A hybrid teaching-learning-based optimization algorithm for QoS-aware manufacturing cloud service composition

Quality of service (QoS)-aware manufacturing cloud service composition (QoS-MCSC) is one of the key issues in Cloud manufacturing (CMfg). More and more manufacturing cloud services offering the same or similar functionality but different QoS attributes are provided in the CMfg platform. It is a chal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computing Jg. 104; H. 11; S. 2489 - 2509
Hauptverfasser: Jin, Hong, Jiang, Cheng, Lv, Shengping, He, Haiping, Liao, Xinting
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Vienna Springer Vienna 01.11.2022
Springer Nature B.V
Schlagworte:
ISSN:0010-485X, 1436-5057
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quality of service (QoS)-aware manufacturing cloud service composition (QoS-MCSC) is one of the key issues in Cloud manufacturing (CMfg). More and more manufacturing cloud services offering the same or similar functionality but different QoS attributes are provided in the CMfg platform. It is a challenging issue to construct an optimal composite service satisfying customers’ requirements. In this study, a novel hybrid teaching-learning-based optimization algorithm is proposed to solve QoS-MCSC problems. It integrates the advantages of uniform mutation, adaptive flower pollination algorithm, and teaching-learning-based optimization algorithm. The experimental results show that the proposed algorithm finds higher quality results than other compared algorithms.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0010-485X
1436-5057
DOI:10.1007/s00607-022-01083-4