Artificial rabbits optimization algorithm with automatically DBSCAN clustering algorithm to similarity agent update for features selection problems

Feature selection is one of the important steps in data mining to reduce the dimensions of datasets. Due to the fact that feature selection is inherently a NP-hard problem, no deterministic algorithm has been identified to solve this problem in acceptable time. Meta-heuristic algorithms are reliable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing Jg. 81; H. 1; S. 150
Hauptverfasser: Hamdipour, Ali, Basiri, Abdolali, Zaare, Mostafa, Mirjalili, Seyedali
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.01.2025
Springer Nature B.V
Schlagworte:
ISSN:0920-8542, 1573-0484
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Feature selection is one of the important steps in data mining to reduce the dimensions of datasets. Due to the fact that feature selection is inherently a NP-hard problem, no deterministic algorithm has been identified to solve this problem in acceptable time. Meta-heuristic algorithms are reliable alternatives to solve such problems in acceptable time. In the literature, a large number of algorithms have been proposed to solve the feature selection problem using meta-heuristic optimization algorithms. In this work, a new feature selection algorithm based on ARO meta-heuristic algorithm and DBSCAN clustering algorithm with automatic adjustment of input parameters (ARO-DBSCAN) is proposed. Using side algorithms to improve the performance of meta-heuristic algorithms can potentially cause getting stuck in local optima. The method proposed in the work has improved the performance of the ARO meta-heuristic for the feature selection problem without increasing the probability stuck in local optima. The use of DBSCAN clustering algorithm, which is based on density, increases the exploitation of ARO in the search space while maintaining its exploration. As a result, the performance of the ARO algorithm increases significantly in feature selection problems. The proposed algorithm is compared with 8 state-of-the-art feature selection algorithms on the UCI benchmark datasets and three real-world high-dimensional datasets. Result of experiments show the better performance of ARO-DBSCAN algorithm in the appropriate execution time. Also, in high-dimensional data, the proposed method is able to significantly reduce the number of dataset features. which makes the analysis of these datasets more efficient. The source code for the algorithm being proposed is accessible to the public on https://github.com/alihamdipour/ARO-DBSCAN .
AbstractList Feature selection is one of the important steps in data mining to reduce the dimensions of datasets. Due to the fact that feature selection is inherently a NP-hard problem, no deterministic algorithm has been identified to solve this problem in acceptable time. Meta-heuristic algorithms are reliable alternatives to solve such problems in acceptable time. In the literature, a large number of algorithms have been proposed to solve the feature selection problem using meta-heuristic optimization algorithms. In this work, a new feature selection algorithm based on ARO meta-heuristic algorithm and DBSCAN clustering algorithm with automatic adjustment of input parameters (ARO-DBSCAN) is proposed. Using side algorithms to improve the performance of meta-heuristic algorithms can potentially cause getting stuck in local optima. The method proposed in the work has improved the performance of the ARO meta-heuristic for the feature selection problem without increasing the probability stuck in local optima. The use of DBSCAN clustering algorithm, which is based on density, increases the exploitation of ARO in the search space while maintaining its exploration. As a result, the performance of the ARO algorithm increases significantly in feature selection problems. The proposed algorithm is compared with 8 state-of-the-art feature selection algorithms on the UCI benchmark datasets and three real-world high-dimensional datasets. Result of experiments show the better performance of ARO-DBSCAN algorithm in the appropriate execution time. Also, in high-dimensional data, the proposed method is able to significantly reduce the number of dataset features. which makes the analysis of these datasets more efficient. The source code for the algorithm being proposed is accessible to the public on https://github.com/alihamdipour/ARO-DBSCAN.
Feature selection is one of the important steps in data mining to reduce the dimensions of datasets. Due to the fact that feature selection is inherently a NP-hard problem, no deterministic algorithm has been identified to solve this problem in acceptable time. Meta-heuristic algorithms are reliable alternatives to solve such problems in acceptable time. In the literature, a large number of algorithms have been proposed to solve the feature selection problem using meta-heuristic optimization algorithms. In this work, a new feature selection algorithm based on ARO meta-heuristic algorithm and DBSCAN clustering algorithm with automatic adjustment of input parameters (ARO-DBSCAN) is proposed. Using side algorithms to improve the performance of meta-heuristic algorithms can potentially cause getting stuck in local optima. The method proposed in the work has improved the performance of the ARO meta-heuristic for the feature selection problem without increasing the probability stuck in local optima. The use of DBSCAN clustering algorithm, which is based on density, increases the exploitation of ARO in the search space while maintaining its exploration. As a result, the performance of the ARO algorithm increases significantly in feature selection problems. The proposed algorithm is compared with 8 state-of-the-art feature selection algorithms on the UCI benchmark datasets and three real-world high-dimensional datasets. Result of experiments show the better performance of ARO-DBSCAN algorithm in the appropriate execution time. Also, in high-dimensional data, the proposed method is able to significantly reduce the number of dataset features. which makes the analysis of these datasets more efficient. The source code for the algorithm being proposed is accessible to the public on https://github.com/alihamdipour/ARO-DBSCAN .
ArticleNumber 150
Author Basiri, Abdolali
Hamdipour, Ali
Zaare, Mostafa
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: Ali
  surname: Hamdipour
  fullname: Hamdipour, Ali
  organization: Department of Mathematics and Computer Sciences, Damghan University
– sequence: 2
  givenname: Abdolali
  surname: Basiri
  fullname: Basiri, Abdolali
  email: basiri@du.ac.ir
  organization: Department of Mathematics and Computer Sciences, Damghan University
– sequence: 3
  givenname: Mostafa
  surname: Zaare
  fullname: Zaare, Mostafa
  organization: Department of Mathematics and Computer Sciences, Damghan University
– sequence: 4
  givenname: Seyedali
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  organization: Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Faculty of Electrical Engineering and Computer Science, VŠB-TU Ostrava
BookMark eNp9kc1u1DAUhS1UJKaFF2BliXXg-ieOZzkMFJAqWABr68ZxBldOHGxHaHgNXhh3Bqmoi278I5_vHuucS3Ixx9kR8pLBawbQvcmMcd41wGUDSoFq9BOyYW0nGpBaXpANbDk0upX8GbnM-RYApOjEhvzZpeJHbz0GmrDvfck0LsVP_jcWH2eK4RCTLz8m-quuFNcSp_piMYQjfff26373mdqw5uKSnw__yUukuY4JWK9Higc3F7ouAxZHx5jo6LCsyWWaXXD2ZLWk2Ac35efk6Yghuxf_9ivy_fr9t_3H5ubLh0_73U1jBduWZhDaDmzoJOta3ULfg90qKQfQ46iEcANI6wZE5GLLlOpbxtDpllmwvJ47cUVenedW45-ry8XcxjXN1dII3irFanaiqvRZZVPMObnRWF9O2ZSEPhgG5q4Cc67A1ArMqQKjK8ofoEvyE6bj45A4Q3m5S9Sl-189Qv0FrVqezQ
CitedBy_id crossref_primary_10_1080_00207543_2025_2506094
crossref_primary_10_1007_s11227_024_06790_7
crossref_primary_10_3390_pr13082390
crossref_primary_10_1016_j_array_2025_100409
crossref_primary_10_2166_wst_2025_096
crossref_primary_10_1007_s13369_025_10224_8
Cites_doi 10.1145/304181.304187
10.1109/JSTARS.2012.2185822
10.1016/j.asoc.2023.110031
10.1016/j.eswa.2019.05.035
10.1016/j.knosys.2021.107283
10.1016/j.asoc.2020.106794
10.1016/j.cose.2017.06.005
10.1016/j.ygeno.2011.04.011
10.1016/j.eswa.2008.08.022
10.1016/j.engappai.2022.105082
10.1016/j.knosys.2019.105190
10.1177/003754970107600201
10.1007/s10489-021-03118-3
10.1109/ACCESS.2023.3298955
10.1145/3068335
10.1016/j.advengsoft.2013.03.004
10.1016/j.asoc.2022.109464
10.1016/j.advengsoft.2013.12.007
10.1016/j.advengsoft.2016.01.008
10.1016/j.cie.2020.106559
10.1016/j.asoc.2015.10.034
10.1109/ACCESS.2019.2931334
10.1016/j.knosys.2015.12.022
10.1007/s00521-019-04159-z
10.1016/j.knosys.2011.07.001
10.1016/j.eswa.2013.09.004
10.1016/j.eswa.2022.119130
10.1016/j.neucom.2022.04.083
10.1016/j.swevo.2018.02.013
10.1016/S0004-3702(97)00043-X
10.1007/s00521-011-0632-4
10.1002/int.22535
10.1016/j.patrec.2006.09.003
10.1016/j.neucom.2017.04.053
10.1109/ACCESS.2020.2999093
10.1016/j.engappai.2017.01.006
10.3389/fenrg.2021.652801
10.1016/j.asoc.2017.11.006
10.1016/j.asoc.2015.03.003
10.1016/j.eswa.2006.04.010
10.1007/s12559-019-09668-6
10.1109/ACCESS.2020.2996611
10.1109/ICCCCM.2016.7918233
10.1214/ss/1177011077
10.1109/MHS.1995.494215
10.1109/ICSSSM.2007.4280175
10.1109/ACCESS.2024.3438104
10.1007/978-3-642-32894-7_27
10.1109/CEC.1999.782657
10.1109/ICADIWT.2014.6814687
10.1109/ACCESS.2023.3312022
10.1007/s13369-024-09222-z
ContentType Journal Article
Copyright This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024.
Copyright_xml – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-024-06606-8
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
ExternalDocumentID 10_1007_s11227_024_06606_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c319t-d38cd1d74175850bb0c9644d08ff633ed04cedaaa239166b511ae851c0c251173
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001351503500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Sun Nov 30 05:06:03 EST 2025
Sat Nov 29 04:27:48 EST 2025
Tue Nov 18 21:35:40 EST 2025
Fri Feb 21 02:36:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords DBSCAN
Feature selection
Artificial rabbits optimization
ARO
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d38cd1d74175850bb0c9644d08ff633ed04cedaaa239166b511ae851c0c251173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256610483
PQPubID 2043774
ParticipantIDs proquest_journals_3256610483
crossref_citationtrail_10_1007_s11227_024_06606_8
crossref_primary_10_1007_s11227_024_06606_8
springer_journals_10_1007_s11227_024_06606_8
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Mirjalili, Mirjalili, Lewis (CR16) 2014; 69
Ester, Kriegel, Sander, Xu (CR22) 1996; 96
Mafarja, Mirjalili (CR52) 2017; 260
Karimi, Dowlatshahi, Hashemi (CR35) 2023; 214
Moosavi, Bardsiri (CR13) 2017; 60
Zhou, Lin, Guo (CR28) 2021; 98
Kanan, Faez (CR33) 2008; 205
CR31
Balochian, Baloochian (CR44) 2019; 134
Ghosh, Singh, Hong, Geem, Sarkar (CR45) 2020; 8
Abdelhamid, El-Kenawy, Ibrahim, Eid, Khafaga, Alhussan, Mirjalili, Khodadadi, Lim, Shams (CR50) 2023; 11
Oreski, Oreski (CR23) 2014; 41
Yang, Du, Chen (CR29) 2012; 5
Takieldeen, El-kenawy, Hadwan, Zaki (CR49) 2022; 72
Mirjalili, Lewis (CR38) 2016; 95
Starczewski, Goetzen, Er (CR57) 2020; 10
Chen, Su, Chen, Wang (CR27) 2012; 21
Mafarja, Mirjalili (CR39) 2018; 62
Sawant (CR56) 2014; 1
CR6
CR5
CR7
Pan, Chen, Xiong (CR43) 2023; 135
Wang, Yang, Teng, Xia, Jensen (CR26) 2007; 28
Abdollahzadeh, Soleimanian Gharehchopogh, Mirjalili (CR9) 2021; 36
Kaveh, Farhoudi (CR11) 2013; 59
CR47
Abdulwahab, Ajitha, Saif (CR3) 2022; 52
Pan (CR12) 2012; 26
Koçer, Türkoğlu, Uymaz (CR15) 2023; 41
Geem, Kim, Loganathan (CR40) 2001; 76
Schubert, Sander, Ester, Kriegel, Xu (CR54) 2017; 42
Wang, Chen, Jiang, Li, Li, Yang, Liao, Lian, Lv, Wang (CR24) 2011; 98
Khammassi, Krichen (CR25) 2017; 70
CR18
CR17
CR59
CR14
Pramanik, Sarkar, Sarkar (CR30) 2022; 128
Kohavi, John (CR2) 1997; 97
Fan, Chen, Wang, Wang, Huang (CR1) 2021; 9
Uymaz, Tezel, Yel (CR19) 2015; 31
Zervoudakis, Tsafarakis (CR10) 2020; 145
CR53
Ankerst, Breunig, Kriegel, Sander (CR58) 1999; 28
CR51
Aghdam, Ghasem-Aghaee, Basiri (CR34) 2009; 36
Ahmed, Ghosh, Mirjalili, Sarkar (CR37) 2021; 228
Ahmed, Ghosh, Singh, Geem, Sarkar (CR41) 2020; 8
Mafarja, Qasem, Heidari, Aljarah, Faris, Mirjalili (CR42) 2020; 12
Tharwat, Gabel (CR46) 2020; 32
Faramarzi, Heidarinejad, Stephens, Mirjalili (CR36) 2020; 191
Wang, Cao, Zhang, Mirjalili, Zhao (CR21) 2022; 114
Dokeroglu, Deniz, Kiziloz (CR4) 2022; 494
Muthiah-Nakarajan, Noel (CR20) 2016; 38
Sivagaminathan, Ramakrishnan (CR32) 2007; 33
Jain, Singh, Rani (CR8) 2019; 44
Mirjalili (CR48) 2016; 96
Lai, Zhou, Hu, Bian, Song (CR55) 2019; 7
B Abdollahzadeh (6606_CR9) 2021; 36
M Ankerst (6606_CR58) 1999; 28
HM Abdulwahab (6606_CR3) 2022; 52
6606_CR47
C Fan (6606_CR1) 2021; 9
M Ester (6606_CR22) 1996; 96
F Karimi (6606_CR35) 2023; 214
K Sawant (6606_CR56) 2014; 1
KK Ghosh (6606_CR45) 2020; 8
MH Aghdam (6606_CR34) 2009; 36
S Mirjalili (6606_CR38) 2016; 95
S Balochian (6606_CR44) 2019; 134
AA Abdelhamid (6606_CR50) 2023; 11
ZW Geem (6606_CR40) 2001; 76
X Wang (6606_CR26) 2007; 28
HR Kanan (6606_CR33) 2008; 205
W Lai (6606_CR55) 2019; 7
R Pramanik (6606_CR30) 2022; 128
A Faramarzi (6606_CR36) 2020; 191
6606_CR5
6606_CR14
6606_CR7
V Muthiah-Nakarajan (6606_CR20) 2016; 38
6606_CR6
6606_CR17
6606_CR18
6606_CR59
RK Sivagaminathan (6606_CR32) 2007; 33
SHS Moosavi (6606_CR13) 2017; 60
C Khammassi (6606_CR25) 2017; 70
K Zervoudakis (6606_CR10) 2020; 145
6606_CR53
L-F Chen (6606_CR27) 2012; 21
H Pan (6606_CR43) 2023; 135
S Ahmed (6606_CR41) 2020; 8
6606_CR51
Y Wang (6606_CR24) 2011; 98
M Jain (6606_CR8) 2019; 44
A Kaveh (6606_CR11) 2013; 59
S Ahmed (6606_CR37) 2021; 228
SA Uymaz (6606_CR19) 2015; 31
A Tharwat (6606_CR46) 2020; 32
H Yang (6606_CR29) 2012; 5
Y Zhou (6606_CR28) 2021; 98
MM Mafarja (6606_CR52) 2017; 260
M Mafarja (6606_CR42) 2020; 12
L Wang (6606_CR21) 2022; 114
S Oreski (6606_CR23) 2014; 41
HG Koçer (6606_CR15) 2023; 41
R Kohavi (6606_CR2) 1997; 97
S Mirjalili (6606_CR48) 2016; 96
W-T Pan (6606_CR12) 2012; 26
AE Takieldeen (6606_CR49) 2022; 72
T Dokeroglu (6606_CR4) 2022; 494
M Mafarja (6606_CR39) 2018; 62
S Mirjalili (6606_CR16) 2014; 69
E Schubert (6606_CR54) 2017; 42
A Starczewski (6606_CR57) 2020; 10
6606_CR31
References_xml – volume: 28
  start-page: 49
  issue: 2
  year: 1999
  end-page: 60
  ident: CR58
  article-title: Optics: ordering points to identify the clustering structure
  publication-title: ACM SIGMOD Rec
  doi: 10.1145/304181.304187
– volume: 5
  start-page: 544
  issue: 2
  year: 2012
  end-page: 554
  ident: CR29
  article-title: Particle swarm optimization-based hyperspectral dimensionality reduction for urban land cover classification
  publication-title: IEEE J Sel Topics Appl Earth Obs Remote Sensing
  doi: 10.1109/JSTARS.2012.2185822
– volume: 135
  start-page: 110031
  year: 2023
  ident: CR43
  article-title: A high-dimensional feature selection method based on modified gray wolf optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110031
– ident: CR51
– volume: 134
  start-page: 178
  year: 2019
  end-page: 191
  ident: CR44
  article-title: Social mimic optimization algorithm and engineering applications
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.05.035
– volume: 228
  start-page: 107283
  year: 2021
  ident: CR37
  article-title: Aieou: automata-based improved equilibrium optimizer with u-shaped transfer function for feature selection
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107283
– volume: 98
  start-page: 106794
  year: 2021
  ident: CR28
  article-title: Feature subset selection via an improved discretization-based particle swarm optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106794
– volume: 70
  start-page: 255
  year: 2017
  end-page: 277
  ident: CR25
  article-title: A ga-lr wrapper approach for feature selection in network intrusion detection.
  publication-title: Comput Security
  doi: 10.1016/j.cose.2017.06.005
– volume: 41
  start-page: 101388
  year: 2023
  ident: CR15
  article-title: Chaotic golden ratio guided local search for big data optimization
  publication-title: Eng Sci Technol Int J
– volume: 98
  start-page: 73
  issue: 2
  year: 2011
  end-page: 78
  ident: CR24
  article-title: Predicting human microrna precursors based on an optimized feature subset generated by ga-svm
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2011.04.011
– volume: 36
  start-page: 6843
  issue: 3
  year: 2009
  end-page: 6853
  ident: CR34
  article-title: Text feature selection using ant colony optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.08.022
– volume: 114
  start-page: 105082
  year: 2022
  ident: CR21
  article-title: Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105082
– volume: 191
  start-page: 105190
  year: 2020
  ident: CR36
  article-title: Equilibrium optimizer: a novel optimization algorithm
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.105190
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  end-page: 68
  ident: CR40
  article-title: A new heuristic optimization algorithm harmony search
  publication-title: simulation
  doi: 10.1177/003754970107600201
– volume: 52
  start-page: 13568
  issue: 12
  year: 2022
  end-page: 13613
  ident: CR3
  article-title: Feature selection techniques in the context of big data: taxonomy and analysis
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-03118-3
– volume: 11
  start-page: 79750
  year: 2023
  end-page: 79776
  ident: CR50
  article-title: Innovative feature selection method based on hybrid sine cosine and dipper throated optimization algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3298955
– volume: 10
  start-page: 209
  year: 2020
  ident: CR57
  article-title: A new method for automatic determining of the dbscan parameters
  publication-title: J Artif Int Soft Comput Res
– volume: 42
  start-page: 1
  issue: 3
  year: 2017
  end-page: 21
  ident: CR54
  article-title: Dbscan revisited, revisited: why and how you should (still) use dbscan
  publication-title: ACM Trans Database Syst (TODS)
  doi: 10.1145/3068335
– volume: 59
  start-page: 53
  year: 2013
  end-page: 70
  ident: CR11
  article-title: A new optimization method: Dolphin echolocation
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.03.004
– volume: 128
  start-page: 109464
  year: 2022
  ident: CR30
  article-title: An adaptive and altruistic pso-based deep feature selection method for pneumonia detection from chest x-rays
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109464
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR16
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: CR38
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: CR5
– volume: 145
  start-page: 106559
  year: 2020
  ident: CR10
  article-title: A mayfly optimization algorithm
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2020.106559
– volume: 96
  start-page: 226
  year: 1996
  end-page: 231
  ident: CR22
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: In: Kdd
– volume: 38
  start-page: 771
  year: 2016
  end-page: 787
  ident: CR20
  article-title: Galactic swarm optimization: a new global optimization metaheuristic inspired by galactic motion
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.10.034
– volume: 7
  start-page: 104085
  year: 2019
  end-page: 104095
  ident: CR55
  article-title: A new dbscan parameters determination method based on improved mvo
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2931334
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: CR48
  article-title: Sca: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– ident: CR18
– volume: 32
  start-page: 6925
  year: 2020
  end-page: 6938
  ident: CR46
  article-title: Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04159-z
– ident: CR47
– volume: 26
  start-page: 69
  year: 2012
  end-page: 74
  ident: CR12
  article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2011.07.001
– volume: 41
  start-page: 2052
  issue: 4
  year: 2014
  end-page: 2064
  ident: CR23
  article-title: Genetic algorithm-based heuristic for feature selection in credit risk assessment
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.09.004
– volume: 214
  start-page: 119130
  year: 2023
  ident: CR35
  article-title: Semiaco: a semi-supervised feature selection based on ant colony optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119130
– volume: 494
  start-page: 269
  year: 2022
  end-page: 296
  ident: CR4
  article-title: A comprehensive survey on recent metaheuristics for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.083
– ident: CR14
– ident: CR53
– volume: 44
  start-page: 148
  year: 2019
  end-page: 175
  ident: CR8
  article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2018.02.013
– volume: 1
  start-page: 329
  issue: 4
  year: 2014
  end-page: 334
  ident: CR56
  article-title: Adaptive methods for determining dbscan parameters
  publication-title: Int J Innov Sci, Eng Technol
– volume: 97
  start-page: 273
  issue: 1–2
  year: 1997
  end-page: 324
  ident: CR2
  article-title: Wrappers for feature subset selection
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 21
  start-page: 2087
  year: 2012
  end-page: 2096
  ident: CR27
  article-title: Particle swarm optimization for feature selection with application in obstructive sleep apnea diagnosis
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-011-0632-4
– ident: CR6
– volume: 36
  start-page: 5887
  issue: 10
  year: 2021
  end-page: 5958
  ident: CR9
  article-title: Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems
  publication-title: Int J Intell Syst
  doi: 10.1002/int.22535
– volume: 28
  start-page: 459
  issue: 4
  year: 2007
  end-page: 471
  ident: CR26
  article-title: Feature selection based on rough sets and particle swarm optimization
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2006.09.003
– volume: 260
  start-page: 302
  year: 2017
  end-page: 312
  ident: CR52
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– volume: 8
  start-page: 102629
  year: 2020
  end-page: 102645
  ident: CR41
  article-title: Hybrid of harmony search algorithm and ring theory-based evolutionary algorithm for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2999093
– volume: 60
  start-page: 1
  year: 2017
  end-page: 15
  ident: CR13
  article-title: Satin bowerbird optimizer: A new optimization algorithm to optimize anfis for software development effort estimation
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2017.01.006
– volume: 72
  start-page: 1465
  year: 2022
  end-page: 1481
  ident: CR49
  article-title: Dipper throated optimization algorithm for unconstrained function and feature selection
  publication-title: Comput Mater Contin
– volume: 9
  start-page: 652801
  year: 2021
  ident: CR1
  article-title: A review on data preprocessing techniques toward efficient and reliable knowledge discovery from building operational data
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2021.652801
– ident: CR17
– ident: CR31
– volume: 62
  start-page: 441
  year: 2018
  end-page: 453
  ident: CR39
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.11.006
– volume: 31
  start-page: 153
  year: 2015
  end-page: 171
  ident: CR19
  article-title: Artificial algae algorithm (aaa) for nonlinear global optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.03.003
– volume: 33
  start-page: 49
  issue: 1
  year: 2007
  end-page: 60
  ident: CR32
  article-title: A hybrid approach for feature subset selection using neural networks and ant colony optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.04.010
– ident: CR7
– volume: 205
  start-page: 716
  issue: 2
  year: 2008
  end-page: 725
  ident: CR33
  article-title: An improved feature selection method based on ant colony optimization (aco) evaluated on face recognition system
  publication-title: Appl Math Comput
– ident: CR59
– volume: 12
  start-page: 150
  year: 2020
  end-page: 175
  ident: CR42
  article-title: Efficient hybrid nature-inspired binary optimizers for feature selection
  publication-title: Cogn Comput
  doi: 10.1007/s12559-019-09668-6
– volume: 8
  start-page: 97890
  year: 2020
  end-page: 97906
  ident: CR45
  article-title: Binary social mimic optimization algorithm with x-shaped transfer function for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2996611
– volume: 1
  start-page: 329
  issue: 4
  year: 2014
  ident: 6606_CR56
  publication-title: Int J Innov Sci, Eng Technol
– volume: 32
  start-page: 6925
  year: 2020
  ident: 6606_CR46
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04159-z
– volume: 96
  start-page: 226
  year: 1996
  ident: 6606_CR22
  publication-title: In: Kdd
– volume: 98
  start-page: 106794
  year: 2021
  ident: 6606_CR28
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106794
– volume: 260
  start-page: 302
  year: 2017
  ident: 6606_CR52
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– volume: 10
  start-page: 209
  year: 2020
  ident: 6606_CR57
  publication-title: J Artif Int Soft Comput Res
– ident: 6606_CR7
  doi: 10.1109/ICCCCM.2016.7918233
– volume: 69
  start-page: 46
  year: 2014
  ident: 6606_CR16
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 7
  start-page: 104085
  year: 2019
  ident: 6606_CR55
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2931334
– ident: 6606_CR51
  doi: 10.1214/ss/1177011077
– volume: 97
  start-page: 273
  issue: 1–2
  year: 1997
  ident: 6606_CR2
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 494
  start-page: 269
  year: 2022
  ident: 6606_CR4
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.083
– volume: 36
  start-page: 5887
  issue: 10
  year: 2021
  ident: 6606_CR9
  publication-title: Int J Intell Syst
  doi: 10.1002/int.22535
– volume: 8
  start-page: 97890
  year: 2020
  ident: 6606_CR45
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2996611
– volume: 205
  start-page: 716
  issue: 2
  year: 2008
  ident: 6606_CR33
  publication-title: Appl Math Comput
– volume: 191
  start-page: 105190
  year: 2020
  ident: 6606_CR36
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.105190
– volume: 135
  start-page: 110031
  year: 2023
  ident: 6606_CR43
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110031
– volume: 5
  start-page: 544
  issue: 2
  year: 2012
  ident: 6606_CR29
  publication-title: IEEE J Sel Topics Appl Earth Obs Remote Sensing
  doi: 10.1109/JSTARS.2012.2185822
– volume: 114
  start-page: 105082
  year: 2022
  ident: 6606_CR21
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105082
– volume: 26
  start-page: 69
  year: 2012
  ident: 6606_CR12
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2011.07.001
– volume: 31
  start-page: 153
  year: 2015
  ident: 6606_CR19
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.03.003
– volume: 128
  start-page: 109464
  year: 2022
  ident: 6606_CR30
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109464
– ident: 6606_CR6
  doi: 10.1109/MHS.1995.494215
– volume: 98
  start-page: 73
  issue: 2
  year: 2011
  ident: 6606_CR24
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2011.04.011
– volume: 60
  start-page: 1
  year: 2017
  ident: 6606_CR13
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2017.01.006
– volume: 96
  start-page: 120
  year: 2016
  ident: 6606_CR48
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 59
  start-page: 53
  year: 2013
  ident: 6606_CR11
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.03.004
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 6606_CR40
  publication-title: simulation
  doi: 10.1177/003754970107600201
– ident: 6606_CR59
  doi: 10.1109/ICSSSM.2007.4280175
– volume: 52
  start-page: 13568
  issue: 12
  year: 2022
  ident: 6606_CR3
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-03118-3
– volume: 28
  start-page: 459
  issue: 4
  year: 2007
  ident: 6606_CR26
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2006.09.003
– ident: 6606_CR18
  doi: 10.1109/ACCESS.2024.3438104
– volume: 21
  start-page: 2087
  year: 2012
  ident: 6606_CR27
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-011-0632-4
– volume: 214
  start-page: 119130
  year: 2023
  ident: 6606_CR35
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119130
– volume: 38
  start-page: 771
  year: 2016
  ident: 6606_CR20
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.10.034
– volume: 134
  start-page: 178
  year: 2019
  ident: 6606_CR44
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.05.035
– volume: 72
  start-page: 1465
  year: 2022
  ident: 6606_CR49
  publication-title: Comput Mater Contin
– volume: 228
  start-page: 107283
  year: 2021
  ident: 6606_CR37
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107283
– ident: 6606_CR5
– volume: 44
  start-page: 148
  year: 2019
  ident: 6606_CR8
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2018.02.013
– volume: 41
  start-page: 2052
  issue: 4
  year: 2014
  ident: 6606_CR23
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.09.004
– ident: 6606_CR14
  doi: 10.1007/978-3-642-32894-7_27
– volume: 33
  start-page: 49
  issue: 1
  year: 2007
  ident: 6606_CR32
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.04.010
– volume: 12
  start-page: 150
  year: 2020
  ident: 6606_CR42
  publication-title: Cogn Comput
  doi: 10.1007/s12559-019-09668-6
– volume: 8
  start-page: 102629
  year: 2020
  ident: 6606_CR41
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2999093
– volume: 95
  start-page: 51
  year: 2016
  ident: 6606_CR38
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 42
  start-page: 1
  issue: 3
  year: 2017
  ident: 6606_CR54
  publication-title: ACM Trans Database Syst (TODS)
  doi: 10.1145/3068335
– volume: 28
  start-page: 49
  issue: 2
  year: 1999
  ident: 6606_CR58
  publication-title: ACM SIGMOD Rec
  doi: 10.1145/304181.304187
– ident: 6606_CR31
  doi: 10.1109/CEC.1999.782657
– volume: 62
  start-page: 441
  year: 2018
  ident: 6606_CR39
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.11.006
– volume: 70
  start-page: 255
  year: 2017
  ident: 6606_CR25
  publication-title: Comput Security
  doi: 10.1016/j.cose.2017.06.005
– volume: 36
  start-page: 6843
  issue: 3
  year: 2009
  ident: 6606_CR34
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.08.022
– volume: 9
  start-page: 652801
  year: 2021
  ident: 6606_CR1
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2021.652801
– volume: 11
  start-page: 79750
  year: 2023
  ident: 6606_CR50
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3298955
– ident: 6606_CR53
  doi: 10.1109/ICADIWT.2014.6814687
– volume: 41
  start-page: 101388
  year: 2023
  ident: 6606_CR15
  publication-title: Eng Sci Technol Int J
– volume: 145
  start-page: 106559
  year: 2020
  ident: 6606_CR10
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2020.106559
– ident: 6606_CR47
  doi: 10.1109/ACCESS.2023.3312022
– ident: 6606_CR17
  doi: 10.1007/s13369-024-09222-z
SSID ssj0004373
Score 2.410278
Snippet Feature selection is one of the important steps in data mining to reduce the dimensions of datasets. Due to the fact that feature selection is inherently a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 150
SubjectTerms Accuracy
Algorithms
Classification
Clustering
Collaboration
Compilers
Computer Science
Data mining
Datasets
Feature selection
Heuristic
Heuristic methods
Interpreters
Machine learning
Methods
Neural networks
Optimization
Optimization algorithms
Performance enhancement
Performance evaluation
Processor Architectures
Programming Languages
Source code
Title Artificial rabbits optimization algorithm with automatically DBSCAN clustering algorithm to similarity agent update for features selection problems
URI https://link.springer.com/article/10.1007/s11227-024-06606-8
https://www.proquest.com/docview/3256610483
Volume 81
WOSCitedRecordID wos001351503500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcOBCWUWhIB-4QaQ0q3sshYpThSig3iJvhUppUzUpEt_BDzPjOgQQIME5E8eyPfYbT948Qk6ZiDwdsdCRmB9EbVuHhUI6HuciFJ6rVCCN2ETc77PhsH1jSWF5-bd7mZI0O3VFdmt5XuzAmYKseYiD2SpZg-OOoTveDh4qNqS_zCu3ITBiYeBZqsz3bXw-jiqM-SUtak6bXv1__dwimxZd0s5yOWyTFT3dIfVSuYFaR94lr2ixrB1B51yIcZHTDDaPiWVlUp4-ZvNx8TSheFFL-aLITG1XnqYv9PJi0O30qUwXWGUB-vbBvMhoDs1AvAzwnnIkbtHFDK8VKMBjOtKmkGhOc6O_g5-ykjb5HrnvXd11rx0rz-BI8NvCUT6TqqUAkmDM4QrhyjagK-Wy0Sjyfa3cQGrFOfeQ3BsJgHZcA8CTrsS4Jvb3SW2aTfUBEseDKBCKh3HMg1EccgA5scSMsNAYxDVIq5ylRNra5SihkSZV1WUc9QRGPTGjnrAGOXt_Z7as3PGrdbOc_MR6cZ74gAcBXgbMb5DzcrKrxz-3dvg38yOy4aGssLnZaZJaMV_oY7Iun4txPj8xq_sNWJP1zg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELXYJLhQVlFWH7hBpDSre2QViFIhKKi3yFuhUmhQkyLxHfwwM65DAAESnDNxIm_zxuM3j5BdJiJPRyx0JOYHUdvWYaGQjse5CIXnKhVIIzYRt9us221eWVJYXt52L1OSZqeuyG4Nz4sd8CnImoc4mE2S6QA8Fl7ku765q9iQ_jiv3ITAiIWBZ6ky37fx2R1VGPNLWtR4m9Pa__5zgcxbdEkPxtNhkUzowRKplcoN1C7kZfKKFuPaEXTIhegXOc1g83i0rEzK0_ts2C8eHike1FI-KjJT25Wn6Qs9Prw5OmhTmY6wygL82wfzIqM5NAPxMsB7ypG4RUdPeKxAAR7TnjaFRHOaG_0d_JSVtMlXyO3pSefozLHyDI6EdVs4ymdSNRRAEow5XCFc2QR0pVzW60W-r5UbSK045x6SeyMB0I5rAHjSlRjXxP4qmRpkA72GxPEgCoTiYRzzoBeHHEBOLDEjLDQGcXXSKEcpkbZ2OUpopElVdRl7PYFeT0yvJ6xO9t7feRpX7vjVerMc_MSu4jzxAQ8CvAyYXyf75WBXj39ubf1v5jtk9qxz2Upa5-2LDTLnocSwOeXZJFPFcKS3yIx8Lvr5cNvM9Dflnfiy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ZSsNAFB3cEF-sK1arzoNvGkyzTh_diqIUwQXfwmzRQtqUJhX8Dn_YeyeJUVFBfM7NJMySOXduzjmE7DERODpgviWxPojethbzhbQczoUvHFspTxqzibDXYw8PnesPLH7zt3tVkiw4DajSNMwPRyo-rIlvbccJLdhfkEEPOTGbJrMemgZhvn5zXzMj3aLG3IEkifmeU9Jmvm_j89ZU480vJVKz83Qb_3_nJbJYok56VEyTZTKlhyukUTk60HKBr5JXjCg0JeiYC9HPM5rCR2VQsjUpTx7TcT9_GlA8wKV8kqdG85UnyQs9Pb45OepRmUxQfQHe80N4ntIMmoE8GmA_5UjoopMRHjdQgM001kZgNKOZ8eXBR5VWN9kaueue3Z6cW6VtgyVhPeeWcplUbQVQBXMRWwhbdgB1KZvFceC6Wtme1Ipz7iDpNxAA-bgG4CdtiflO6K6TmWE61BtIKPcCTyjuhyH34tDnAH5CiZVioTG5a5J2NWKRLDXN0VojiWo1Zuz1CHo9Mr0esSbZf79nVCh6_BrdqiZCVK7uLHIBJwLs9JjbJAfVwNeXf25t82_hu2T--rQbXV30LrfIgoPOw-bwp0Vm8vFEb5M5-Zz3s_GOmfRvot4BpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+rabbits+optimization+algorithm+with+automatically+DBSCAN+clustering+algorithm+to+similarity+agent+update+for+features+selection+problems&rft.jtitle=The+Journal+of+supercomputing&rft.au=Hamdipour%2C+Ali&rft.au=Basiri%2C+Abdolali&rft.au=Zaare%2C+Mostafa&rft.au=Mirjalili%2C+Seyedali&rft.date=2025-01-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=81&rft.issue=1&rft_id=info:doi/10.1007%2Fs11227-024-06606-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_024_06606_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon