A hybrid teaching-learning-based optimization algorithm for QoS-aware manufacturing cloud service composition

Quality of service (QoS)-aware manufacturing cloud service composition (QoS-MCSC) is one of the key issues in Cloud manufacturing (CMfg). More and more manufacturing cloud services offering the same or similar functionality but different QoS attributes are provided in the CMfg platform. It is a chal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computing Ročník 104; číslo 11; s. 2489 - 2509
Hlavní autoři: Jin, Hong, Jiang, Cheng, Lv, Shengping, He, Haiping, Liao, Xinting
Médium: Journal Article
Jazyk:angličtina
Vydáno: Vienna Springer Vienna 01.11.2022
Springer Nature B.V
Témata:
ISSN:0010-485X, 1436-5057
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Quality of service (QoS)-aware manufacturing cloud service composition (QoS-MCSC) is one of the key issues in Cloud manufacturing (CMfg). More and more manufacturing cloud services offering the same or similar functionality but different QoS attributes are provided in the CMfg platform. It is a challenging issue to construct an optimal composite service satisfying customers’ requirements. In this study, a novel hybrid teaching-learning-based optimization algorithm is proposed to solve QoS-MCSC problems. It integrates the advantages of uniform mutation, adaptive flower pollination algorithm, and teaching-learning-based optimization algorithm. The experimental results show that the proposed algorithm finds higher quality results than other compared algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0010-485X
1436-5057
DOI:10.1007/s00607-022-01083-4