Explanation-based data-free model extraction attacks

Deep learning (DL) has dramatically pushed the previous limits of various tasks, ranging from computer vision to natural language processing. Despite its success, the lack of model explanations thwarts the usage of these techniques in life-critical domains, e.g., medical diagnosis and self-driving s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World wide web (Bussum) Jg. 26; H. 5; S. 3081 - 3092
Hauptverfasser: Yan, Anli, Hou, Ruitao, Yan, Hongyang, Liu, Xiaozhang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2023
Springer Nature B.V
Schlagworte:
ISSN:1386-145X, 1573-1413
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep learning (DL) has dramatically pushed the previous limits of various tasks, ranging from computer vision to natural language processing. Despite its success, the lack of model explanations thwarts the usage of these techniques in life-critical domains, e.g., medical diagnosis and self-driving systems. To date, the core technology to solve the explainable issue is explainable artificial intelligence (XAI). XAI methods have been developed to produce human-understandable explanations by leveraging intermediate results of the DL models, e.g., gradients and model parameters. While the effectiveness of XAI methods has been demonstrated in benign environments, their privacy against model extraction attacks (i.e., attacks at the model confidentially) requires to be studied. To this end, this paper proposes DMEAE, a d ata-free m odel e xtraction a ttack using e xplanation-guided, to explore XAI privacy threats. Compared with previous works, DMEAE does not require collecting any data and utilizes model explanation loss. Specifically, DMEAE creates synthetic data using a generative model with model explanation loss items. Extensive evaluations verify the effectiveness and efficiency of the proposed attack strategy on SVHN and CIFAR-10 datasets. We hope that our research can provide insights for the development of practical tools to trade off the relationship between privacy and model explanations.
AbstractList Deep learning (DL) has dramatically pushed the previous limits of various tasks, ranging from computer vision to natural language processing. Despite its success, the lack of model explanations thwarts the usage of these techniques in life-critical domains, e.g., medical diagnosis and self-driving systems. To date, the core technology to solve the explainable issue is explainable artificial intelligence (XAI). XAI methods have been developed to produce human-understandable explanations by leveraging intermediate results of the DL models, e.g., gradients and model parameters. While the effectiveness of XAI methods has been demonstrated in benign environments, their privacy against model extraction attacks (i.e., attacks at the model confidentially) requires to be studied. To this end, this paper proposes DMEAE, a d ata-free m odel e xtraction a ttack using e xplanation-guided, to explore XAI privacy threats. Compared with previous works, DMEAE does not require collecting any data and utilizes model explanation loss. Specifically, DMEAE creates synthetic data using a generative model with model explanation loss items. Extensive evaluations verify the effectiveness and efficiency of the proposed attack strategy on SVHN and CIFAR-10 datasets. We hope that our research can provide insights for the development of practical tools to trade off the relationship between privacy and model explanations.
Deep learning (DL) has dramatically pushed the previous limits of various tasks, ranging from computer vision to natural language processing. Despite its success, the lack of model explanations thwarts the usage of these techniques in life-critical domains, e.g., medical diagnosis and self-driving systems. To date, the core technology to solve the explainable issue is explainable artificial intelligence (XAI). XAI methods have been developed to produce human-understandable explanations by leveraging intermediate results of the DL models, e.g., gradients and model parameters. While the effectiveness of XAI methods has been demonstrated in benign environments, their privacy against model extraction attacks (i.e., attacks at the model confidentially) requires to be studied. To this end, this paper proposes DMEAE, a data-free model extraction attack using explanation-guided, to explore XAI privacy threats. Compared with previous works, DMEAE does not require collecting any data and utilizes model explanation loss. Specifically, DMEAE creates synthetic data using a generative model with model explanation loss items. Extensive evaluations verify the effectiveness and efficiency of the proposed attack strategy on SVHN and CIFAR-10 datasets. We hope that our research can provide insights for the development of practical tools to trade off the relationship between privacy and model explanations.
Author Liu, Xiaozhang
Yan, Hongyang
Yan, Anli
Hou, Ruitao
Author_xml – sequence: 1
  givenname: Anli
  surname: Yan
  fullname: Yan, Anli
  organization: School of Cyberspace Security (School of Cryptology), Hainan University, Institute of Artificial Intelligence and Blockchain, Guangzhou University
– sequence: 2
  givenname: Ruitao
  surname: Hou
  fullname: Hou, Ruitao
  organization: Institute of Artificial Intelligence and Blockchain, Guangzhou University
– sequence: 3
  givenname: Hongyang
  surname: Yan
  fullname: Yan, Hongyang
  organization: Institute of Artificial Intelligence and Blockchain, Guangzhou University
– sequence: 4
  givenname: Xiaozhang
  surname: Liu
  fullname: Liu, Xiaozhang
  email: lxzh@hainanu.edu.cn
  organization: School of Computer Science and Technology, Hainan University
BookMark eNp9kMtKAzEUhoNUsK2-gKsB19HcJjNZSqkXKLhRcBfO5CJTpzM1SaG-vWlHEFx0lRP4v3P5ZmjSD71D6JqSW0pIdRcpZTXBhHFMKC0JlmdoSsuKYyoon-Sa1zLX5fsFmsW4JoRIrugUieV-20EPqR163EB0trCQAPvgXLEZrOsKt08BzCFQQEpgPuMlOvfQRXf1-87R28PydfGEVy-Pz4v7FTacqoQtsY3xgkvgQBtFla9AKeuVIhXjjJe-ktYYVVsgoiq9As6lsLJumG9c_szRzdh3G4avnYtJr4dd6PNIzeqqlIIxJXKKjSkThhiD83ob2g2Eb02JPtjRox2d7eijHS0zVP-DTJuOFvKxbXca5SMa85z-w4W_rU5QP25xeq4
CitedBy_id crossref_primary_10_1109_TKDE_2024_3460806
crossref_primary_10_1016_j_knosys_2024_112144
Cites_doi 10.1109/TNNLS.2020.3027314
10.1109/TDSC.2020.3015886
10.1016/j.inffus.2019.12.012
10.1016/j.ins.2022.04.003
10.1109/TKDE.2020.3015835
10.1109/TIFS.2020.3025438
10.1080/17517575.2019.1600040
10.1007/s11263-019-01228-7
10.1016/j.ins.2020.09.064
10.1016/j.patcog.2021.108238
10.1016/j.ins.2021.05.073
10.1007/s13042-020-01242-z
10.1145/3423558
10.1016/j.ins.2020.10.010
10.1016/j.ins.2021.01.046
10.1109/EuroSP.2019.00044
10.1145/3460231.3474275
10.1109/CVPR46437.2021.01360
10.1002/int.23001
10.1109/CVPR42600.2020.00886
10.1145/3319535.3354261
10.1145/3287560.3287562
10.1002/cpe.5925
10.1109/ICCCS52626.2021.9449145
10.1109/ICCV.2017.371
10.1145/3052973.3053009
10.1016/j.patcog.2022.108666
10.1145/3460120.3484575
10.1609/aaai.v34i01.5432
10.1109/CVPR.2019.00509
10.1109/CVPR46437.2021.00474
10.1007/s11432-022-3507-7
10.1145/2939672.2939778
10.1109/CVPR42600.2020.00031
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11280-023-01150-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central - New (Subscription)
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-1413
EndPage 3092
ExternalDocumentID 10_1007_s11280_023_01150_6
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1SB
203
29R
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8FE
8FG
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LLZTM
M0N
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-d0dbcf436a3a1b919f7a99df990723235f76dcc98da0475f9a3364d68b2fbea33
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000999733500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-145X
IngestDate Thu Nov 06 12:27:37 EST 2025
Tue Nov 18 22:32:53 EST 2025
Sat Nov 29 06:37:27 EST 2025
Fri Feb 21 02:42:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Deep neural network
Black-box
Model explanation
Model extraction attack
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d0dbcf436a3a1b919f7a99df990723235f76dcc98da0475f9a3364d68b2fbea33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2875642294
PQPubID 2034525
PageCount 12
ParticipantIDs proquest_journals_2875642294
crossref_primary_10_1007_s11280_023_01150_6
crossref_citationtrail_10_1007_s11280_023_01150_6
springer_journals_10_1007_s11280_023_01150_6
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Internet and Web Information Systems
PublicationTitle World wide web (Bussum)
PublicationTitleAbbrev World Wide Web
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zhu, Li, Hu, Xiong, Zhou (CR18) 2022; 34
Ren, Huang, Yan (CR24) 2021; 12
CR39
CR38
CR37
CR36
CR35
CR34
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (CR41) 2020; 128
CR33
CR32
CR31
CR30
Hu, Yan, Li, Pan, Liu, Zhang (CR12) 2021; 560
Zhang, Chen, Yan, Xiang (CR19) 2021; 548
Pan, Zeng, Cheng, Yan, Li (CR2) 2021; 573
Yan, Jiang, Li, Wang, Yang (CR7) 2022; 22
CR5
CR8
CR9
CR49
CR48
CR47
CR46
Tjoa, Guan (CR16) 2021; 32
CR45
CR44
CR43
CR42
CR40
Yan, Hu, Xiang, Liu, Yuan (CR1) 2021; 548
Arrieta, Rodríguez, Ser, Bennetot, Tabik, Barbado, García, Gil-Lopez, Molina, Benjamins, Chatila, Herrera (CR14) 2020; 58
Tang, Li, Barni, Li, Huang (CR3) 2021; 16
Hou, Ai, Chen, Yan, Huang, Chen (CR4) 2022; 601
CR15
Wang, Li, Yan (CR6) 2021; 15
CR13
CR10
Li, Ye, Li, Wang, Lou, Hou, Liu, Lu (CR17) 2022; 19
CR50
CR29
Yin, Yang, Hu, Wu (CR11) 2022; 121
CR28
CR27
CR26
CR25
CR23
CR22
CR21
CR20
1150_CR40
1150_CR42
1150_CR43
1150_CR44
1150_CR45
X Wang (1150_CR6) 2021; 15
1150_CR46
1150_CR47
1150_CR48
1150_CR49
AB Arrieta (1150_CR14) 2020; 58
R Hou (1150_CR4) 2022; 601
H Yan (1150_CR7) 2022; 22
T Zhu (1150_CR18) 2022; 34
E Tjoa (1150_CR16) 2021; 32
1150_CR30
1150_CR31
1150_CR32
1150_CR33
1150_CR34
1150_CR35
1150_CR36
1150_CR37
L Hu (1150_CR12) 2021; 560
1150_CR38
1150_CR39
X Zhang (1150_CR19) 2021; 548
H Yan (1150_CR1) 2021; 548
1150_CR8
1150_CR9
1150_CR5
1150_CR20
1150_CR21
1150_CR22
1150_CR23
1150_CR25
1150_CR26
1150_CR27
1150_CR28
1150_CR29
Y Yin (1150_CR11) 2022; 121
J Li (1150_CR17) 2022; 19
RR Selvaraju (1150_CR41) 2020; 128
1150_CR50
W Tang (1150_CR3) 2021; 16
H Ren (1150_CR24) 2021; 12
1150_CR10
Z Pan (1150_CR2) 2021; 573
1150_CR13
1150_CR15
References_xml – ident: CR45
– ident: CR22
– volume: 32
  start-page: 4793
  issue: 11
  year: 2021
  end-page: 4813
  ident: CR16
  article-title: A survey on explainable artificial intelligence (XAI): toward medical XAI
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2020.3027314
– volume: 19
  start-page: 67
  issue: 1
  year: 2022
  end-page: 76
  ident: CR17
  article-title: Efficient and secure outsourcing of differentially private data publishing with multiple evaluators
  publication-title: IEEE Trans. Dependable Secur. Comput.
  doi: 10.1109/TDSC.2020.3015886
– ident: CR49
– ident: CR39
– volume: 58
  start-page: 82
  year: 2020
  end-page: 115
  ident: CR14
  article-title: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI
  publication-title: Inf. Fusion.
  doi: 10.1016/j.inffus.2019.12.012
– volume: 601
  start-page: 255
  year: 2022
  end-page: 267
  ident: CR4
  article-title: Similarity- based integrity protection for deep learning systems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.04.003
– ident: CR35
– ident: CR29
– ident: CR8
– volume: 34
  start-page: 2962
  issue: 6
  year: 2022
  end-page: 2974
  ident: CR18
  article-title: The dynamic privacy-preserving mechanisms for online dynamic social networks
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.3015835
– ident: CR25
– ident: CR42
– volume: 16
  start-page: 952
  year: 2021
  end-page: 967
  ident: CR3
  article-title: An automatic cost learning framework for image steganography using deep reinforcement learning
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2020.3025438
– ident: CR21
– ident: CR46
– volume: 15
  start-page: 530
  issue: 4
  year: 2021
  end-page: 544
  ident: CR6
  article-title: An improved anti-quantum MST3 public key encryption scheme for remote sensing images
  publication-title: Enterp. Inf. Syst.
  doi: 10.1080/17517575.2019.1600040
– ident: CR15
– ident: CR50
– ident: CR9
– ident: CR32
– ident: CR36
– ident: CR5
– ident: CR26
– volume: 128
  start-page: 336
  issue: 2
  year: 2020
  end-page: 359
  ident: CR41
  article-title: Grad-cam: Visual explanations from deep networks via gradient-based localization
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01228-7
– ident: CR43
– ident: CR47
– volume: 548
  start-page: 423
  year: 2021
  end-page: 437
  ident: CR1
  article-title: PPCL: privacy-preserving collaborative learning for mitigating indirect information leakage
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.09.064
– ident: CR37
– ident: CR30
– ident: CR10
– ident: CR33
– ident: CR40
– ident: CR27
– ident: CR23
– volume: 121
  year: 2022
  ident: CR11
  article-title: Universal multi-source domain adaptation for image classification
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.108238
– volume: 573
  start-page: 370
  year: 2021
  end-page: 381
  ident: CR2
  article-title: PNAS: A privacy preserving framework for neural architecture search services
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.05.073
– ident: CR44
– ident: CR48
– volume: 12
  start-page: 3325
  issue: 11
  year: 2021
  end-page: 3336
  ident: CR24
  article-title: Adversarial examples: attacks and defenses in the physical world
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-020-01242-z
– ident: CR38
– volume: 22
  start-page: 33
  issue: 2
  year: 2022
  end-page: 13321
  ident: CR7
  article-title: Collusion-free for cloud verification toward the view of game theory
  publication-title: ACM Trans. Internet Techn.
  doi: 10.1145/3423558
– ident: CR31
– ident: CR13
– ident: CR34
– volume: 548
  start-page: 212
  year: 2021
  end-page: 232
  ident: CR19
  article-title: Privacy-preserving and verifiable online crowdsourcing with worker updates
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.10.010
– ident: CR28
– volume: 560
  start-page: 493
  year: 2021
  end-page: 503
  ident: CR12
  article-title: MHAT: an efficient model-heterogenous aggregation training scheme for federated learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.01.046
– ident: CR20
– ident: 1150_CR33
  doi: 10.1109/EuroSP.2019.00044
– ident: 1150_CR37
– ident: 1150_CR22
  doi: 10.1145/3460231.3474275
– ident: 1150_CR35
  doi: 10.1109/CVPR46437.2021.01360
– volume: 548
  start-page: 212
  year: 2021
  ident: 1150_CR19
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.10.010
– ident: 1150_CR43
– ident: 1150_CR20
– ident: 1150_CR9
  doi: 10.1002/int.23001
– volume: 573
  start-page: 370
  year: 2021
  ident: 1150_CR2
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.05.073
– ident: 1150_CR38
  doi: 10.1109/CVPR42600.2020.00886
– volume: 121
  year: 2022
  ident: 1150_CR11
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.108238
– ident: 1150_CR23
  doi: 10.1145/3319535.3354261
– volume: 22
  start-page: 33
  issue: 2
  year: 2022
  ident: 1150_CR7
  publication-title: ACM Trans. Internet Techn.
  doi: 10.1145/3423558
– ident: 1150_CR36
  doi: 10.1145/3287560.3287562
– ident: 1150_CR5
  doi: 10.1002/cpe.5925
– volume: 15
  start-page: 530
  issue: 4
  year: 2021
  ident: 1150_CR6
  publication-title: Enterp. Inf. Syst.
  doi: 10.1080/17517575.2019.1600040
– volume: 19
  start-page: 67
  issue: 1
  year: 2022
  ident: 1150_CR17
  publication-title: IEEE Trans. Dependable Secur. Comput.
  doi: 10.1109/TDSC.2020.3015886
– ident: 1150_CR47
  doi: 10.1109/ICCCS52626.2021.9449145
– ident: 1150_CR30
– ident: 1150_CR42
– ident: 1150_CR21
– ident: 1150_CR45
  doi: 10.1109/ICCV.2017.371
– ident: 1150_CR46
– ident: 1150_CR32
  doi: 10.1145/3052973.3053009
– volume: 601
  start-page: 255
  year: 2022
  ident: 1150_CR4
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.04.003
– volume: 58
  start-page: 82
  year: 2020
  ident: 1150_CR14
  publication-title: Inf. Fusion.
  doi: 10.1016/j.inffus.2019.12.012
– ident: 1150_CR10
  doi: 10.1016/j.patcog.2022.108666
– ident: 1150_CR28
– ident: 1150_CR25
  doi: 10.1145/3460120.3484575
– volume: 34
  start-page: 2962
  issue: 6
  year: 2022
  ident: 1150_CR18
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.3015835
– ident: 1150_CR49
– ident: 1150_CR29
  doi: 10.1609/aaai.v34i01.5432
– ident: 1150_CR39
– volume: 548
  start-page: 423
  year: 2021
  ident: 1150_CR1
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.09.064
– volume: 128
  start-page: 336
  issue: 2
  year: 2020
  ident: 1150_CR41
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01228-7
– ident: 1150_CR27
  doi: 10.1109/CVPR.2019.00509
– ident: 1150_CR34
  doi: 10.1109/CVPR46437.2021.00474
– ident: 1150_CR8
  doi: 10.1007/s11432-022-3507-7
– volume: 32
  start-page: 4793
  issue: 11
  year: 2021
  ident: 1150_CR16
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2020.3027314
– ident: 1150_CR48
– ident: 1150_CR44
  doi: 10.1145/2939672.2939778
– ident: 1150_CR13
– ident: 1150_CR15
– ident: 1150_CR40
– volume: 12
  start-page: 3325
  issue: 11
  year: 2021
  ident: 1150_CR24
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-020-01242-z
– volume: 560
  start-page: 493
  year: 2021
  ident: 1150_CR12
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.01.046
– volume: 16
  start-page: 952
  year: 2021
  ident: 1150_CR3
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2020.3025438
– ident: 1150_CR31
  doi: 10.1109/CVPR42600.2020.00031
– ident: 1150_CR26
– ident: 1150_CR50
SSID ssj0006391
Score 2.323356
Snippet Deep learning (DL) has dramatically pushed the previous limits of various tasks, ranging from computer vision to natural language processing. Despite its...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3081
SubjectTerms Computer Science
Computer vision
Database Management
Effectiveness
Explainable artificial intelligence
Information Systems Applications (incl.Internet)
Natural language processing
Operating Systems
Privacy
Special Issue on Privacy and Security in Machine Learning
Synthetic data
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBN6JQUAY2sMjDie0JIUTFVHUAqWKJ_JSQUFvSwO_HdpwGkOjCGCW2os_nu7Pv8QFcxoqYVLuobkqEPaDIGHEqE5SaOBc5p67_iyebIKMRnUzYOFy4LUJaZasTvaJWM-nuyG-sZ59bXzll-Hb-jhxrlIuuBgqNddhwXRIcdcM4f1lqYmt9mwMXLVCC80kommlK56xijpG1WMg7Raj4aZg6b_NXgNTbneHuf_94D3aCxxndNSKyD2t6egDb3_oQHgJ2mXi8uRdEzq6pyGWOIlNpHXmunMjq8KqpgYh4XbvC_CN4Hj483T-iQKeApN1nNVKxEtLgrOAZTwRLmCGcMWWsPSLWr8pyQwolJaOKx5jkhvEsK7AqqEiN0PbhGHrT2VSfQESFkEzxhDHBMJVEYJ1JJVwIz66xSfqQtFiWMvQad5QXb2XXJdnhX1r8S49_WfThajlm3nTaWPn1oAW9DLtuUXaI9-G6Xbbu9d-zna6e7Qy2Ui8pLrVsAL26-tDnsCk_69dFdeFl7gtQY9qB
  priority: 102
  providerName: ProQuest
Title Explanation-based data-free model extraction attacks
URI https://link.springer.com/article/10.1007/s11280-023-01150-6
https://www.proquest.com/docview/2875642294
Volume 26
WOSCitedRecordID wos000999733500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1413
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006391
  issn: 1386-145X
  databaseCode: RSV
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5s60EPVqtitZYcvOlCHpvs7lGlRRBKqQ-Kl7CPLAhSJY3-fnc3SaOigl4CIZslzOzMN5N5AZz4iugws1HdkAjjoEgfcSoDFGo_FjGntv-LGzZBJhM6n7NpVRS2rLPd65Ck09RNsZtRpT4yGIOcGYOSFnQM3FE7sGF2c7_SvwZzSzeLJijA8bwqlfl-j89w1NiYX8KiDm3G3f995zZsVdald14ehx1YyxY96NaTG7xKkHuw-aEN4S5gm4jHy9-CyMKa8mziKNJ5lnluVI5nVHhelkB4vChsXf4e3I1Ht5dXqJqmgKQRswIpXwmpcZTwiAeCBUwTzpjSBo6IMauiWJNEScmo4j4msWY8ihKsEipCLTJzsw_txfMiOwCPCiGZ4gFjgmEqicBZJJWwETzDYh30IaiJmsqq1bidePGUNk2SLZFSQ6TUESlN-nC6euelbLTx6-pBzau0Erplapy_2LhTIcN9OKt50zz-ebfDvy0_go3Qsddmmg2gXeSv2TGsy7ficZkPoXMxmkxnQ2hdE2Su0_hh6A7oOzEU2d8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JSwMxFH4UFdSDu1itOgc9aXCWzCQ5iIgLlWrxoNDbmBUEaWs7Kv4pf6PJLFYFe-vB8ywM831530veBrDnK2JC7aK6IRF2gyJ9xKkMUGj8WMScuv4v-bAJ0m7TTofd1uCjqoVxaZWVTcwNtepJd0Z-ZD372PrKIcMn_Wfkpka56Go1QqOgRUu_v9kt2_D46tziux-Glxd3Z01UThVA0tItQ8pXQhocJTzigWABM4Qzpow1y8S6F1FsSKKkZFRxH5PYMB5FCVYJFaERmrsDUGvyp3FEiVtXLYK-LL9V-2KDRxMU4LhTFukUpXpWCHxkFRLlThhKfgrhyLv9FZDNde5y8b_9oSVYKD1q77RYAstQ090VmP_WZ3EVsMs05MW5J3K6rTyXGYvMQGsvnwXkWY0aFDUeHs8y13hgDe4n8tnrMNXtdfUGeFQIyRQPGBMMU0kE1pFUwoUoLYdNUIegwi6VZS91N9LjKR11gXZ4pxbvNMc7Tepw8PVMv-gkMvbuRgVyWlqVYTpCuA6HFU1Gl_9-2-b4t-3CbPPu5jq9vmq3tmAuzFnq0ugaMJUNXvQ2zMjX7HE42Mn57sHDpOnzCcojODI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8NAFH4UFdGDu1itmoOedDD7ZA4iohaLUnpQKF7irCBI1TYq_jV_nW-ytCrYWw-ekwxJvm_eMm8D2HMVNb62UV2fCnRQpEt4Ij3iGzcSEU9s_5d82ARtt5Nul3Vq8FnVwti0ykom5oJaPUl7Rn6Eln2EtrLPwiNTpkV0zpsnzy_ETpCykdZqnEZBkSv98Y7u2-C4dY5Y7_t-8-Lm7JKUEwaIROplRLlKSBMGMQ-4J5jHDOWMKYMimqKpEUSGxkpKlijuhjQyjAdBHKo4Eb4RmtvDUBT_0xR9TJtO2InuhloANX_h7CUx8cKoWxbsFGV7qBRcgtqS5AYZiX8qxZGl-ys4m-u85uJ__ltLsFBa2s5psTWWoaZ7KzD_rf_iKoQ2A5EX56HE6nPl2IxZYvpaO_mMIAc_qV_Ufjg8y2xDgjW4nchrr8NU76mnN8BJhJBMcY8xwcJEUhHqQCphQ5fIbePVwatwTGXZY92O-nhMR92hLfYpYp_m2KdxHQ6GzzwXHUbG3t2oAE9LaTNIR2jX4bCizOjy36ttjl9tF2aRNel1q321BXN-TlibXdeAqaz_qrdhRr5lD4P-Tk59B-4nzZ4vPJhBVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explanation-based+data-free+model+extraction+attacks&rft.jtitle=World+wide+web+%28Bussum%29&rft.au=Yan%2C+Anli&rft.au=Hou%2C+Ruitao&rft.au=Yan%2C+Hongyang&rft.au=Liu%2C+Xiaozhang&rft.date=2023-09-01&rft.pub=Springer+US&rft.issn=1386-145X&rft.eissn=1573-1413&rft.volume=26&rft.issue=5&rft.spage=3081&rft.epage=3092&rft_id=info:doi/10.1007%2Fs11280-023-01150-6&rft.externalDocID=10_1007_s11280_023_01150_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-145X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-145X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-145X&client=summon