsh M, Nabi M, Mousavi H, Sangineto E, Sebe N (2018) Plug-and-play cnn for crowd motion analysis: an application in abnormal event detection. In: 2018 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 1689–1698 – reference: Ionescu R T, Smeureanu S, Popescu M, Alexe B (2019) Detecting abnormal events in video using narrowed normality clusters. In: 2019 IEEE winter conference on applications of computer vision (WACV) IEEE, pp 1951–1960 – reference: He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034 – reference: Chong Y S, Tay Y H (2017) Abnormal event detection in videos using spatiotemporal autoencoder. In: International symposium on neural networks. Springer, pp 189–196 – reference: Mei S, Ji J, Geng Y, Zhang Z, Li X, Du Q (2019) Unsupervised spatial-spectral feature learning by 3d convolutional autoencoder for hyperspectral classification. IEEE Trans Geosci Remote Sens – reference: IzakianHPedryczWJamalIClustering spatiotemporal data: an augmented fuzzy c-meansIEEE Trans Fuzzy Syst201321585586810.1109/TFUZZ.2012.2233479 – reference: Liu W, Luo W, Lian D, Gao S (2018) Future frame prediction for anomaly detection–a new baseline. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6536–6545 – reference: Wang J, Cherian A, Porikli F (2017) Ordered pooling of optical flow sequences for action recognition. In: 2017 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 168–176 – reference: Cong Y, Yuan J, Liu J (2011) Sparse reconstruction cost for abnormal event detection. In: CVPR 2011. IEEE, pp 3449–3456 – reference: Del Giorno A, Bagnell J A, Hebert M (2016) A discriminative framework for anomaly detection in large videos. In: European conference on computer vision. Springer, pp 334–349 – reference: Bilen H, Fernando B, Gavves E, Vedaldi A, Gould S (2016) Dynamic image networks for action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3034–3042 – reference: Ruff L, Vandermeulen R, Goernitz N, Deecke L, Siddiqui S A, Binder A, Müller E, Kloft M (2018) Deep one-class classification. In: International conference on machine learning, pp 4393– 4402 – reference: Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010) Anomaly detection in crowded scenes. In: 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE, pp 1975–1981 – reference: Pérez-HernándezFTabikSLamasAOlmosRFujitaHHerreraFObject detection binary classifiers methodology based on deep learning to identify small objects handled similarly: application in video surveillanceKnowl-Based Syst202019410559010.1016/j.knosys.2020.105590 – reference: Jiang F, Wu Y, Katsaggelos A K (2007) Abnormal event detection from surveillance video by dynamic hierarchical clustering. In: 2007 IEEE international conference on image processing, vol 5. IEEE, pp V–145 – reference: Zhao B, Fei-Fei L, Xing E P (2011) Online detection of unusual events in videos via dynamic sparse coding. In: CVPR 2011. IEEE, pp 3313–3320 – reference: Asad M, Yang J, He J, Shamsolmoali P, He X (2020) Multi-frame feature-fusion-based model for violence detection. Vis Comput:1–17. https://doi.org/10.1007/s00371-020-01878-6 – reference: AdamARivlinEShimshoniIReinitzDRobust real-time unusual event detection using multiple fixed-location monitorsIEEE Trans Pattern Anal Mach Intell200830355556010.1109/TPAMI.2007.70825 – reference: Saligrama V, Chen Z (2012) Video anomaly detection based on local statistical aggregates. In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, pp 2112–2119 – reference: ChandolaVBanerjeeAKumarVAnomaly detection: a surveyACM Comput Surv (CSUR)20094131510.1145/1541880.1541882 – reference: Zhong J-X, Li N, Kong W, Liu S, Li T H, Li G (2019) Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1237–1246 – reference: XuDYanYRicciESebeNDetecting anomalous events in videos by learning deep representations of appearance and motionComput Vis Image Underst201715611712710.1016/j.cviu.2016.10.010 – reference: ZhuXZhangLHuangZA sparse embedding and least variance encoding approach to hashingIEEE Trans Image Process201423937373750324611410.1109/TIP.2014.2332764 – reference: Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1933–1941 – reference: Lu C, Shi J, Jia J (2013) Abnormal event detection at 150 fps in matlab. In: Proceedings of the IEEE international conference on computer vision, pp 2720–2727 – reference: Bera A, Kim S, Manocha D (2016) Realtime anomaly detection using trajectory-level crowd behavior learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 50–57 – reference: Hasan M, Choi J, Neumann J, Roy-Chowdhury A K, Davis L S (2016) Learning temporal regularity in video sequences. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 733–742 – reference: Krizhevsky A, Sutskever I, Hinton G E (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 – reference: Kim J, Grauman K (2009) Observe locally, infer globally: a space-time mrf for detecting abnormal activities with incremental updates. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 2921–2928 – reference: AthanesiousJJChakkaravarthySSVasuhiSVaidehiVTrajectory based abnormal event detection in video traffic surveillance using general potential data field with spectral clusteringMultimed Tools Appl20197814198771990310.1007/s11042-019-7332-y – reference: AntonakakiPKosmopoulosDPerantonisSJDetecting abnormal human behaviour using multiple camerasSignal Process20098991723173810.1016/j.sigpro.2009.03.016 – reference: Mehran R, Oyama A, Shah M (2009) Abnormal crowd behavior detection using social force model. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 935–942 – reference: Fu Z, Hu W, Tan T (2005) Similarity based vehicle trajectory clustering and anomaly detection. In: IEEE international conference on image processing 2005, vol 20 IEEE, pp II–602 – reference: ZhuXLiXZhangSJuCWuXRobust joint graph sparse coding for unsupervised spectral feature selectionIEEE Trans Neural Netw Learn Syst201628612631275366177010.1109/TNNLS.2016.2521602 – reference: Luo W, Liu W, Gao S (2017) A revisit of sparse coding based anomaly detection in stacked rnn framework. In: Proceedings of the ieee international conference on computer vision, pp 341–349 – reference: ZhouJTDuJZhuHPengXLiuYGohRSMAnomalynet: an anomaly detection network for video surveillanceIEEE Trans Inf Forensic Secur201914102537255010.1109/TIFS.2019.2900907 – reference: Hinami R, Mei T, Satoh S (2017) Joint detection and recounting of abnormal events by learning deep generic knowledge. In: Proceedings of the IEEE international conference on computer vision, pp 3619–3627 – reference: Tudor Ionescu R, Smeureanu S, Alexe B, Popescu M (2017) Unmasking the abnormal events in video. In: Proceedings of the IEEE international conference on computer vision, pp 2895– 2903 – reference: Tokmakov P, Hebert M, Schmid C (2020) Unsupervised learning of video representations via dense trajectory clustering. arXiv:2006.15731 – reference: LloydSLeast squares quantization in pcmIEEE Trans Inf Theory198228212913765180710.1109/TIT.1982.1056489 – reference: Abedalla L, Badarna M, Khalifa W, Yousef M (2019) K–means based one-class svm classifier. In: International conference on database and expert systems applications. Springer, pp 45–53 – reference: Luo W, Liu W, Gao S (2017) Remembering history with convolutional lstm for anomaly detection. In: 2017 IEEE International conference on multimedia and expo (ICME). IEEE, pp 439–444 – reference: Wang X, Tieu K, Grimson E (2006) Learning semantic scene models by trajectory analysis. In: European conference on computer vision. Springer, pp 110–123 – reference: Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 4489–4497 – ident: 2356_CR14 doi: 10.1109/CVPR.2011.5995524 – ident: 2356_CR31 doi: 10.1109/ICIP.2007.4379786 – volume: 156 start-page: 117 year: 2017 ident: 2356_CR10 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2016.10.010 – volume: 28 start-page: 1263 issue: 6 year: 2016 ident: 2356_CR17 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2521602 – volume: 41 start-page: 15 issue: 3 year: 2009 ident: 2356_CR41 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/1541880.1541882 – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 2356_CR40 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1982.1056489 – ident: 2356_CR24 doi: 10.1109/CVPR.2010.5539872 – ident: 2356_CR38 doi: 10.1109/CVPR.2016.331 – volume: 14 start-page: 2537 issue: 10 year: 2019 ident: 2356_CR49 publication-title: IEEE Trans Inf Forensic Secur doi: 10.1109/TIFS.2019.2900907 – ident: 2356_CR32 doi: 10.1109/CVPRW.2016.163 – ident: 2356_CR46 – ident: 2356_CR47 doi: 10.1007/978-3-319-59081-3_23 – ident: 2356_CR4 doi: 10.1007/978-3-319-46454-1_21 – ident: 2356_CR51 doi: 10.1109/CVPR.2009.5206641 – ident: 2356_CR23 doi: 10.1109/TGRS.2019.2908756 – ident: 2356_CR29 doi: 10.1109/CVPR.2016.213 – ident: 2356_CR1 – ident: 2356_CR21 – volume: 21 start-page: 855 issue: 5 year: 2013 ident: 2356_CR35 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2012.2233479 – ident: 2356_CR11 doi: 10.1109/CVPR.2018.00678 – ident: 2356_CR13 doi: 10.1007/11744078_9 – ident: 2356_CR20 doi: 10.1007/s00371-020-01878-6 – volume: 89 start-page: 1723 issue: 9 year: 2009 ident: 2356_CR25 publication-title: Signal Process doi: 10.1016/j.sigpro.2009.03.016 – ident: 2356_CR8 doi: 10.1109/CVPR.2018.00684 – ident: 2356_CR28 doi: 10.1109/CVPR.2012.6247917 – ident: 2356_CR42 doi: 10.1007/978-3-030-27684-3_7 – volume: 60 start-page: 473 year: 2016 ident: 2356_CR43 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2016.06.001 – ident: 2356_CR50 doi: 10.1109/CVPR.2009.5206569 – ident: 2356_CR34 doi: 10.1007/978-3-030-66096-3_28 – volume: 115 start-page: 323 issue: 3 year: 2011 ident: 2356_CR26 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2010.10.008 – ident: 2356_CR2 doi: 10.1109/WACV.2018.00188 – ident: 2356_CR5 doi: 10.1109/ICCV.2017.391 – volume: 78 start-page: 19877 issue: 14 year: 2019 ident: 2356_CR33 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7332-y – volume: 55 start-page: 200 issue: 2 year: 2019 ident: 2356_CR36 publication-title: Cybern Syst Anal doi: 10.1007/s10559-019-00124-9 – ident: 2356_CR9 doi: 10.1109/CVPR.2016.86 – ident: 2356_CR44 – ident: 2356_CR16 doi: 10.1109/ICCV.2013.338 – volume: 30 start-page: 555 issue: 3 year: 2008 ident: 2356_CR27 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.70825 – ident: 2356_CR3 doi: 10.1109/ICCV.2017.45 – ident: 2356_CR15 doi: 10.1109/CVPR.2011.5995434 – ident: 2356_CR19 doi: 10.1109/ICCV.2015.510 – ident: 2356_CR30 doi: 10.1109/CVPR.2019.00133 – ident: 2356_CR37 doi: 10.1109/WACV.2017.26 – volume: 194 start-page: 105590 year: 2020 ident: 2356_CR22 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2020.105590 – volume: 23 start-page: 3737 issue: 9 year: 2014 ident: 2356_CR18 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2014.2332764 – ident: 2356_CR45 doi: 10.1109/ICCV.2015.123 – ident: 2356_CR7 doi: 10.1109/WACV.2019.00212 – ident: 2356_CR39 doi: 10.1109/TCSVT.2019.2962229 – ident: 2356_CR48 doi: 10.1109/ICME.2017.8019325 – ident: 2356_CR12 – ident: 2356_CR6 doi: 10.1109/ICCV.2017.315 |
| SSID | ssj0003301 |
| Score | 2.4095857 |
| Snippet | Detection of abnormal behavior in surveillance videos is essential for public safety and monitoring. However, it needs constant human focus and attention for... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1126 |
| SubjectTerms | Artificial Intelligence Clustering Computer Science Feature extraction Machines Manufacturing Mechanical Engineering Normality Processes Public safety Surveillance Surveillance systems Training Video |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWgMLBQnqJQkAc2sGgc14knhIAKCagYAHWLHD-kSiUtTcr34-s6rUCiC3MSy8rx9T1-3HMQOo8iG0mTCGKtUMTl244LKS4I5cLorrVceZeI96ek308HA_ESNtzKcK2ynhP9RK3HCvbIr4Dpc1AjS68nnwRco-B0NVhorKONiNIIxvljQhYzsVure8c8t8YgnItBKJoJpXMMLgtRt5imcZcT8TMxLdnmrwNSn3d6zf_2eAdtB8aJb-ZDZBetmWIPNWs3BxyCex89-1pcAsfU8gPHd3jkaGhRYWu89idWoxmIKrhOYkd0scwLoLvA4rE2lb_RVeBhgaGwb1weoLfe_evtAwlmC0S5KKyIZjTROneAJql1vMuaWEaJ5I4C6FhKpkXuMr1iUjBKteDMaGY7FoqiY6Ud0TlEjWJcmCOEHQdieaoESO0zZTp5lCrJciiD1ZJL1kJR_aczFZTIwRBjlC01lAGdzKGTeXQy0UIXi28mcx2OlW-3a0iyEJNltsSjhS5rUJeP_27teHVrJ2iLQk2E35dpo0Y1nZlTtKm-qmE5PfMj8hvXouTj priority: 102 providerName: ProQuest |
| Title | Multi-Stream 3D latent feature clustering for abnormality detection in videos |
| URI | https://link.springer.com/article/10.1007/s10489-021-02356-9 https://www.proquest.com/docview/2619611918 |
| Volume | 52 |
| WOSCitedRecordID | wos000651027400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcODCeIrxmHLgBpHWNkubI68JCTZN4zW4VGkeEtIoiBV-P05oN0CABJdIVdO0cuL4c-PPBtgNAhtIEwtqrVAU7W0LVYoLGnJhdNtarnyViOvzuNdLhkPRL0lh4yravTqS9Dv1B7Ibc-E9Ibq_YdTmVMzCHJq7xKnj4OJ6sv-ih-7r5KFnQTkXw5Iq8_0Yn83RFGN-ORb11qZT_993LsFiiS7JwftyWIYZk69AvarcQEpFXoWu591SdyQtH0h0TEYIOfOCWOPzfBI1enEJFPC1BEEtkVnuoK1D7ESbwkdv5eQ-J47E9zheg6vOyeXRKS0LK1CFGldQzcJY6wwnL04sYixrIhnEkqO515GUTIsMrbpiUrAw1IIzo5ltWUeAjpRGULMOtfwxNxtAEO-wLFHCpdVnyrSyIFGSZY7yqiWXrAFBJd9UlVnHXfGLUTrNl-zklaK8Ui-vVDRgb_LM03vOjV97b1fTlpb6N06dX8hd7rqkAfvVNE1v_zza5t-6b8FC6PgQ_p_MNtSK5xezA_PqtbgfPzdhNr65bcLc4UmvP8Crs5hi220duTa-wLbfvmv61fsG40Xhgg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RQGovpYWibktbH8qJWk0c48SHqqr4EIhl1QNUewuOPySkJQtsoOqf4jcy401YUQluHDgnsZL4zcwb2zMP4GuahtT4XPMQtOUYbxM0KaW5UNq7zRCUjSoRf_r5YFAMh_r3HNx0tTB0rLLzidFRu7GlNfLvxPQVdSMrfp5fcFKNot3VTkJjCosD_-8vpmyTH_vbOL_rQuzuHG3t8VZVgFuEW8OdFLlzFb55XgQkGMFnJs2NwljnMmOk0xWGNCuNlkI4raR3MiSBqn8z6zCi47gvYEFKNAc6Kphs3Xn-LItyywnmNFwpPWyLdNpSPUmHkwQm7yLbVFzfD4QzdvvfhmyMc7tLz-0PvYHXLaNmv6Ym8BbmfL0MS51aBWud1wocxlpjTtvw5oxl22yENLtuWPCxtymzoytqGoE_hSGRZ6aqic5TlsKcb-KJtZqd1owKF8eTd3D8JB-1CvP1uPbvgSHHk1VhNUkJSOuTKi2skRWV-TqjjOxB2s1sadtO6yT4MSpnPaIJDSWioYxoKHUPNu6eOZ_2GXn07rUOAmXrcyblbP578K0D0ezyw6N9eHy0L_By7-iwX_b3Bwcf4ZWg-o-4BrUG883llf8Ei_a6OZ1cfo7WwODkqcF1C9bXQq8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RWlW9QClUXUqLD_RULDaO14kPVVV1uypaWHGAam_B8YeEtM0CG0D8tf66zngTVkWCG4eek1iy82be2J43A7CTJCExPtM8BG058m0XTUppLpT2rheCsrFLxK-DbDTKx2N9tAR_Wi0MpVW2PjE6aje1dEa-R5G-ompk-V5o0iKO-oOv5xecOkjRTWvbTmMOkaG_vcHt2-zLfh__9SchBj-Ov__kTYcBbhF6NXdSZM6VOIssDxhsBJ-aJDMKec-lxkinS6Q3K42WQjitpHcydAMpgVPrkN1x3GfwHFm4RzY2zPgdC6RpbL3cxf0NV0qPG8FOI9uTlKgkcCMv0p7i-l9SXES69y5nI-cNVv_n1XoNK02kzb7NTWMNlnz1BlbbLhascWrrcBg1yJyu581vlvbZBMPvqmbBx5qnzE6uqJgELhDDAJ-ZsqIwn3YvzPk6ZrJV7KxiJGiczjbg5Ekm9RaWq2nl3wHD2E-WudXUYkBa3y2T3BpZkvzXGWVkB5L2Lxe2qcBOjUAmxaJ2NCGjQGQUERmF7sDnu2_O5_VHHn17q4VD0fiiWbHAQgd2W0AtHj882ubjo23DS8RUcbA_Gr6HV4JkIfFoaguW68sr_wFe2Ov6bHb5MRoGg9OnxtZfbiVLVQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Stream+3D+latent+feature+clustering+for+abnormality+detection+in+videos&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Asad%2C+Mujtaba&rft.au=Jiang%2C+He&rft.au=Yang%2C+Jie&rft.au=Tu%2C+Enmei&rft.date=2022-01-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=1&rft.spage=1126&rft.epage=1143&rft_id=info:doi/10.1007%2Fs10489-021-02356-9&rft.externalDocID=10_1007_s10489_021_02356_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |