Multigrid Method for Nonlinear Eigenvalue Problems Based on Newton Iteration

In this paper, a novel multigrid method based on Newton iteration is proposed to solve nonlinear eigenvalue problems. Instead of handling the eigenvalue λ and eigenfunction u separately, we treat the eigenpair ( λ , u ) as one element in a product space R × H 0 1 ( Ω ) . Then in the presented multig...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scientific computing Ročník 94; číslo 2; s. 42
Hlavní autoři: Xu, Fei, Xie, Manting, Yue, Meiling
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.02.2023
Springer Nature B.V
Témata:
ISSN:0885-7474, 1573-7691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, a novel multigrid method based on Newton iteration is proposed to solve nonlinear eigenvalue problems. Instead of handling the eigenvalue λ and eigenfunction u separately, we treat the eigenpair ( λ , u ) as one element in a product space R × H 0 1 ( Ω ) . Then in the presented multigrid method, only one discrete linear boundary value problem needs to be solved for each level of the multigrid sequence. Because we avoid solving large-scale nonlinear eigenvalue problems directly, the overall efficiency is significantly improved. The optimal error estimate and linear computational complexity can be derived simultaneously. In addition, we also provide an improved multigrid method coupled with a mixing scheme to further guarantee the convergence and stability of the iteration scheme. More importantly, we prove convergence for the residuals after each iteration step. For nonlinear eigenvalue problems, such theoretical analysis is missing from the existing literatures on the mixing iteration scheme.
AbstractList In this paper, a novel multigrid method based on Newton iteration is proposed to solve nonlinear eigenvalue problems. Instead of handling the eigenvalue λ and eigenfunction u separately, we treat the eigenpair (λ,u) as one element in a product space R×H01(Ω). Then in the presented multigrid method, only one discrete linear boundary value problem needs to be solved for each level of the multigrid sequence. Because we avoid solving large-scale nonlinear eigenvalue problems directly, the overall efficiency is significantly improved. The optimal error estimate and linear computational complexity can be derived simultaneously. In addition, we also provide an improved multigrid method coupled with a mixing scheme to further guarantee the convergence and stability of the iteration scheme. More importantly, we prove convergence for the residuals after each iteration step. For nonlinear eigenvalue problems, such theoretical analysis is missing from the existing literatures on the mixing iteration scheme.
In this paper, a novel multigrid method based on Newton iteration is proposed to solve nonlinear eigenvalue problems. Instead of handling the eigenvalue λ and eigenfunction u separately, we treat the eigenpair ( λ , u ) as one element in a product space R × H 0 1 ( Ω ) . Then in the presented multigrid method, only one discrete linear boundary value problem needs to be solved for each level of the multigrid sequence. Because we avoid solving large-scale nonlinear eigenvalue problems directly, the overall efficiency is significantly improved. The optimal error estimate and linear computational complexity can be derived simultaneously. In addition, we also provide an improved multigrid method coupled with a mixing scheme to further guarantee the convergence and stability of the iteration scheme. More importantly, we prove convergence for the residuals after each iteration step. For nonlinear eigenvalue problems, such theoretical analysis is missing from the existing literatures on the mixing iteration scheme.
ArticleNumber 42
Author Yue, Meiling
Xie, Manting
Xu, Fei
Author_xml – sequence: 1
  givenname: Fei
  surname: Xu
  fullname: Xu, Fei
  email: xufei@lsec.cc.ac.cn
  organization: Institute of Computational Mathematics, Department of Mathematics, Faculty of Science, Beijing University of Technology
– sequence: 2
  givenname: Manting
  surname: Xie
  fullname: Xie, Manting
  organization: Center for Applied Mathematics, Tianjin University
– sequence: 3
  givenname: Meiling
  surname: Yue
  fullname: Yue, Meiling
  organization: School of Mathematics and Statistics, Beijing Technology and Business University
BookMark eNp9kEFPAyEQhYmpiW31D3gi8bwKC7ssR22qNmmrBz0TykKl2UIFqvHfi10TEw9NZjJzeN_MyxuBgfNOA3CJ0TVGiN1EjDiuClSWuRFDBT8BQ1wxUrCa4wEYoqapCkYZPQOjGDcIId7wcgjmi32X7DrYFi50evMtND7ApXeddVoGOLVr7T5kt9fwOfhVp7cR3smoW-gdXOrPlMcs6SCT9e4cnBrZRX3xO8fg9X76Mnks5k8Ps8ntvFAE81S0RK8UbyupEGVaSUIUbRtKjckbloqXRvGqpYbjupY1JwjRTFTKsBqzRpExuOrv7oJ_3-uYxMbvg8svRclxQ3KhKquaXqWCjzFoI5RNB58pSNsJjMRPdqLPTuTsxCE7wTNa_kN3wW5l-DoOkR6KWezWOvy5OkJ9A9kKg6g
CitedBy_id crossref_primary_10_1016_j_enganabound_2024_105999
Cites_doi 10.1137/130919398
10.1007/978-1-4757-4338-8
10.1137/1034116
10.1051/m2an/2011038
10.1145/321296.321305
10.4208/jcm.2009.27.4.018
10.1007/s00211-003-0498-1
10.1016/j.jcp.2017.11.024
10.1103/RevModPhys.53.603
10.1016/j.jcp.2012.04.036
10.1002/mma.793
10.1007/s11425-015-0234-x
10.1137/17M115935X
10.1007/s10915-010-9358-1
10.1016/j.jcp.2012.04.002
10.1103/PhysRev.140.A1133
10.1137/120880604
10.1017/S0962492904000212
10.1016/j.advwatres.2011.12.013
10.1016/0041-5553(62)90031-9
10.1007/978-94-015-8527-9
10.1016/j.jcp.2016.07.009
10.1002/nla.617
10.1090/S0025-5718-99-01180-1
10.1016/j.cma.2011.02.008
10.1007/978-3-662-02427-0
10.1088/0951-7715/17/2/010
10.1090/S0025-5718-1977-0431719-X
10.1007/978-1-4612-3172-1
10.1137/S1064827503422956
10.1088/0951-7715/16/1/307
10.1137/18M1206151
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10915-022-02070-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database ProQuest
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: ProQuest advanced technologies & aerospace journals
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 10_1007_s10915_022_02070_9
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12001402
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 11801021
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-d3ebc9d5ac047eca33c4d844ff33c1ac92fc95d4f9166a693004ebc5cf76178c3
IEDL.DBID P5Z
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000912388700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Wed Nov 05 01:50:22 EST 2025
Sat Nov 29 01:56:31 EST 2025
Tue Nov 18 21:58:25 EST 2025
Fri Feb 21 02:44:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Newton iteration
Nonlinear eigenvalue problems
Multigrid method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d3ebc9d5ac047eca33c4d844ff33c1ac92fc95d4f9166a693004ebc5cf76178c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918318305
PQPubID 2043771
ParticipantIDs proquest_journals_2918318305
crossref_citationtrail_10_1007_s10915_022_02070_9
crossref_primary_10_1007_s10915_022_02070_9
springer_journals_10_1007_s10915_022_02070_9
PublicationCentury 2000
PublicationDate 20230200
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ChenHXieHXuFA full multigrid method for eigenvalue problemsJ. Comput. Phys.201632274775910.1016/j.jcp.2016.07.0091352.65459
ShaidurovVVMultigrid Methods for Finite Element1995NetherlandsKluwer Academic Publics10.1007/978-94-015-8527-90837.65118
TothAKelleyCTConvergence analysis for Anderson accelerationSIAM J. Numer. Anal.201553280581910.1137/1309193981312.65083
HarrisonRMorozITodKPA numerical study of the Schrödinger–Newton equationsNonlinearity20031610112210.1088/0951-7715/16/1/3071040.81554
YserentantHOn the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivativesNumer. Math.200498473175910.1007/s00211-003-0498-11062.35100
BaoWDuQComputing the ground state solution of Bose–Einstein condensates by a normalized gradient flowSIAM J. Sci. Comput.2004251674169710.1137/S10648275034229561061.82025
LinLYangCElliptic preconditioner for accelerating the self-consistent field iteration in Kohn-Sham density functional theorySIAM J. Sci. Comput.2013355S277S29810.1137/1208806041284.82009
BrandtAMulti-level adaptive solutions to boundary-value problemsMath. Comput.19773133339010.1090/S0025-5718-1977-0431719-X0373.65054
StasiakPMatsenMWEfficiency of pseudo-spectral algorithms with anderson mixing for the SCFT of periodic block-copolymer phasesEur. Phys. J. E20113411019
BrennerSScottLThe Mathematical Theory of Finite Element Methods1994New YorkSpringer10.1007/978-1-4757-4338-80804.65101
CiarletPGLionsJLFinite Element Methods, Handbook of Numerical Analysis1991AmsterdamNorth Holland
Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. Assoc. Comput. Mach. 12, 547–560 (1965)
HackbuschWMulti-grid Methods and Applications1985BerlinSpringer10.1007/978-3-662-02427-00595.65106
BaoGHuGLiuDAn h-adaptive finite element solver for the calculations of the electronic structuresJ. Comput. Phys.2012231144967497910.1016/j.jcp.2012.04.0021245.65125
JiaSXieHXieMXuFA full multigrid method for nonlinear eigenvalue problemsSci China Math2016592037204810.1007/s11425-015-0234-x1354.65236
HuGXieHXuFA multilevel correction adaptive finite element method for Kohn–Sham equationJ. Comput. Phys.201835543644910.1016/j.jcp.2017.11.0241380.65371
LiebEHThomas-Fermi and related theories of atoms and moleculesRev. Mod. Phys.19815360364110.1103/RevModPhys.53.6031114.81336
MotamarriPIyerMKnapJGaviniVHigher-order adaptive finite-element methods for orbital-free density functional theoryJ. Comput. Phys.20122316596662110.1016/j.jcp.2012.04.0361284.65171
LottPAWalkerHFWoodwardCSYangUMAn accelerated Picard method for nonlinear systems related to variably saturated flowAdv. Water Resour.2012389210110.1016/j.advwatres.2011.12.013
KohnWShamLSelf-consistent equations including exchange and correlation effectsPhys. Rev. A19651401133113810.1103/PhysRev.140.A1133
XuJIterative methods by space decomposition and subspace correctionSIAM Rev.19923458161310.1137/10341160788.65037
BrezziFFortinFMixed and Hybrid Finite Element Methods1991New YorkSpringer10.1007/978-1-4612-3172-10788.73002
CaiYZhangLBaiZLiROn an eigenvector-dependent nonlinear eigenvalue problemSIAM J. Matrix Anal. Appl.20183931360138210.1137/17M115935X1401.65036
CancèsEChakirRMadayYNumerical analysis of the planewave discretization of some orbital-free and Kohn-Sham modelsESAIM Math. Model. Numer. Anal.20124634138810.1051/m2an/20110381278.82003
ChenHHeLZhouAFinite element approximations of nonlinear eigenvalue problems in quantum physicsComput. Methods Appl. Mech. Engrg.2011200211846186510.1016/j.cma.2011.02.0081228.81026
XuJZhouAA two-grid discretization scheme for eigenvalue problemsMath. Comp.200170172510.1090/S0025-5718-99-01180-10959.65119
ZhouAFinite dimensional approximations for the electronic ground state solution of a molecular systemMath. Methods Appl. Sci.20073042944710.1002/mma.7931119.35095
ChenHLiuFZhouAA two-scale higher-order finite element discretization for Schrödinger equationJ. Comput. Math.2009273153371212.65432
CancèsEChakirRMadayYNumerical analysis of nonlinear eigenvalue problemsJ. Sci. Comput.2010451–39011710.1007/s10915-010-9358-11203.65237
ZhouAAn analysis of finite-dimensional approximations for the ground state solution of Bose-Einstein condensatesNonlinearity20041754155010.1088/0951-7715/17/2/0101051.35094
AdamsRASobolev Spaces1975New YorkAcademic Press0314.46030
BenziMGolubGHLiesenJNumerical solution of saddle point problemsActa Numer200514113710.1017/S09624929040002121115.65034
FedorenkoRPA relaxation method for solving elliptic difference equationsUSSR Comput. Math. Math. Phys.1961141092109610.1016/0041-5553(62)90031-90163.39303
FangHSaadYTwo classes of multisecant methods for nonlinear accelerationNumer. Linear Algebra Appl.200916319722110.1002/nla.6171224.65134
PollockSRebholzLXiaoMAnderson-accelerated convergence of picard iterations for incompressible Navier-Stokes equationsSIAM J. Numer. Anal.201957261563710.1137/18M12061511412.65198
M Benzi (2070_CR5) 2005; 14
J Xu (2070_CR31) 1992; 34
H Chen (2070_CR14) 2016; 322
VV Shaidurov (2070_CR29) 1995
W Hackbusch (2070_CR18) 1985
S Brenner (2070_CR8) 1994
A Zhou (2070_CR35) 2007; 30
S Jia (2070_CR21) 2016; 59
W Bao (2070_CR4) 2004; 25
H Chen (2070_CR13) 2009; 27
W Kohn (2070_CR22) 1965; 140
H Yserentant (2070_CR33) 2004; 98
EH Lieb (2070_CR23) 1981; 53
H Fang (2070_CR16) 2009; 16
A Zhou (2070_CR34) 2004; 17
RA Adams (2070_CR1) 1975
Y Cai (2070_CR9) 2018; 39
2070_CR2
E Cancès (2070_CR10) 2010; 45
(2070_CR15) 1991
J Xu (2070_CR32) 2001; 70
RP Fedorenko (2070_CR17) 1961; 1
G Bao (2070_CR3) 2012; 231
E Cancès (2070_CR11) 2012; 46
G Hu (2070_CR20) 2018; 355
A Brandt (2070_CR6) 1977; 31
PA Lott (2070_CR25) 2012; 38
H Chen (2070_CR12) 2011; 200
F Brezzi (2070_CR7) 1991
S Pollock (2070_CR27) 2019; 57
P Motamarri (2070_CR26) 2012; 231
L Lin (2070_CR24) 2013; 35
R Harrison (2070_CR19) 2003; 16
P Stasiak (2070_CR28) 2011; 34
A Toth (2070_CR30) 2015; 53
References_xml – reference: YserentantHOn the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivativesNumer. Math.200498473175910.1007/s00211-003-0498-11062.35100
– reference: BaoWDuQComputing the ground state solution of Bose–Einstein condensates by a normalized gradient flowSIAM J. Sci. Comput.2004251674169710.1137/S10648275034229561061.82025
– reference: BrandtAMulti-level adaptive solutions to boundary-value problemsMath. Comput.19773133339010.1090/S0025-5718-1977-0431719-X0373.65054
– reference: PollockSRebholzLXiaoMAnderson-accelerated convergence of picard iterations for incompressible Navier-Stokes equationsSIAM J. Numer. Anal.201957261563710.1137/18M12061511412.65198
– reference: ChenHXieHXuFA full multigrid method for eigenvalue problemsJ. Comput. Phys.201632274775910.1016/j.jcp.2016.07.0091352.65459
– reference: FedorenkoRPA relaxation method for solving elliptic difference equationsUSSR Comput. Math. Math. Phys.1961141092109610.1016/0041-5553(62)90031-90163.39303
– reference: ZhouAFinite dimensional approximations for the electronic ground state solution of a molecular systemMath. Methods Appl. Sci.20073042944710.1002/mma.7931119.35095
– reference: CancèsEChakirRMadayYNumerical analysis of nonlinear eigenvalue problemsJ. Sci. Comput.2010451–39011710.1007/s10915-010-9358-11203.65237
– reference: CaiYZhangLBaiZLiROn an eigenvector-dependent nonlinear eigenvalue problemSIAM J. Matrix Anal. Appl.20183931360138210.1137/17M115935X1401.65036
– reference: Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. Assoc. Comput. Mach. 12, 547–560 (1965)
– reference: ChenHHeLZhouAFinite element approximations of nonlinear eigenvalue problems in quantum physicsComput. Methods Appl. Mech. Engrg.2011200211846186510.1016/j.cma.2011.02.0081228.81026
– reference: LinLYangCElliptic preconditioner for accelerating the self-consistent field iteration in Kohn-Sham density functional theorySIAM J. Sci. Comput.2013355S277S29810.1137/1208806041284.82009
– reference: LottPAWalkerHFWoodwardCSYangUMAn accelerated Picard method for nonlinear systems related to variably saturated flowAdv. Water Resour.2012389210110.1016/j.advwatres.2011.12.013
– reference: KohnWShamLSelf-consistent equations including exchange and correlation effectsPhys. Rev. A19651401133113810.1103/PhysRev.140.A1133
– reference: LiebEHThomas-Fermi and related theories of atoms and moleculesRev. Mod. Phys.19815360364110.1103/RevModPhys.53.6031114.81336
– reference: CancèsEChakirRMadayYNumerical analysis of the planewave discretization of some orbital-free and Kohn-Sham modelsESAIM Math. Model. Numer. Anal.20124634138810.1051/m2an/20110381278.82003
– reference: HuGXieHXuFA multilevel correction adaptive finite element method for Kohn–Sham equationJ. Comput. Phys.201835543644910.1016/j.jcp.2017.11.0241380.65371
– reference: ZhouAAn analysis of finite-dimensional approximations for the ground state solution of Bose-Einstein condensatesNonlinearity20041754155010.1088/0951-7715/17/2/0101051.35094
– reference: ShaidurovVVMultigrid Methods for Finite Element1995NetherlandsKluwer Academic Publics10.1007/978-94-015-8527-90837.65118
– reference: BaoGHuGLiuDAn h-adaptive finite element solver for the calculations of the electronic structuresJ. Comput. Phys.2012231144967497910.1016/j.jcp.2012.04.0021245.65125
– reference: TothAKelleyCTConvergence analysis for Anderson accelerationSIAM J. Numer. Anal.201553280581910.1137/1309193981312.65083
– reference: BrennerSScottLThe Mathematical Theory of Finite Element Methods1994New YorkSpringer10.1007/978-1-4757-4338-80804.65101
– reference: ChenHLiuFZhouAA two-scale higher-order finite element discretization for Schrödinger equationJ. Comput. Math.2009273153371212.65432
– reference: FangHSaadYTwo classes of multisecant methods for nonlinear accelerationNumer. Linear Algebra Appl.200916319722110.1002/nla.6171224.65134
– reference: AdamsRASobolev Spaces1975New YorkAcademic Press0314.46030
– reference: BrezziFFortinFMixed and Hybrid Finite Element Methods1991New YorkSpringer10.1007/978-1-4612-3172-10788.73002
– reference: CiarletPGLionsJLFinite Element Methods, Handbook of Numerical Analysis1991AmsterdamNorth Holland
– reference: BenziMGolubGHLiesenJNumerical solution of saddle point problemsActa Numer200514113710.1017/S09624929040002121115.65034
– reference: MotamarriPIyerMKnapJGaviniVHigher-order adaptive finite-element methods for orbital-free density functional theoryJ. Comput. Phys.20122316596662110.1016/j.jcp.2012.04.0361284.65171
– reference: HackbuschWMulti-grid Methods and Applications1985BerlinSpringer10.1007/978-3-662-02427-00595.65106
– reference: StasiakPMatsenMWEfficiency of pseudo-spectral algorithms with anderson mixing for the SCFT of periodic block-copolymer phasesEur. Phys. J. E20113411019
– reference: XuJIterative methods by space decomposition and subspace correctionSIAM Rev.19923458161310.1137/10341160788.65037
– reference: HarrisonRMorozITodKPA numerical study of the Schrödinger–Newton equationsNonlinearity20031610112210.1088/0951-7715/16/1/3071040.81554
– reference: JiaSXieHXieMXuFA full multigrid method for nonlinear eigenvalue problemsSci China Math2016592037204810.1007/s11425-015-0234-x1354.65236
– reference: XuJZhouAA two-grid discretization scheme for eigenvalue problemsMath. Comp.200170172510.1090/S0025-5718-99-01180-10959.65119
– volume: 53
  start-page: 805
  issue: 2
  year: 2015
  ident: 2070_CR30
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130919398
– volume-title: The Mathematical Theory of Finite Element Methods
  year: 1994
  ident: 2070_CR8
  doi: 10.1007/978-1-4757-4338-8
– volume: 34
  start-page: 581
  year: 1992
  ident: 2070_CR31
  publication-title: SIAM Rev.
  doi: 10.1137/1034116
– volume: 46
  start-page: 341
  year: 2012
  ident: 2070_CR11
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2011038
– ident: 2070_CR2
  doi: 10.1145/321296.321305
– volume: 27
  start-page: 315
  year: 2009
  ident: 2070_CR13
  publication-title: J. Comput. Math.
  doi: 10.4208/jcm.2009.27.4.018
– volume: 98
  start-page: 731
  issue: 4
  year: 2004
  ident: 2070_CR33
  publication-title: Numer. Math.
  doi: 10.1007/s00211-003-0498-1
– volume: 355
  start-page: 436
  year: 2018
  ident: 2070_CR20
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.11.024
– volume: 53
  start-page: 603
  year: 1981
  ident: 2070_CR23
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.53.603
– volume: 231
  start-page: 6596
  year: 2012
  ident: 2070_CR26
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.04.036
– volume: 30
  start-page: 429
  year: 2007
  ident: 2070_CR35
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.793
– volume: 59
  start-page: 2037
  year: 2016
  ident: 2070_CR21
  publication-title: Sci China Math
  doi: 10.1007/s11425-015-0234-x
– volume: 39
  start-page: 1360
  issue: 3
  year: 2018
  ident: 2070_CR9
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/17M115935X
– volume: 45
  start-page: 90
  issue: 1–3
  year: 2010
  ident: 2070_CR10
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-010-9358-1
– volume: 231
  start-page: 4967
  issue: 14
  year: 2012
  ident: 2070_CR3
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.04.002
– volume: 140
  start-page: 1133
  year: 1965
  ident: 2070_CR22
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRev.140.A1133
– volume-title: Finite Element Methods, Handbook of Numerical Analysis
  year: 1991
  ident: 2070_CR15
– volume-title: Sobolev Spaces
  year: 1975
  ident: 2070_CR1
– volume: 35
  start-page: S277
  issue: 5
  year: 2013
  ident: 2070_CR24
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/120880604
– volume: 14
  start-page: 1
  year: 2005
  ident: 2070_CR5
  publication-title: Acta Numer
  doi: 10.1017/S0962492904000212
– volume: 38
  start-page: 92
  year: 2012
  ident: 2070_CR25
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2011.12.013
– volume: 34
  start-page: 1
  issue: 110
  year: 2011
  ident: 2070_CR28
  publication-title: Eur. Phys. J. E
– volume: 1
  start-page: 1092
  issue: 4
  year: 1961
  ident: 2070_CR17
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(62)90031-9
– volume-title: Multigrid Methods for Finite Element
  year: 1995
  ident: 2070_CR29
  doi: 10.1007/978-94-015-8527-9
– volume: 322
  start-page: 747
  year: 2016
  ident: 2070_CR14
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.07.009
– volume: 16
  start-page: 197
  issue: 3
  year: 2009
  ident: 2070_CR16
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.617
– volume: 70
  start-page: 17
  year: 2001
  ident: 2070_CR32
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-99-01180-1
– volume: 200
  start-page: 1846
  issue: 21
  year: 2011
  ident: 2070_CR12
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2011.02.008
– volume-title: Multi-grid Methods and Applications
  year: 1985
  ident: 2070_CR18
  doi: 10.1007/978-3-662-02427-0
– volume: 17
  start-page: 541
  year: 2004
  ident: 2070_CR34
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/17/2/010
– volume: 31
  start-page: 333
  year: 1977
  ident: 2070_CR6
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1977-0431719-X
– volume-title: Mixed and Hybrid Finite Element Methods
  year: 1991
  ident: 2070_CR7
  doi: 10.1007/978-1-4612-3172-1
– volume: 25
  start-page: 1674
  year: 2004
  ident: 2070_CR4
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827503422956
– volume: 16
  start-page: 101
  year: 2003
  ident: 2070_CR19
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/16/1/307
– volume: 57
  start-page: 615
  issue: 2
  year: 2019
  ident: 2070_CR27
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/18M1206151
SSID ssj0009892
Score 2.3460207
Snippet In this paper, a novel multigrid method based on Newton iteration is proposed to solve nonlinear eigenvalue problems. Instead of handling the eigenvalue λ and...
In this paper, a novel multigrid method based on Newton iteration is proposed to solve nonlinear eigenvalue problems. Instead of handling the eigenvalue λ and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 42
SubjectTerms Algorithms
Approximation
Boundary value problems
Computational mathematics
Computational Mathematics and Numerical Analysis
Convergence
Efficiency
Eigenvalues
Eigenvectors
Estimates
Finite element analysis
Iterative methods
Lagrange multiplier
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Nonlinear equations
Theoretical
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA06fdAHdVNxOiUPPiga6Np0TR5VJgrbGH6MvZUuHzKQTtrp7_cmTVcVFRRaKDQJ4SY394TknoPQcSAYxD0_IiIJA0LZxCMsUD6hHSNf5Es9sbkwo140GLDxmA9dUlhe3nYvjyTtSv0h2Y23TTaxDy9MVMKX0QqEO2YEG-7uRxXVLrNSyOA-IQGwTF2qzPdtfA5HFcb8cixqo8315v_6uYU2HLrEF8V0qKMllTbQen9BzZo3UN15c45PHOX06Tbq2Tzcp2wqcd9KSmPAsnhQ0GgkGe4azk7DC67wsFCgyfElxD-JZymGdRIAJL61_MwwzDvo8br7cHVDnM4CEeCAcyIDNRFchonwaKREEgSCSkap1vDVTgT3teChpBqgZCcx2okehRqh0JFJMBTBLqqls1TtIRwqzliQTKjqwJ6beYkfMS11xLkAYMTCJmqX5o6FIyE3WhjPcUWfbMwXg_lia76YN9HZos5LQcHxa-lWOYqxc8c89jmsXPB40IHzctSq3z-3tv-34gdozcjRF7e6W6g2z17VIVoVb_Npnh3ZafoO8c_fIw
  priority: 102
  providerName: Springer Nature
Title Multigrid Method for Nonlinear Eigenvalue Problems Based on Newton Iteration
URI https://link.springer.com/article/10.1007/s10915-022-02070-9
https://www.proquest.com/docview/2918318305
Volume 94
WOSCitedRecordID wos000912388700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database ProQuest
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7o9ODF3-J0jhw8KBrs2mRNTqIyUdQxpo7hpXRJKoJsuk7_fl_SzKLgLkJbCm1D6Xsv72uS930A-5ESmPfCmKqUR5SJQUBFZELKmla-KNTZwNXC9G7jdlv0-7LjB9xyv6xy2ie6jlqPlB0jPwklOh9uAT99e6dWNcrOrnoJjXlYsCwJVrqhw59K0l3hRJExkDhF2Mx80YwvnZMNW5sc4o5uT-XPxFSizV8TpC7vXK78941XYdkjTnJWuMgazJnhOqz5mM7JgSeePtyAW1eN-zx-0eTOCUsTRLSkXZBppGPSssydlh3ckE6hQ5OTc8yCmoyGBHtLhJHk2rE0o7E34fGy9XBxRb3aAlUYhhOqIzNQUvNUBSw2Ko0ixbRgLMvwrJEqGWZKcs0yBJTN1CooBgyf4CqLbZmhiragMhwNzTYQbqQQUTpgpol_3iJIw1hkOoulVAiPBK9CY_qpE-WpyK0ixmtSkihb8yRonsSZJ5FVOPp-5q0g4ph5d21qk8QHZZ6UBqnC8dSq5eW_W9uZ3douLFkR-mItdw0qk_GH2YNF9Tl5ycd1WDhvtTvdOszfxLTuHBSP3fveF9f-6EA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS-QwFD54A31x1d3F8ZoHBWU3bCdJJ8mDiFccZhx80MW3bidJlwGZ0ensyv6p_Y17krYWF_TNB6GFQptAm-9c0uR8H8AONwrjHpPUpDGnQvUjqrhjVLS8fBGzWT_Uwnzvyl5P3d7qqyn4W9XC-G2VlU8MjtqOjP9H_o1pBB8eUXx4_0C9apRfXa0kNApYdNyfR5yy5QftUxzfXcbOz65PLmipKkANwm1CLXd9o22cmkhIZ1LOjbBKiCzDq2ZqNMuMjq3IMHFqpV4pMBLYIjaZ9OV0hmO_0zAruJLerjqS1iS_Kogwo-HGFNN0URbplKV6uulroRmeaGZUPw-EdXb734JsiHPnH97bF1qCxTKjJkeFCSzDlBuuwHLps3KyVxJr73-Ebqg2_jkeWHIZhLMJZuykV5CFpGNy5plJPfu5I1eFzk5OjjHKWzIaEowGmCaTdmChRjB_gps3eavPMDMcDd0qkNhppXjaF64lcfoWpUyqzGZSa4Ppn4ob0KyGNjEl1bpX_LhLapJoD4cE4ZAEOCS6AV-e2twXRCOvPr1RYSApnU6e1ABowNcKRfXtl3tbe723bZi_uL7sJt12r7MOCwzTvGLf-gbMTMa_3CbMmd-TQT7eCuZA4Mdbo-sf_3FDZw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54Q_TBuzivefBB0bCuTdfk0dtwuI2BOvZW2lxEkDrW6e_3JO2cigoitFBoEsJJTs4Jyfd9AIeB5Bj3_IjKJAwo46lHeaB9yupWvshXJnVYmF4r6nR4vy-6H1D87rb7-EiywDRYlqZsVB0oU_0AfBM1iyz28cVJS8U0zDJ7kd7u1297E9pd7mSR0ZVCiokzK2Ez37fxOTRN8s0vR6Qu8jSW_9_nFVgqs05yVkyTVZjS2Rostt8pW_M1WC29PCdHJRX18Tq0HD73YfioSNtJTRPMcUmnoNdIhuTKcnlavnBNuoUyTU7OMS4q8pwRXD8xsSRNx9uMw78B942ru4trWuovUImOOaIq0KkUKkykxyItkyCQTHHGjMGvWiKFb6QIFTOYYtYTq6noMawRShNZ4KEMNmEme870FpBQC86DJGW6jntx7iV-xI0ykRASEyYeVqA2Nn0sS3Jyq5HxFE9ola35YjRf7MwXiwqcvNcZFNQcv5beHY9oXLppHvsCVzR8POzA6XgEJ79_bm37b8UPYL572Yhbzc7NDixYxfri4vcuzIyGL3oP5uTr6DEf7rvZ-wZD_Orr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multigrid+Method+for+Nonlinear+Eigenvalue+Problems+Based+on+Newton+Iteration&rft.jtitle=Journal+of+scientific+computing&rft.au=Xu%2C+Fei&rft.au=Xie%2C+Manting&rft.au=Yue%2C+Meiling&rft.date=2023-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=94&rft.issue=2&rft.spage=42&rft_id=info:doi/10.1007%2Fs10915-022-02070-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon