Multigrid Method for Nonlinear Eigenvalue Problems Based on Newton Iteration
In this paper, a novel multigrid method based on Newton iteration is proposed to solve nonlinear eigenvalue problems. Instead of handling the eigenvalue λ and eigenfunction u separately, we treat the eigenpair ( λ , u ) as one element in a product space R × H 0 1 ( Ω ) . Then in the presented multig...
Saved in:
| Published in: | Journal of scientific computing Vol. 94; no. 2; p. 42 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.02.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0885-7474, 1573-7691 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, a novel multigrid method based on Newton iteration is proposed to solve nonlinear eigenvalue problems. Instead of handling the eigenvalue
λ
and eigenfunction
u
separately, we treat the eigenpair
(
λ
,
u
)
as one element in a product space
R
×
H
0
1
(
Ω
)
. Then in the presented multigrid method, only one discrete linear boundary value problem needs to be solved for each level of the multigrid sequence. Because we avoid solving large-scale nonlinear eigenvalue problems directly, the overall efficiency is significantly improved. The optimal error estimate and linear computational complexity can be derived simultaneously. In addition, we also provide an improved multigrid method coupled with a mixing scheme to further guarantee the convergence and stability of the iteration scheme. More importantly, we prove convergence for the residuals after each iteration step. For nonlinear eigenvalue problems, such theoretical analysis is missing from the existing literatures on the mixing iteration scheme. |
|---|---|
| AbstractList | In this paper, a novel multigrid method based on Newton iteration is proposed to solve nonlinear eigenvalue problems. Instead of handling the eigenvalue λ and eigenfunction u separately, we treat the eigenpair (λ,u) as one element in a product space R×H01(Ω). Then in the presented multigrid method, only one discrete linear boundary value problem needs to be solved for each level of the multigrid sequence. Because we avoid solving large-scale nonlinear eigenvalue problems directly, the overall efficiency is significantly improved. The optimal error estimate and linear computational complexity can be derived simultaneously. In addition, we also provide an improved multigrid method coupled with a mixing scheme to further guarantee the convergence and stability of the iteration scheme. More importantly, we prove convergence for the residuals after each iteration step. For nonlinear eigenvalue problems, such theoretical analysis is missing from the existing literatures on the mixing iteration scheme. In this paper, a novel multigrid method based on Newton iteration is proposed to solve nonlinear eigenvalue problems. Instead of handling the eigenvalue λ and eigenfunction u separately, we treat the eigenpair ( λ , u ) as one element in a product space R × H 0 1 ( Ω ) . Then in the presented multigrid method, only one discrete linear boundary value problem needs to be solved for each level of the multigrid sequence. Because we avoid solving large-scale nonlinear eigenvalue problems directly, the overall efficiency is significantly improved. The optimal error estimate and linear computational complexity can be derived simultaneously. In addition, we also provide an improved multigrid method coupled with a mixing scheme to further guarantee the convergence and stability of the iteration scheme. More importantly, we prove convergence for the residuals after each iteration step. For nonlinear eigenvalue problems, such theoretical analysis is missing from the existing literatures on the mixing iteration scheme. |
| ArticleNumber | 42 |
| Author | Yue, Meiling Xie, Manting Xu, Fei |
| Author_xml | – sequence: 1 givenname: Fei surname: Xu fullname: Xu, Fei email: xufei@lsec.cc.ac.cn organization: Institute of Computational Mathematics, Department of Mathematics, Faculty of Science, Beijing University of Technology – sequence: 2 givenname: Manting surname: Xie fullname: Xie, Manting organization: Center for Applied Mathematics, Tianjin University – sequence: 3 givenname: Meiling surname: Yue fullname: Yue, Meiling organization: School of Mathematics and Statistics, Beijing Technology and Business University |
| BookMark | eNp9kEFPAyEQhYmpiW31D3gi8bwKC7ssR22qNmmrBz0TykKl2UIFqvHfi10TEw9NZjJzeN_MyxuBgfNOA3CJ0TVGiN1EjDiuClSWuRFDBT8BQ1wxUrCa4wEYoqapCkYZPQOjGDcIId7wcgjmi32X7DrYFi50evMtND7ApXeddVoGOLVr7T5kt9fwOfhVp7cR3smoW-gdXOrPlMcs6SCT9e4cnBrZRX3xO8fg9X76Mnks5k8Ps8ntvFAE81S0RK8UbyupEGVaSUIUbRtKjckbloqXRvGqpYbjupY1JwjRTFTKsBqzRpExuOrv7oJ_3-uYxMbvg8svRclxQ3KhKquaXqWCjzFoI5RNB58pSNsJjMRPdqLPTuTsxCE7wTNa_kN3wW5l-DoOkR6KWezWOvy5OkJ9A9kKg6g |
| CitedBy_id | crossref_primary_10_1016_j_enganabound_2024_105999 |
| Cites_doi | 10.1137/130919398 10.1007/978-1-4757-4338-8 10.1137/1034116 10.1051/m2an/2011038 10.1145/321296.321305 10.4208/jcm.2009.27.4.018 10.1007/s00211-003-0498-1 10.1016/j.jcp.2017.11.024 10.1103/RevModPhys.53.603 10.1016/j.jcp.2012.04.036 10.1002/mma.793 10.1007/s11425-015-0234-x 10.1137/17M115935X 10.1007/s10915-010-9358-1 10.1016/j.jcp.2012.04.002 10.1103/PhysRev.140.A1133 10.1137/120880604 10.1017/S0962492904000212 10.1016/j.advwatres.2011.12.013 10.1016/0041-5553(62)90031-9 10.1007/978-94-015-8527-9 10.1016/j.jcp.2016.07.009 10.1002/nla.617 10.1090/S0025-5718-99-01180-1 10.1016/j.cma.2011.02.008 10.1007/978-3-662-02427-0 10.1088/0951-7715/17/2/010 10.1090/S0025-5718-1977-0431719-X 10.1007/978-1-4612-3172-1 10.1137/S1064827503422956 10.1088/0951-7715/16/1/307 10.1137/18M1206151 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s10915-022-02070-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-7691 |
| ExternalDocumentID | 10_1007_s10915_022_02070_9 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12001402 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 11801021 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ZWQNP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-d3ebc9d5ac047eca33c4d844ff33c1ac92fc95d4f9166a693004ebc5cf76178c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000912388700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7474 |
| IngestDate | Wed Nov 05 01:50:22 EST 2025 Sat Nov 29 01:56:31 EST 2025 Tue Nov 18 21:58:25 EST 2025 Fri Feb 21 02:44:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Newton iteration Nonlinear eigenvalue problems Multigrid method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-d3ebc9d5ac047eca33c4d844ff33c1ac92fc95d4f9166a693004ebc5cf76178c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918318305 |
| PQPubID | 2043771 |
| ParticipantIDs | proquest_journals_2918318305 crossref_citationtrail_10_1007_s10915_022_02070_9 crossref_primary_10_1007_s10915_022_02070_9 springer_journals_10_1007_s10915_022_02070_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20230200 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 2 year: 2023 text: 20230200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of scientific computing |
| PublicationTitleAbbrev | J Sci Comput |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | ChenHXieHXuFA full multigrid method for eigenvalue problemsJ. Comput. Phys.201632274775910.1016/j.jcp.2016.07.0091352.65459 ShaidurovVVMultigrid Methods for Finite Element1995NetherlandsKluwer Academic Publics10.1007/978-94-015-8527-90837.65118 TothAKelleyCTConvergence analysis for Anderson accelerationSIAM J. Numer. Anal.201553280581910.1137/1309193981312.65083 HarrisonRMorozITodKPA numerical study of the Schrödinger–Newton equationsNonlinearity20031610112210.1088/0951-7715/16/1/3071040.81554 YserentantHOn the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivativesNumer. Math.200498473175910.1007/s00211-003-0498-11062.35100 BaoWDuQComputing the ground state solution of Bose–Einstein condensates by a normalized gradient flowSIAM J. Sci. Comput.2004251674169710.1137/S10648275034229561061.82025 LinLYangCElliptic preconditioner for accelerating the self-consistent field iteration in Kohn-Sham density functional theorySIAM J. Sci. Comput.2013355S277S29810.1137/1208806041284.82009 BrandtAMulti-level adaptive solutions to boundary-value problemsMath. Comput.19773133339010.1090/S0025-5718-1977-0431719-X0373.65054 StasiakPMatsenMWEfficiency of pseudo-spectral algorithms with anderson mixing for the SCFT of periodic block-copolymer phasesEur. Phys. J. E20113411019 BrennerSScottLThe Mathematical Theory of Finite Element Methods1994New YorkSpringer10.1007/978-1-4757-4338-80804.65101 CiarletPGLionsJLFinite Element Methods, Handbook of Numerical Analysis1991AmsterdamNorth Holland Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. Assoc. Comput. Mach. 12, 547–560 (1965) HackbuschWMulti-grid Methods and Applications1985BerlinSpringer10.1007/978-3-662-02427-00595.65106 BaoGHuGLiuDAn h-adaptive finite element solver for the calculations of the electronic structuresJ. Comput. Phys.2012231144967497910.1016/j.jcp.2012.04.0021245.65125 JiaSXieHXieMXuFA full multigrid method for nonlinear eigenvalue problemsSci China Math2016592037204810.1007/s11425-015-0234-x1354.65236 HuGXieHXuFA multilevel correction adaptive finite element method for Kohn–Sham equationJ. Comput. Phys.201835543644910.1016/j.jcp.2017.11.0241380.65371 LiebEHThomas-Fermi and related theories of atoms and moleculesRev. Mod. Phys.19815360364110.1103/RevModPhys.53.6031114.81336 MotamarriPIyerMKnapJGaviniVHigher-order adaptive finite-element methods for orbital-free density functional theoryJ. Comput. Phys.20122316596662110.1016/j.jcp.2012.04.0361284.65171 LottPAWalkerHFWoodwardCSYangUMAn accelerated Picard method for nonlinear systems related to variably saturated flowAdv. Water Resour.2012389210110.1016/j.advwatres.2011.12.013 KohnWShamLSelf-consistent equations including exchange and correlation effectsPhys. Rev. A19651401133113810.1103/PhysRev.140.A1133 XuJIterative methods by space decomposition and subspace correctionSIAM Rev.19923458161310.1137/10341160788.65037 BrezziFFortinFMixed and Hybrid Finite Element Methods1991New YorkSpringer10.1007/978-1-4612-3172-10788.73002 CaiYZhangLBaiZLiROn an eigenvector-dependent nonlinear eigenvalue problemSIAM J. Matrix Anal. Appl.20183931360138210.1137/17M115935X1401.65036 CancèsEChakirRMadayYNumerical analysis of the planewave discretization of some orbital-free and Kohn-Sham modelsESAIM Math. Model. Numer. Anal.20124634138810.1051/m2an/20110381278.82003 ChenHHeLZhouAFinite element approximations of nonlinear eigenvalue problems in quantum physicsComput. Methods Appl. Mech. Engrg.2011200211846186510.1016/j.cma.2011.02.0081228.81026 XuJZhouAA two-grid discretization scheme for eigenvalue problemsMath. Comp.200170172510.1090/S0025-5718-99-01180-10959.65119 ZhouAFinite dimensional approximations for the electronic ground state solution of a molecular systemMath. Methods Appl. Sci.20073042944710.1002/mma.7931119.35095 ChenHLiuFZhouAA two-scale higher-order finite element discretization for Schrödinger equationJ. Comput. Math.2009273153371212.65432 CancèsEChakirRMadayYNumerical analysis of nonlinear eigenvalue problemsJ. Sci. Comput.2010451–39011710.1007/s10915-010-9358-11203.65237 ZhouAAn analysis of finite-dimensional approximations for the ground state solution of Bose-Einstein condensatesNonlinearity20041754155010.1088/0951-7715/17/2/0101051.35094 AdamsRASobolev Spaces1975New YorkAcademic Press0314.46030 BenziMGolubGHLiesenJNumerical solution of saddle point problemsActa Numer200514113710.1017/S09624929040002121115.65034 FedorenkoRPA relaxation method for solving elliptic difference equationsUSSR Comput. Math. Math. Phys.1961141092109610.1016/0041-5553(62)90031-90163.39303 FangHSaadYTwo classes of multisecant methods for nonlinear accelerationNumer. Linear Algebra Appl.200916319722110.1002/nla.6171224.65134 PollockSRebholzLXiaoMAnderson-accelerated convergence of picard iterations for incompressible Navier-Stokes equationsSIAM J. Numer. Anal.201957261563710.1137/18M12061511412.65198 M Benzi (2070_CR5) 2005; 14 J Xu (2070_CR31) 1992; 34 H Chen (2070_CR14) 2016; 322 VV Shaidurov (2070_CR29) 1995 W Hackbusch (2070_CR18) 1985 S Brenner (2070_CR8) 1994 A Zhou (2070_CR35) 2007; 30 S Jia (2070_CR21) 2016; 59 W Bao (2070_CR4) 2004; 25 H Chen (2070_CR13) 2009; 27 W Kohn (2070_CR22) 1965; 140 H Yserentant (2070_CR33) 2004; 98 EH Lieb (2070_CR23) 1981; 53 H Fang (2070_CR16) 2009; 16 A Zhou (2070_CR34) 2004; 17 RA Adams (2070_CR1) 1975 Y Cai (2070_CR9) 2018; 39 2070_CR2 E Cancès (2070_CR10) 2010; 45 (2070_CR15) 1991 J Xu (2070_CR32) 2001; 70 RP Fedorenko (2070_CR17) 1961; 1 G Bao (2070_CR3) 2012; 231 E Cancès (2070_CR11) 2012; 46 G Hu (2070_CR20) 2018; 355 A Brandt (2070_CR6) 1977; 31 PA Lott (2070_CR25) 2012; 38 H Chen (2070_CR12) 2011; 200 F Brezzi (2070_CR7) 1991 S Pollock (2070_CR27) 2019; 57 P Motamarri (2070_CR26) 2012; 231 L Lin (2070_CR24) 2013; 35 R Harrison (2070_CR19) 2003; 16 P Stasiak (2070_CR28) 2011; 34 A Toth (2070_CR30) 2015; 53 |
| References_xml | – reference: YserentantHOn the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivativesNumer. Math.200498473175910.1007/s00211-003-0498-11062.35100 – reference: BaoWDuQComputing the ground state solution of Bose–Einstein condensates by a normalized gradient flowSIAM J. Sci. Comput.2004251674169710.1137/S10648275034229561061.82025 – reference: BrandtAMulti-level adaptive solutions to boundary-value problemsMath. Comput.19773133339010.1090/S0025-5718-1977-0431719-X0373.65054 – reference: PollockSRebholzLXiaoMAnderson-accelerated convergence of picard iterations for incompressible Navier-Stokes equationsSIAM J. Numer. Anal.201957261563710.1137/18M12061511412.65198 – reference: ChenHXieHXuFA full multigrid method for eigenvalue problemsJ. Comput. Phys.201632274775910.1016/j.jcp.2016.07.0091352.65459 – reference: FedorenkoRPA relaxation method for solving elliptic difference equationsUSSR Comput. Math. Math. Phys.1961141092109610.1016/0041-5553(62)90031-90163.39303 – reference: ZhouAFinite dimensional approximations for the electronic ground state solution of a molecular systemMath. Methods Appl. Sci.20073042944710.1002/mma.7931119.35095 – reference: CancèsEChakirRMadayYNumerical analysis of nonlinear eigenvalue problemsJ. Sci. Comput.2010451–39011710.1007/s10915-010-9358-11203.65237 – reference: CaiYZhangLBaiZLiROn an eigenvector-dependent nonlinear eigenvalue problemSIAM J. Matrix Anal. Appl.20183931360138210.1137/17M115935X1401.65036 – reference: Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. Assoc. Comput. Mach. 12, 547–560 (1965) – reference: ChenHHeLZhouAFinite element approximations of nonlinear eigenvalue problems in quantum physicsComput. Methods Appl. Mech. Engrg.2011200211846186510.1016/j.cma.2011.02.0081228.81026 – reference: LinLYangCElliptic preconditioner for accelerating the self-consistent field iteration in Kohn-Sham density functional theorySIAM J. Sci. Comput.2013355S277S29810.1137/1208806041284.82009 – reference: LottPAWalkerHFWoodwardCSYangUMAn accelerated Picard method for nonlinear systems related to variably saturated flowAdv. Water Resour.2012389210110.1016/j.advwatres.2011.12.013 – reference: KohnWShamLSelf-consistent equations including exchange and correlation effectsPhys. Rev. A19651401133113810.1103/PhysRev.140.A1133 – reference: LiebEHThomas-Fermi and related theories of atoms and moleculesRev. Mod. Phys.19815360364110.1103/RevModPhys.53.6031114.81336 – reference: CancèsEChakirRMadayYNumerical analysis of the planewave discretization of some orbital-free and Kohn-Sham modelsESAIM Math. Model. Numer. Anal.20124634138810.1051/m2an/20110381278.82003 – reference: HuGXieHXuFA multilevel correction adaptive finite element method for Kohn–Sham equationJ. Comput. Phys.201835543644910.1016/j.jcp.2017.11.0241380.65371 – reference: ZhouAAn analysis of finite-dimensional approximations for the ground state solution of Bose-Einstein condensatesNonlinearity20041754155010.1088/0951-7715/17/2/0101051.35094 – reference: ShaidurovVVMultigrid Methods for Finite Element1995NetherlandsKluwer Academic Publics10.1007/978-94-015-8527-90837.65118 – reference: BaoGHuGLiuDAn h-adaptive finite element solver for the calculations of the electronic structuresJ. Comput. Phys.2012231144967497910.1016/j.jcp.2012.04.0021245.65125 – reference: TothAKelleyCTConvergence analysis for Anderson accelerationSIAM J. Numer. Anal.201553280581910.1137/1309193981312.65083 – reference: BrennerSScottLThe Mathematical Theory of Finite Element Methods1994New YorkSpringer10.1007/978-1-4757-4338-80804.65101 – reference: ChenHLiuFZhouAA two-scale higher-order finite element discretization for Schrödinger equationJ. Comput. Math.2009273153371212.65432 – reference: FangHSaadYTwo classes of multisecant methods for nonlinear accelerationNumer. Linear Algebra Appl.200916319722110.1002/nla.6171224.65134 – reference: AdamsRASobolev Spaces1975New YorkAcademic Press0314.46030 – reference: BrezziFFortinFMixed and Hybrid Finite Element Methods1991New YorkSpringer10.1007/978-1-4612-3172-10788.73002 – reference: CiarletPGLionsJLFinite Element Methods, Handbook of Numerical Analysis1991AmsterdamNorth Holland – reference: BenziMGolubGHLiesenJNumerical solution of saddle point problemsActa Numer200514113710.1017/S09624929040002121115.65034 – reference: MotamarriPIyerMKnapJGaviniVHigher-order adaptive finite-element methods for orbital-free density functional theoryJ. Comput. Phys.20122316596662110.1016/j.jcp.2012.04.0361284.65171 – reference: HackbuschWMulti-grid Methods and Applications1985BerlinSpringer10.1007/978-3-662-02427-00595.65106 – reference: StasiakPMatsenMWEfficiency of pseudo-spectral algorithms with anderson mixing for the SCFT of periodic block-copolymer phasesEur. Phys. J. E20113411019 – reference: XuJIterative methods by space decomposition and subspace correctionSIAM Rev.19923458161310.1137/10341160788.65037 – reference: HarrisonRMorozITodKPA numerical study of the Schrödinger–Newton equationsNonlinearity20031610112210.1088/0951-7715/16/1/3071040.81554 – reference: JiaSXieHXieMXuFA full multigrid method for nonlinear eigenvalue problemsSci China Math2016592037204810.1007/s11425-015-0234-x1354.65236 – reference: XuJZhouAA two-grid discretization scheme for eigenvalue problemsMath. Comp.200170172510.1090/S0025-5718-99-01180-10959.65119 – volume: 53 start-page: 805 issue: 2 year: 2015 ident: 2070_CR30 publication-title: SIAM J. Numer. Anal. doi: 10.1137/130919398 – volume-title: The Mathematical Theory of Finite Element Methods year: 1994 ident: 2070_CR8 doi: 10.1007/978-1-4757-4338-8 – volume: 34 start-page: 581 year: 1992 ident: 2070_CR31 publication-title: SIAM Rev. doi: 10.1137/1034116 – volume: 46 start-page: 341 year: 2012 ident: 2070_CR11 publication-title: ESAIM Math. Model. Numer. Anal. doi: 10.1051/m2an/2011038 – ident: 2070_CR2 doi: 10.1145/321296.321305 – volume: 27 start-page: 315 year: 2009 ident: 2070_CR13 publication-title: J. Comput. Math. doi: 10.4208/jcm.2009.27.4.018 – volume: 98 start-page: 731 issue: 4 year: 2004 ident: 2070_CR33 publication-title: Numer. Math. doi: 10.1007/s00211-003-0498-1 – volume: 355 start-page: 436 year: 2018 ident: 2070_CR20 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.11.024 – volume: 53 start-page: 603 year: 1981 ident: 2070_CR23 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.53.603 – volume: 231 start-page: 6596 year: 2012 ident: 2070_CR26 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.04.036 – volume: 30 start-page: 429 year: 2007 ident: 2070_CR35 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.793 – volume: 59 start-page: 2037 year: 2016 ident: 2070_CR21 publication-title: Sci China Math doi: 10.1007/s11425-015-0234-x – volume: 39 start-page: 1360 issue: 3 year: 2018 ident: 2070_CR9 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/17M115935X – volume: 45 start-page: 90 issue: 1–3 year: 2010 ident: 2070_CR10 publication-title: J. Sci. Comput. doi: 10.1007/s10915-010-9358-1 – volume: 231 start-page: 4967 issue: 14 year: 2012 ident: 2070_CR3 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.04.002 – volume: 140 start-page: 1133 year: 1965 ident: 2070_CR22 publication-title: Phys. Rev. A doi: 10.1103/PhysRev.140.A1133 – volume-title: Finite Element Methods, Handbook of Numerical Analysis year: 1991 ident: 2070_CR15 – volume-title: Sobolev Spaces year: 1975 ident: 2070_CR1 – volume: 35 start-page: S277 issue: 5 year: 2013 ident: 2070_CR24 publication-title: SIAM J. Sci. Comput. doi: 10.1137/120880604 – volume: 14 start-page: 1 year: 2005 ident: 2070_CR5 publication-title: Acta Numer doi: 10.1017/S0962492904000212 – volume: 38 start-page: 92 year: 2012 ident: 2070_CR25 publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2011.12.013 – volume: 34 start-page: 1 issue: 110 year: 2011 ident: 2070_CR28 publication-title: Eur. Phys. J. E – volume: 1 start-page: 1092 issue: 4 year: 1961 ident: 2070_CR17 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(62)90031-9 – volume-title: Multigrid Methods for Finite Element year: 1995 ident: 2070_CR29 doi: 10.1007/978-94-015-8527-9 – volume: 322 start-page: 747 year: 2016 ident: 2070_CR14 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.07.009 – volume: 16 start-page: 197 issue: 3 year: 2009 ident: 2070_CR16 publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.617 – volume: 70 start-page: 17 year: 2001 ident: 2070_CR32 publication-title: Math. Comp. doi: 10.1090/S0025-5718-99-01180-1 – volume: 200 start-page: 1846 issue: 21 year: 2011 ident: 2070_CR12 publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2011.02.008 – volume-title: Multi-grid Methods and Applications year: 1985 ident: 2070_CR18 doi: 10.1007/978-3-662-02427-0 – volume: 17 start-page: 541 year: 2004 ident: 2070_CR34 publication-title: Nonlinearity doi: 10.1088/0951-7715/17/2/010 – volume: 31 start-page: 333 year: 1977 ident: 2070_CR6 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1977-0431719-X – volume-title: Mixed and Hybrid Finite Element Methods year: 1991 ident: 2070_CR7 doi: 10.1007/978-1-4612-3172-1 – volume: 25 start-page: 1674 year: 2004 ident: 2070_CR4 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827503422956 – volume: 16 start-page: 101 year: 2003 ident: 2070_CR19 publication-title: Nonlinearity doi: 10.1088/0951-7715/16/1/307 – volume: 57 start-page: 615 issue: 2 year: 2019 ident: 2070_CR27 publication-title: SIAM J. Numer. Anal. doi: 10.1137/18M1206151 |
| SSID | ssj0009892 |
| Score | 2.3459291 |
| Snippet | In this paper, a novel multigrid method based on Newton iteration is proposed to solve nonlinear eigenvalue problems. Instead of handling the eigenvalue
λ
and... In this paper, a novel multigrid method based on Newton iteration is proposed to solve nonlinear eigenvalue problems. Instead of handling the eigenvalue λ and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 42 |
| SubjectTerms | Algorithms Approximation Boundary value problems Computational mathematics Computational Mathematics and Numerical Analysis Convergence Efficiency Eigenvalues Eigenvectors Estimates Finite element analysis Iterative methods Lagrange multiplier Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Nonlinear equations Theoretical |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA46PXhR5wdOp-TgQdFgP5K1OYnKhsIcOygMLyXLhwxkm-309_smTS0K7iK0UGhTSt-vhyTv8yB0alSoVSIMMVBfCOB_DnnQSCJtvWDCro05yvx-MhikoxEf-gm3wm-rrHKiS9RqJu0c-VXEwfngCNj1_J1Y1Si7uuolNFbRmmVJsNINQ_ZSk-6mThQZAokRgM3UN8341jke2t7kCE5we8J_FqYabf5aIHV1p7f13y_eRpseceKb0kWaaEVPd1DTx3SBzzzx9Pku6rtu3Nd8ovCjE5bGgGjxoCTTEDnuWuZOyw6u8bDUoSnwLVRBhWdTDNkSYCR-cCzNYOw99NzrPt3dE6-2QCSE4YKoWI8lV0zIgCZaijiWVKWUGgNXoZA8MpIzRQ0Ayo6wCooBhRFMmsS2Gcp4HzWms6k-QJgFKjCdKOiMlaBKqnTMYikiHRqqNBuzFgqrX51JT0VuFTHesppE2ZonA_NkzjwZb6GL7zHzkohj6dPtyiaZD8oiqw3SQpeVVevbf7_tcPnbjtCGFaEv93K3UWORf-hjtC4_F5MiP3Eu-QXUPeXB priority: 102 providerName: ProQuest |
| Title | Multigrid Method for Nonlinear Eigenvalue Problems Based on Newton Iteration |
| URI | https://link.springer.com/article/10.1007/s10915-022-02070-9 https://www.proquest.com/docview/2918318305 |
| Volume | 94 |
| WOSCitedRecordID | wos000912388700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7691 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: P5Z dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7691 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: K7- dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7691 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD54e9AH7-J0jjz4oGigl2RtHlUminMMb4gvJctFBrLJOv39nqStU1FBoS2FpiGc5JzzQXK-D2DX6tDoRFpqMb9QxP8C46BVVLl8waXbG_OU-e2k00nv70W3LArLq9Pu1Zakj9Qfit1E6KqJI7xxoVIxDbOY7lIn2HB1fTeh2k29FDK6D6cIlllZKvN9H5_T0QRjftkW9dnmdOl_41yGxRJdkqNiOazAlBmswsLlOzVrvgorpTfnZK-knN5fg7avw30c9TW59JLSBLEs6RQ0GnJEWo6z0_GCG9ItFGhycoz5T5PhgGCcRABJzj0_M07zOtyetm5Ozmips0AVOuCY6tj0lNBcqoAlRsk4VkynjFmLb6FUIrJKcM0sQsmmdNqJAcM_uLKJKzBU8QbMDIYDswmEBzqwzSho9rRkWum0x2MlIxNapg3v8RqElbkzVZKQOy2Mp2xCn-zMl6H5Mm--TNTg4P2f54KC49fW9WoWs9Id8ywSGLnwCnAAh9WsTT7_3NvW35pvw7yToy9OdddhZjx6MTswp17H_XzUgNnjVqd71YDpi4Tis8sfGn7pvgGl3uOU |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LSuRAFL04Kowb32L7mlqMMKKFeVR1UgsRn9h027hwwF2srocI0q2dVvGn_EZvVRLDCOPOhZBAIElBknPvPUnlngPw2-rQ6ERaarG-UOT_AvOgVVS5esGlmxvzkvmdpNtNr67ExRi8Vr0w7rfKKif6RK0Hyn0j340Egg-XgO_fP1DnGuVmVysLjQIWbfPyjK9s-V7rGJ_vZhSdnlwendHSVYAqhNuI6tj0lNBcqoAlRsk4VkynjFmLW6FUIrJKcM0sEqemdE6BAcMzuLKJa6dTMY77AyZYnCYurtoJrUV-U2_CjIHLKdJ0VjbplK16InS90BGuGGZU_FsIa3b7YULW17nTme92h2ZhumTU5KAIgTkYM_15mCtzVk7-lMLaWwvQ8d3GN8NbTc69cTZBxk66hViIHJITp0zq1M8NuSh8dnJyiFVek0GfYDVAmkxaXoUawbwIf7_kqpZgvD_om2UgPNCBbUZBs6cl00qnPR4rGZnQMm14jzcgrB5tpkqpdef4cZfVItEODhnCIfNwyEQDtt_PuS-ERj49eq3CQFYmnTyrAdCAnQpF9e7_j7by-Wi_4OfZ5Xkn67S67VWYipDmFf-tr8H4aPho1mFSPY1u8-GGDwcC11-NrjdkyERu |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54Q_TBy1ScTs2DD4qW9ZJszaOXDcU5Bl7YW8lyEUHqWKe_35O0syoqiNBCoUkIJzk5X0jO9wHsGxVo1RTGMxhfPMT_HNdBIz1p4wUT9mzMUeZ3mt1u3O_z3ocsfnfbfXIkmec0WJamdFwfKlP_kPjGA5tZHOKLk9bj0zBL7UV6u1-_uS9pd2Mni4yuxDwEzrRIm_m-jc-hqcSbX45IXeRpL_-_zyuwVKBOcpJPk1WY0mkFFq_fKVuzCqwWXp6Rg4KK-nANOi4_92H0qMi1k5omiHFJN6fXECPSslyeli9ck16uTJORU4yLijynBNdPBJbk0vE24_Cvw127dXt24RX6C55Exxx7KtIDyRUT0qdNLUUUSapiSo3Br0BIHhrJmaIGIWZDWE1Fn2INJk3TJh7KaANm0udUbwJhvvJNI_QbAyWokioesEiKUAeGKs0GrArBxPSJLMjJrUbGU1LSKlvzJWi-xJkv4VU4eq8zzKk5fi1dm4xoUrhploQcVzR8fOzA8WQEy98_t7b1t-J7MN87byedy-7VNixYxfr84ncNZsajF70Dc_J1_JiNdt3sfQNdbuvy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multigrid+Method+for+Nonlinear+Eigenvalue+Problems+Based+on+Newton+Iteration&rft.jtitle=Journal+of+scientific+computing&rft.au=Xu%2C+Fei&rft.au=Xie%2C+Manting&rft.au=Yue%2C+Meiling&rft.date=2023-02-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=94&rft.issue=2&rft_id=info:doi/10.1007%2Fs10915-022-02070-9&rft.externalDocID=10_1007_s10915_022_02070_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |