A hybrid teaching-learning-based optimization algorithm for QoS-aware manufacturing cloud service composition
Quality of service (QoS)-aware manufacturing cloud service composition (QoS-MCSC) is one of the key issues in Cloud manufacturing (CMfg). More and more manufacturing cloud services offering the same or similar functionality but different QoS attributes are provided in the CMfg platform. It is a chal...
Saved in:
| Published in: | Computing Vol. 104; no. 11; pp. 2489 - 2509 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Vienna
Springer Vienna
01.11.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0010-485X, 1436-5057 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Quality of service (QoS)-aware manufacturing cloud service composition (QoS-MCSC) is one of the key issues in Cloud manufacturing (CMfg). More and more manufacturing cloud services offering the same or similar functionality but different QoS attributes are provided in the CMfg platform. It is a challenging issue to construct an optimal composite service satisfying customers’ requirements. In this study, a novel hybrid teaching-learning-based optimization algorithm is proposed to solve QoS-MCSC problems. It integrates the advantages of uniform mutation, adaptive flower pollination algorithm, and teaching-learning-based optimization algorithm. The experimental results show that the proposed algorithm finds higher quality results than other compared algorithms. |
|---|---|
| AbstractList | Quality of service (QoS)-aware manufacturing cloud service composition (QoS-MCSC) is one of the key issues in Cloud manufacturing (CMfg). More and more manufacturing cloud services offering the same or similar functionality but different QoS attributes are provided in the CMfg platform. It is a challenging issue to construct an optimal composite service satisfying customers’ requirements. In this study, a novel hybrid teaching-learning-based optimization algorithm is proposed to solve QoS-MCSC problems. It integrates the advantages of uniform mutation, adaptive flower pollination algorithm, and teaching-learning-based optimization algorithm. The experimental results show that the proposed algorithm finds higher quality results than other compared algorithms. |
| Author | Jin, Hong Jiang, Cheng Lv, Shengping Liao, Xinting He, Haiping |
| Author_xml | – sequence: 1 givenname: Hong surname: Jin fullname: Jin, Hong organization: College of Engineering, South China Agricultural University – sequence: 2 givenname: Cheng surname: Jiang fullname: Jiang, Cheng organization: College of Engineering, South China Agricultural University – sequence: 3 givenname: Shengping surname: Lv fullname: Lv, Shengping email: lvshengping@scau.edu.cn organization: College of Engineering, South China Agricultural University – sequence: 4 givenname: Haiping surname: He fullname: He, Haiping organization: College of Engineering, South China Agricultural University – sequence: 5 givenname: Xinting surname: Liao fullname: Liao, Xinting organization: College of Engineering, South China Agricultural University |
| BookMark | eNp9kEtrGzEQgEVxoHaaP5CToGclI2nX0h6NadOCIYSkkJvQ6hEr7K62krYl_fVd24FCDz7NMMw3j2-FFkMcHELXFG4ogLjNAGsQBBgjQEFyUn1AS1rxNamhFgu0hLlMKlk_f0SrnF8BgHHZLFG_wfu3NgWLi9NmH4YX0jmdhkPS6uwsjmMJffijS4gD1t1LTKHse-xjwg_xkejfOjnc62Hy2pQpzSA2XZwszi79CsZhE_sx5nDgP6ELr7vsrt7jJfrx9cvT9hvZ3d993252xHDaFGJ5zRwD5rinrZDQ6vmJum2sdFR7pmHdSOmYZM3aGmGrxnMHYKX3wlIwlF-iz6e5Y4o_J5eLeo1TGuaVignGRCUYF3OXPHWZFHNOzisTyvHPknToFAV1kKtOctUsVx3lqmpG2X_omEKv09t5iJ-gPB40ufTvqjPUX6ECkEo |
| CitedBy_id | crossref_primary_10_1007_s12008_025_02375_7 crossref_primary_10_1016_j_engappai_2023_106225 crossref_primary_10_1007_s10586_025_05140_3 crossref_primary_10_3390_electronics12040991 crossref_primary_10_1016_j_asoc_2024_112371 crossref_primary_10_1016_j_swevo_2025_101844 crossref_primary_10_1007_s00170_024_13119_4 crossref_primary_10_3390_electronics12122575 crossref_primary_10_1002_nav_70009 crossref_primary_10_1016_j_eswa_2025_127213 crossref_primary_10_3390_a18020107 crossref_primary_10_1016_j_jii_2024_100564 |
| Cites_doi | 10.1016/j.ins.2019.05.065 10.1080/00207543.2017.1402137 10.1145/3389147 10.1016/j.future.2016.06.039 10.1016/j.eswa.2016.10.047 10.1016/j.cad.2010.12.015 10.1016/j.ins.2019.01.015 10.1177/0954405411405575 10.1007/s10845-015-1064-2 10.1016/j.future.2016.09.008 10.1016/j.rcim.2020.101991 10.1016/j.asoc.2019.106003 10.1016/j.rcim.2019.101832 10.1016/j.asoc.2017.04.029 10.1109/TSC.2015.2466572 10.1016/j.future.2020.05.006 10.1109/TSC.2015.2473840 10.1007/s10845-016-1215-0 10.1016/j.asoc.2015.11.012 10.1007/s00170-017-1167-3 10.1007/s10489-018-1301-4 10.1007/s10845-015-1080-2 10.1016/j.ejor.2009.02.025 10.1080/17517575.2013.792396 10.1080/00207543.2017.1292064 10.1007/s10489-017-1108-8 10.1016/j.future.2018.07.062 10.1016/j.ins.2011.08.006 10.1016/j.jvcir.2019.102687 10.1109/TEVC.2007.892759 10.1080/00207543.2018.1449978 10.1016/j.ins.2018.05.009 10.1007/s00500-020-04918-4 10.1007/978-3-642-32894-7_27 10.1007/978-3-642-17313-4_27 10.1145/1655925.1655991 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s00607-022-01083-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1436-5057 |
| EndPage | 2509 |
| ExternalDocumentID | 10_1007_s00607_022_01083_4 |
| GrantInformation_xml | – fundername: Natural Science Foundation of Guangdong Province grantid: 2018A030310216; 2021A1515012395 funderid: http://dx.doi.org/10.13039/501100003453 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BKOMP BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW LAS LLZTM M0C M0N M2O M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZL0 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKWF AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-d352e202e3f1b780ba0575b9d8e1af2a06988e28296dc7d49f3e00d8ff7d10c13 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000814924800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-485X |
| IngestDate | Wed Nov 26 14:42:04 EST 2025 Sat Nov 29 03:51:39 EST 2025 Tue Nov 18 22:27:58 EST 2025 Fri Feb 21 02:45:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Hybrid teaching-learning-based optimization 68T20 Quality of service 90-08 Cloud manufacturing Service composition 90C27 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-d352e202e3f1b780ba0575b9d8e1af2a06988e28296dc7d49f3e00d8ff7d10c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2722747237 |
| PQPubID | 48322 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2722747237 crossref_citationtrail_10_1007_s00607_022_01083_4 crossref_primary_10_1007_s00607_022_01083_4 springer_journals_10_1007_s00607_022_01083_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20221100 2022-11-00 20221101 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 20221100 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Computing |
| PublicationTitleAbbrev | Computing |
| PublicationYear | 2022 |
| Publisher | Springer Vienna Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
| References | Zhang, Yang, Zhang, Yu, Li (CR9) 2018; 56 Seghir, Khababa (CR25) 2018; 29 Li, Zhang, Qin, He (CR15) 2020; 24 Liu, Wang, Wang, Xu, Zhang (CR6) 2019; 57 Chattopadhyay, Banerjee (CR30) 2020; 14 Zhang, Li (CR31) 2007; 11 Gavvala, Jatoth, Gangadharan, Buyya (CR26) 2019; 90 Mourad, Nassehi, Schaefer, Newman (CR2) 2020; 61 CR37 Tsai (CR13) 2019; 500 Cremene, Suciu, Pallez, Dumitrescu (CR4) 2016; 39 Zhou, Yao (CR36) 2017; 55 Rao, Savsani, Vakharia (CR11) 2012; 183 Zhang, Zhang, Liu, Hu (CR3) 2017; 28 Liu, Hu, Cai, Xing, Tan (CR35) 2019; 65 Rao, Savsani, Vakharia (CR10) 2011; 43 Ramírez, Parejo, Romero, Segura, Ruiz-Cortés (CR27) 2017; 72 Yang, Yang, Wang, Jin, Li (CR20) 2020; 87 Akbaripour, Houshmand, van Woensel, Mutlu (CR21) 2018; 95 Tao, Zhao, Hu, Zhou (CR7) 2010; 201 Yang, Yang, Wang, Jin, Li (CR33) 2020; 87 Khanouche, Attal, Amirat, Chibani, Kerkar (CR22) 2019; 482 CR29 CR28 Xu, Liu, Wang, Sheng, Yu, Wang (CR8) 2017; 68 Liang, Wen, Liu, Zhang, Zhang, Wang (CR34) 2021; 67 Tao, Zhang, Venkatesh, Luo, Cheng (CR1) 2011; 225 El Ghazi, Ahiod (CR12) 2018; 48 Ji, Ye, Zhou, Yin, Shen (CR16) 2017; 57 Jatoth, Gangadharan, Buyya (CR23) 2017; 10 Lu, Zhou, Zhu, Zhang, Liang, Xiao (CR18) 2020; 112 Kumar, Singh (CR14) 2019; 49 Zhou, Yao, Lin, Chan, Li (CR32) 2018; 456 Yu, Zhang (CR19) 2017; 68 Jin, Yao, Chen (CR5) 2017; 28 Huang, Li, Tao (CR24) 2014; 8 Sun, Zhao, Pan, Liu, Chen (CR17) 2018; 11 F Tao (1083_CR1) 2011; 225 Y Yang (1083_CR20) 2020; 87 M Cremene (1083_CR4) 2016; 39 C Jatoth (1083_CR23) 2017; 10 1083_CR37 L Yu (1083_CR19) 2017; 68 YF Yang (1083_CR33) 2020; 87 Z Li (1083_CR15) 2020; 24 BQ Huang (1083_CR24) 2014; 8 SK Gavvala (1083_CR26) 2019; 90 J Zhou (1083_CR36) 2017; 55 RV Rao (1083_CR11) 2012; 183 Y Zhang (1083_CR3) 2017; 28 HC Tsai (1083_CR13) 2019; 500 X Ji (1083_CR16) 2017; 57 H Jin (1083_CR5) 2017; 28 F Tao (1083_CR7) 2010; 201 H Akbaripour (1083_CR21) 2018; 95 Y Liu (1083_CR6) 2019; 57 Q Zhang (1083_CR31) 2007; 11 JW Liu (1083_CR35) 2019; 65 J Lu (1083_CR18) 2020; 112 J Zhou (1083_CR32) 2018; 456 A Ramírez (1083_CR27) 2017; 72 A El Ghazi (1083_CR12) 2018; 48 1083_CR28 X Xu (1083_CR8) 2017; 68 1083_CR29 F Seghir (1083_CR25) 2018; 29 MH Mourad (1083_CR2) 2020; 61 H Liang (1083_CR34) 2021; 67 ME Khanouche (1083_CR22) 2019; 482 Y Kumar (1083_CR14) 2019; 49 RV Rao (1083_CR10) 2011; 43 C Sun (1083_CR17) 2018; 11 S Chattopadhyay (1083_CR30) 2020; 14 W Zhang (1083_CR9) 2018; 56 |
| References_xml | – volume: 500 start-page: 34 year: 2019 end-page: 47 ident: CR13 article-title: Confined teaching-learning-based optimization with variable search strategies for continuous optimization publication-title: Inf Sci doi: 10.1016/j.ins.2019.05.065 – volume: 56 start-page: 4676 issue: 14 year: 2018 end-page: 4691 ident: CR9 article-title: Correlation-aware manufacturing service composition model using an extended flower pollination algorithm publication-title: Int J Prod Res doi: 10.1080/00207543.2017.1402137 – volume: 14 start-page: 12 year: 2020 ident: CR30 article-title: QoS-aware automatic web service composition with multiple objectives publication-title: ACM Trans Web doi: 10.1145/3389147 – volume: 68 start-page: 128 year: 2017 end-page: 135 ident: CR19 article-title: Service composition based on multi-agent in the cooperative game publication-title: Futur Gener Comp Syst doi: 10.1016/j.future.2016.06.039 – volume: 72 start-page: 357 year: 2017 end-page: 370 ident: CR27 article-title: Evolutionary composition of QoS-aware web services: a many-objective perspective publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.10.047 – ident: CR37 – volume: 43 start-page: 303 issue: 3 year: 2011 end-page: 315 ident: CR10 article-title: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput Aided Des doi: 10.1016/j.cad.2010.12.015 – volume: 482 start-page: 419 year: 2019 end-page: 439 ident: CR22 article-title: Clustering-based and QoS-aware services composition algorithm for ambient intelligence publication-title: Inf Sci doi: 10.1016/j.ins.2019.01.015 – volume: 225 start-page: 1969 issue: 10 year: 2011 end-page: 1976 ident: CR1 article-title: Cloud manufacturing: a computing and service-oriented manufacturing model publication-title: Proc Inst Mech Eng Part B J Eng Manuf doi: 10.1177/0954405411405575 – volume: 28 start-page: 1109 year: 2017 end-page: 1123 ident: CR3 article-title: Research on services encapsulation and virtualization access model of machine for cloud manufacturing publication-title: J Intell Manuf doi: 10.1007/s10845-015-1064-2 – volume: 68 start-page: 304 year: 2017 end-page: 319 ident: CR8 article-title: S-ABC: a paradigm of service domain-oriented artificial bee colony algorithms for service selection and composition publication-title: Futur Gener Comp Syst doi: 10.1016/j.future.2016.09.008 – volume: 67 year: 2021 ident: CR34 article-title: Logistics-involved QoS-aware service composition in cloud manufacturing with deep reinforcement learning publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2020.101991 – volume: 87 year: 2020 ident: CR33 article-title: An enhanced multi-objective grey wolf optimizer for service composition in cloud manufacturing publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.106003 – ident: CR29 – volume: 61 year: 2020 ident: CR2 article-title: Assessment of interoperability in cloud manufacturing publication-title: Robot Comput-Integr Manuf doi: 10.1016/j.rcim.2019.101832 – volume: 57 start-page: 504 year: 2017 end-page: 516 ident: CR16 article-title: An improved teaching-learning-based optimization algorithm and its application to a combinatorial optimization problem in foundry industry publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.04.029 – volume: 11 start-page: 616 issue: 4 year: 2018 end-page: 629 ident: CR17 article-title: Automated testing of WS-BPEL service compositions: a scenario-oriented approach publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2015.2466572 – volume: 112 start-page: 330 year: 2020 end-page: 347 ident: CR18 article-title: DCEM: a data cell evolution model for service composition based on bigraph theory publication-title: Futur Gener Comp Syst doi: 10.1016/j.future.2020.05.006 – volume: 10 start-page: 475 issue: 3 year: 2017 end-page: 492 ident: CR23 article-title: Computational intelligence based QoS-aware web service composition: a systematic literature review publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2015.2473840 – volume: 29 start-page: 1773 year: 2018 end-page: 1792 ident: CR25 article-title: A hybrid approach using genetic and fruit fly optimization algorithms for QoS-aware cloud service composition publication-title: J Intell Manuf doi: 10.1007/s10845-016-1215-0 – volume: 39 start-page: 124 year: 2016 end-page: 139 ident: CR4 article-title: Comparative analysis of multi-objective evolutionary algorithms for QoS-aware web service composition publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.11.012 – volume: 95 start-page: 43 year: 2018 end-page: 70 ident: CR21 article-title: Cloud manufacturing service selection optimization and scheduling with transportation considerations: mixed-integer programming models publication-title: Int J Adv Manuf Tech doi: 10.1007/s00170-017-1167-3 – volume: 49 start-page: 1036 year: 2019 end-page: 1062 ident: CR14 article-title: A chaotic teaching learning based optimization algorithm for clustering problems publication-title: Appl Intell doi: 10.1007/s10489-018-1301-4 – volume: 87 year: 2020 ident: CR20 article-title: An enhanced multi-objective grey wolf optimizer for service composition in cloud manufacturing publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.106003 – volume: 28 start-page: 1947 issue: 8 year: 2017 end-page: 1960 ident: CR5 article-title: Correlation-aware QoS modeling and manufacturing cloud service composition publication-title: J Intell Manuf doi: 10.1007/s10845-015-1080-2 – volume: 201 start-page: 129 issue: 1 year: 2010 end-page: 143 ident: CR7 article-title: Correlation-aware resource service composition and optimal-selection in manufacturing grid publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2009.02.025 – volume: 8 start-page: 445 issue: 4 year: 2014 end-page: 463 ident: CR24 article-title: A chaos control optimal algorithm for QoS-based service composition selection in cloud manufacturing system publication-title: Enterp Inf Syst doi: 10.1080/17517575.2013.792396 – volume: 55 start-page: 4765 issue: 16 year: 2017 end-page: 4784 ident: CR36 article-title: A hybrid approach combining modified artificial bee colony and cuckoo search algorithms for multi-objective cloud manufacturing service composition publication-title: Int J Prod Res doi: 10.1080/00207543.2017.1292064 – volume: 48 start-page: 2755 year: 2018 end-page: 2769 ident: CR12 article-title: Energy efficient teaching-learning-based optimization for the discrete routing problem in wireless sensor networks publication-title: Appl Intell doi: 10.1007/s10489-017-1108-8 – volume: 90 start-page: 273 year: 2019 end-page: 290 ident: CR26 article-title: QoS-aware cloud service composition using eagle strategy publication-title: Futur Gener Comp Syst doi: 10.1016/j.future.2018.07.062 – ident: CR28 – volume: 183 start-page: 1 issue: 1 year: 2012 end-page: 15 ident: CR11 article-title: Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems publication-title: Inf Sci doi: 10.1016/j.ins.2011.08.006 – volume: 65 year: 2019 ident: CR35 article-title: Large-scale and adaptive service composition based on deep reinforcement learning publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2019.102687 – volume: 11 start-page: 712 issue: 6 year: 2007 end-page: 731 ident: CR31 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892759 – volume: 57 start-page: 4854 issue: 15–16 year: 2019 end-page: 4879 ident: CR6 article-title: Scheduling in cloud manufacturing: state-of-the-art and research challenges publication-title: Int J Prod Res doi: 10.1080/00207543.2018.1449978 – volume: 456 start-page: 50 year: 2018 end-page: 82 ident: CR32 article-title: An adaptive multi-population differential artificial bee colony algorithm for many-objective service composition in cloud manufacturing publication-title: Inf Sci doi: 10.1016/j.ins.2018.05.009 – volume: 24 start-page: 15889 year: 2020 end-page: 15906 ident: CR15 article-title: A reformative teaching-learning-based optimization algorithm for solving numerical and engineering design optimization problems publication-title: Soft Comput doi: 10.1007/s00500-020-04918-4 – volume: 11 start-page: 616 issue: 4 year: 2018 ident: 1083_CR17 publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2015.2466572 – volume: 72 start-page: 357 year: 2017 ident: 1083_CR27 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.10.047 – volume: 201 start-page: 129 issue: 1 year: 2010 ident: 1083_CR7 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2009.02.025 – ident: 1083_CR37 doi: 10.1007/978-3-642-32894-7_27 – volume: 87 year: 2020 ident: 1083_CR20 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.106003 – volume: 57 start-page: 504 year: 2017 ident: 1083_CR16 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.04.029 – volume: 55 start-page: 4765 issue: 16 year: 2017 ident: 1083_CR36 publication-title: Int J Prod Res doi: 10.1080/00207543.2017.1292064 – volume: 48 start-page: 2755 year: 2018 ident: 1083_CR12 publication-title: Appl Intell doi: 10.1007/s10489-017-1108-8 – volume: 57 start-page: 4854 issue: 15–16 year: 2019 ident: 1083_CR6 publication-title: Int J Prod Res doi: 10.1080/00207543.2018.1449978 – volume: 225 start-page: 1969 issue: 10 year: 2011 ident: 1083_CR1 publication-title: Proc Inst Mech Eng Part B J Eng Manuf doi: 10.1177/0954405411405575 – volume: 65 year: 2019 ident: 1083_CR35 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2019.102687 – volume: 68 start-page: 128 year: 2017 ident: 1083_CR19 publication-title: Futur Gener Comp Syst doi: 10.1016/j.future.2016.06.039 – volume: 482 start-page: 419 year: 2019 ident: 1083_CR22 publication-title: Inf Sci doi: 10.1016/j.ins.2019.01.015 – volume: 500 start-page: 34 year: 2019 ident: 1083_CR13 publication-title: Inf Sci doi: 10.1016/j.ins.2019.05.065 – volume: 49 start-page: 1036 year: 2019 ident: 1083_CR14 publication-title: Appl Intell doi: 10.1007/s10489-018-1301-4 – volume: 24 start-page: 15889 year: 2020 ident: 1083_CR15 publication-title: Soft Comput doi: 10.1007/s00500-020-04918-4 – volume: 39 start-page: 124 year: 2016 ident: 1083_CR4 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.11.012 – volume: 68 start-page: 304 year: 2017 ident: 1083_CR8 publication-title: Futur Gener Comp Syst doi: 10.1016/j.future.2016.09.008 – volume: 8 start-page: 445 issue: 4 year: 2014 ident: 1083_CR24 publication-title: Enterp Inf Syst doi: 10.1080/17517575.2013.792396 – volume: 95 start-page: 43 year: 2018 ident: 1083_CR21 publication-title: Int J Adv Manuf Tech doi: 10.1007/s00170-017-1167-3 – volume: 112 start-page: 330 year: 2020 ident: 1083_CR18 publication-title: Futur Gener Comp Syst doi: 10.1016/j.future.2020.05.006 – volume: 10 start-page: 475 issue: 3 year: 2017 ident: 1083_CR23 publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2015.2473840 – volume: 28 start-page: 1109 year: 2017 ident: 1083_CR3 publication-title: J Intell Manuf doi: 10.1007/s10845-015-1064-2 – volume: 183 start-page: 1 issue: 1 year: 2012 ident: 1083_CR11 publication-title: Inf Sci doi: 10.1016/j.ins.2011.08.006 – volume: 28 start-page: 1947 issue: 8 year: 2017 ident: 1083_CR5 publication-title: J Intell Manuf doi: 10.1007/s10845-015-1080-2 – volume: 456 start-page: 50 year: 2018 ident: 1083_CR32 publication-title: Inf Sci doi: 10.1016/j.ins.2018.05.009 – ident: 1083_CR28 doi: 10.1007/978-3-642-17313-4_27 – volume: 67 year: 2021 ident: 1083_CR34 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2020.101991 – volume: 90 start-page: 273 year: 2019 ident: 1083_CR26 publication-title: Futur Gener Comp Syst doi: 10.1016/j.future.2018.07.062 – ident: 1083_CR29 doi: 10.1145/1655925.1655991 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 1083_CR31 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892759 – volume: 61 year: 2020 ident: 1083_CR2 publication-title: Robot Comput-Integr Manuf doi: 10.1016/j.rcim.2019.101832 – volume: 14 start-page: 12 year: 2020 ident: 1083_CR30 publication-title: ACM Trans Web doi: 10.1145/3389147 – volume: 56 start-page: 4676 issue: 14 year: 2018 ident: 1083_CR9 publication-title: Int J Prod Res doi: 10.1080/00207543.2017.1402137 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 1083_CR10 publication-title: Comput Aided Des doi: 10.1016/j.cad.2010.12.015 – volume: 29 start-page: 1773 year: 2018 ident: 1083_CR25 publication-title: J Intell Manuf doi: 10.1007/s10845-016-1215-0 – volume: 87 year: 2020 ident: 1083_CR33 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.106003 |
| SSID | ssj0002389 |
| Score | 2.3922539 |
| Snippet | Quality of service (QoS)-aware manufacturing cloud service composition (QoS-MCSC) is one of the key issues in Cloud manufacturing (CMfg). More and more... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2489 |
| SubjectTerms | Adaptive algorithms Artificial Intelligence Cloud computing Composition Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Customer satisfaction Genetic algorithms Information Systems Applications (incl.Internet) Machine learning Manufacturing Mutation Optimization Quality of service Regular Paper Software Engineering Teaching |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA46fdAHp1NxOiUPvmmgbbKmfRzi8MWhTmVvJU3SbbCtsnaK_72XLu1QVNDn_CBccndfuPvuEDqnsi3aTHqEARYmDBSICCocomJXgj-Qic9l0WyC93rBYBDeWVJYVma7lyHJwlJXZDdTOoQTk30Of4gANl5HG6Z4ielb8NB_ruwvOKEl6AULw4L2wFJlvt_jsztaYcwvYdHC23Tr_zvnLtqx6BJ3ls9hD63pWQPVy84N2CpyA23fVtVas3007eDRu2Fu4dzmVhLbTGJIjJdTOAXDMrWMTSwmw3Q-zkdTDIAX36d9It7EXOOpmC0MT6IgPmI5SRcKZ0tThE3muk0PO0BP3evHqxti2zAQCfqZEwUYTXuOp2nixjxwYmEwXhyqQLsi8YTjh0GgTUTWV5IrFiZUO44KkoQr15EuPUS1WTrTRwhzQJMAKWRMGWMU1lFfh0nMwFEnype8idzyNiJpa5SbVhmTqKquXEg3AulGhXQj1kQX1ZqXZYWOX2e3ykuOrLZmkcc98zn3KBzgsrzU1fDPux3_bfoJ2vLMuyiojC1Uy-cLfYo25Ws-zuZnxSv-AGUA7Ec priority: 102 providerName: Springer Nature |
| Title | A hybrid teaching-learning-based optimization algorithm for QoS-aware manufacturing cloud service composition |
| URI | https://link.springer.com/article/10.1007/s00607-022-01083-4 https://www.proquest.com/docview/2722747237 |
| Volume | 104 |
| WOSCitedRecordID | wos000814924800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-5057 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002389 issn: 0010-485X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xjQf2wGCA1jEqP_AGFknsxskT2qZNSGilbPwovESO7WxIbbM1KYj_fneu0wok9sKLpSixY-XOd1_s--4AXgoz0ANpEi4RC3OJC4hroSNuy9igPzBVqowvNqGGw2w8zkdhw60JYZWdTfSG2taG9sjfJCqhH6hEqLfXN5yqRtHpaiihsQFbhGwod_5ZdLyyxOiOlvAXbY3MBuNAmvHUOUpEojjFsuPdDKf5p2Nao82_Dki93znd-d8ZP4KHAXGyw6WKPIZ7brYLO101BxYW9y5sn60yuDZPYHrIrn4Tm4u1Id6ShwITl5w8n2U1GptpYHEyPbnEV7dXU4YgmH2sL7j-peeOTfVsQdwJT4ZkZlIvLGuW5olRNHsIGXsKn09PPh2_46E0Aze4ZltuEbe5JEqcqOJSZVGpCfeVuc1crKtER2meZY5OaVNrlJV5JVwU2ayqlI0jE4tnsDmrZ24PGH4gIr-aUkgpBfYTqcurUqLzrmxqVA_iTi6FCXnLqXzGpFhlXPayLFCWhZdlIXvwatXnepm1486nDzoBFmEFN8Vaej143anA-va_R9u_e7Tn8CAhrfN0xgPYbOcL9wLum5_tj2behw319Vsfto5OhqNzvHqveN_rNLXJB2xHg-_Ynl98uQVv9PzF |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BbtQwEB2VggQcKBQQCwV8gBNYJLE3Tg4IVUDVqu2qiCKtuATHdlqk3U3ZZKn6U3wjM46zK5DorQfOSSzFeX7zHM-bAXghzFAPpUm4RC3MJS4groWOuC1jg_HAVKkyvtmEGo2y8Tg_WoNfvReG0ip7TvREbWtD_8jfJCqhDVQi1LuzH5y6RtHpat9Co4PFvrs4xy1b83bvA37fl0my8_H4_S4PXQW4Qbi13KLkcLjld6KKS5VFpSbJUuY2c7GuEh2leZY5OmBMrVFW5pVwUWSzqlI2jkwscNxrcB1lRE5EcDT8umR-DH-d3EZuk9lwHEw63qpHhU8Up9x5vJrhtPwZCFfq9q8DWR_ndjb-txm6C3eCombb3RK4B2tutgkbfbcKFshrE24fLivUNvdhus1OL8itxtqQT8pDA40TTpHdshrJdBpcqkxPTvBV29MpQ5HPPtWfuT7Xc8emerYgb4g3ezIzqReWNR39MsrWDylxD-DLlUzBQ1if1TP3CBh-EDL3mlJIKQU-J1KXV6VEcVLZ1KgBxD0OChPqslN7kEmxrCjtsVMgdgqPnUIO4NXymbOuKsmld2_1gCkCQzXFCi0DeN1DbnX536M9vny053Bz9_jwoDjYG-0_gVsJId5bN7dgvZ0v3FO4YX6235v5M792GHy7aij-BsM1Uzw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BbtQwEB2VghA9UCigbingA5zAamJ74-SAUEW7oipdigBpb6ljOy3S7qbdZKn6a3wdY8fZFUjtrQfOji3Zfp55jufNALzmuq_6QjMqkAtTgQeIKq4iaopYoz_QZSK1LzYhh8N0NMqOV-B3p4VxYZWdTfSG2lTa_SPfYZK5CxTjcqcMYRHHe4MP5xfUVZByL61dOY0WIof26hKvb_X7gz3c6zeMDfa_f_xEQ4UBqhF6DTVIPyxe_y0v40KmUaEcfSkyk9pYlUxFSZam1j02JkZLI7KS2ygyaVlKE0c65jjuHbgrRZ-7cMIj9mXhBdAVttQb7ZxI-6Mg2PGyPZcERVIXR4-tKS7R305xyXT_eZz1Pm-w_j-v1iN4GJg22W2PxmNYsdMNWO-qWJBg1DZg7WiRubZ-ApNdcnblVGykCXGmNBTWOKXO4xtSoZGdBPUqUeNTnGpzNiFI_snX6htVl2pmyURN504z4kWgRI-ruSF1a5aJi-IPoXJP4cetLMEzWJ1WU7sJBDfHiX51wYUQHPvxxGZlIZC0lCbRsgdxh4lch3ztrmzIOF9kmvY4yhFHucdRLnrwdtHnvM1WcuPX2x148mC56nyJnB686-C3bL5-tK2bR3sF9xGB-eeD4eFzeMAc-L2icxtWm9ncvoB7-lfzs5699MeIwMltI_EP3_lb3Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+teaching-learning-based+optimization+algorithm+for+QoS-aware+manufacturing+cloud+service+composition&rft.jtitle=Computing&rft.au=Jin%2C+Hong&rft.au=Jiang%2C+Cheng&rft.au=Lv%2C+Shengping&rft.au=He%2C+Haiping&rft.date=2022-11-01&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=104&rft.issue=11&rft.spage=2489&rft.epage=2509&rft_id=info:doi/10.1007%2Fs00607-022-01083-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00607_022_01083_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon |