A deep contractive autoencoder for solving multiclass classification problems
Contractive auto encoder (CAE) is on of the most robust variant of standard Auto Encoder (AE). The major drawback associated with the conventional CAE is its higher reconstruction error during encoding and decoding process of input features to the network. This drawback in the operational procedure...
Saved in:
| Published in: | Evolutionary intelligence Vol. 14; no. 4; pp. 1619 - 1633 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1864-5909, 1864-5917 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Contractive auto encoder (CAE) is on of the most robust variant of standard Auto Encoder (AE). The major drawback associated with the conventional CAE is its higher reconstruction error during encoding and decoding process of input features to the network. This drawback in the operational procedure of CAE leads to its incapability of going into finer details present in the input features by missing the information worth consideration. Resultantly, the features extracted by CAE lack the true representation of all the input features and the classifier fails in solving classification problems efficiently. In this work, an improved variant of CAE is proposed based on layered architecture following feed forward mechanism named as deep CAE. In the proposed architecture, the normal CAEs are arranged in layers and inside each layer, the process of encoding and decoding take place. The features obtained from the previous CAE are given as inputs to the next CAE. Each CAE in all layers are responsible for reducing the reconstruction error thus resulting in obtaining the informative features. The feature set obtained from the last CAE is given as input to the softmax classifier for classification. The performance and efficiency of the proposed model has been tested on five MNIST variant-datasets. The results have been compared with standard SAE, DAE, RBM, SCAE, ScatNet and PCANet in term of training error, testing error and execution time. The results revealed that the proposed model outperform the aforementioned models. |
|---|---|
| AbstractList | Contractive auto encoder (CAE) is on of the most robust variant of standard Auto Encoder (AE). The major drawback associated with the conventional CAE is its higher reconstruction error during encoding and decoding process of input features to the network. This drawback in the operational procedure of CAE leads to its incapability of going into finer details present in the input features by missing the information worth consideration. Resultantly, the features extracted by CAE lack the true representation of all the input features and the classifier fails in solving classification problems efficiently. In this work, an improved variant of CAE is proposed based on layered architecture following feed forward mechanism named as deep CAE. In the proposed architecture, the normal CAEs are arranged in layers and inside each layer, the process of encoding and decoding take place. The features obtained from the previous CAE are given as inputs to the next CAE. Each CAE in all layers are responsible for reducing the reconstruction error thus resulting in obtaining the informative features. The feature set obtained from the last CAE is given as input to the softmax classifier for classification. The performance and efficiency of the proposed model has been tested on five MNIST variant-datasets. The results have been compared with standard SAE, DAE, RBM, SCAE, ScatNet and PCANet in term of training error, testing error and execution time. The results revealed that the proposed model outperform the aforementioned models. |
| Author | Mohd Nawi, Nazri Mahdin, Hairulnizam Wahid, Fazli Aamir, Muhammad |
| Author_xml | – sequence: 1 givenname: Muhammad surname: Aamir fullname: Aamir, Muhammad organization: Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn – sequence: 2 givenname: Nazri surname: Mohd Nawi fullname: Mohd Nawi, Nazri organization: Soft Computing and Data Mining Center, Universiti Tun Hussein Onn – sequence: 3 givenname: Fazli surname: Wahid fullname: Wahid, Fazli email: fazli.wahid@cs.uol.edu.pk organization: Faculty of Computer Science and Information Technology, The University of Lahore, Gujrat Campus – sequence: 4 givenname: Hairulnizam surname: Mahdin fullname: Mahdin, Hairulnizam organization: Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn |
| BookMark | eNp9kM1OAyEURompiW31BVyRuB69MAwMy6bxL6lxo2vCMNDQTKHCTBPf3rE1mrjo5nIX3-GDM0OTEINF6JrALQEQd5lQ4FUBFAoARlnBz9CU1JwVlSRi8ruDvECznDcAnIJgU_SywK21O2xi6JM2vd9brIc-2mBiaxN2MeEcu70Pa7wdut6bTueMD9M7b3TvY8C7FJvObvMlOne6y_bq55yj94f7t-VTsXp9fF4uVoUpieyLFipekYZoZsE1IETLwZaikW1dSi3rxkhLBBFGaEKoLR11jBPJTFu1jdO6nKOb471j8cdgc682cUhhrFS0qitGJK_FmKLHlEkx52Sd2iW_1elTEVDf2tRRmxq1qYM2xUeo_gcZ3x9-Ofrx3Wm0PKJ57Alrm_5edYL6AjKkhLM |
| CitedBy_id | crossref_primary_10_1007_s10661_024_13101_3 crossref_primary_10_1109_LSP_2021_3077853 crossref_primary_10_3390_e24010036 crossref_primary_10_1016_j_asoc_2024_111378 crossref_primary_10_1109_TGRS_2025_3583982 crossref_primary_10_3389_fdata_2024_1462745 crossref_primary_10_3390_electronics10212667 crossref_primary_10_1109_ACCESS_2023_3321800 crossref_primary_10_1007_s13369_021_05674_9 crossref_primary_10_1109_ACCESS_2020_3015206 |
| Cites_doi | 10.1016/j.future.2016.06.005 10.1016/j.neucom.2015.07.058 10.1109/TNNLS.2015.2479223 10.1109/TNNLS.2014.2310059 10.3390/mi9080411 10.1007/s10589-014-9678-4 10.1016/j.neucom.2015.07.119 10.3390/s18114024 10.5391/IJFIS.2020.20.1.8 10.1016/j.imavis.2017.01.005 10.1016/j.neucom.2015.02.023 10.1109/TIP.2015.2487860 10.1109/TIE.2016.2586442 10.1109/TIP.2015.2475625 10.1016/j.sigpro.2015.01.001 10.18517/ijaseit.7.5.2972 10.3390/rs10060877 10.1609/aaai.v30i1.9952 10.1109/ICASSP.2014.6854900 10.1145/1273496.1273556 10.1007/978-0-387-78189-1_8 10.1145/2502081.2502112 10.1007/978-3-319-72550-5_2 10.1109/ISPDC.2016.60 10.1007/s12065-018-0165-1 10.1007/978-3-642-23783-6_41 10.1109/IJCNN.2015.7280669 10.1109/CISP.2015.7407967 10.1007/978-3-642-17622-7_18 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s12065-020-00424-6 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1864-5917 |
| EndPage | 1633 |
| ExternalDocumentID | 10_1007_s12065_020_00424_6 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 06D 0R~ 0VY 1N0 203 29G 29~ 2JN 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 5GY 5VS 67Z 6NX 875 8TC 8UJ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PT4 QOS R89 RLLFE ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- M2P M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c319t-d05651b1a4e0fb077d60e37b9d839a98bc9e1717c7a112e3f2f46194cd5dbfaa3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000539503900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-5909 |
| IngestDate | Wed Sep 17 23:58:12 EDT 2025 Sat Nov 29 06:12:13 EST 2025 Tue Nov 18 22:18:52 EST 2025 Fri Feb 21 02:47:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Deep auto encoder Contractive auto encoder Feature reduction MNIST variants Classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-d05651b1a4e0fb077d60e37b9d839a98bc9e1717c7a112e3f2f46194cd5dbfaa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2585419687 |
| PQPubID | 2043920 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2585419687 crossref_primary_10_1007_s12065_020_00424_6 crossref_citationtrail_10_1007_s12065_020_00424_6 springer_journals_10_1007_s12065_020_00424_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Evolutionary intelligence |
| PublicationTitleAbbrev | Evol. Intel |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Snášel, Nowaková, Xhafa, Barolli (CR22) 2017; 67 Vincent, Larochelle, Lajoie, Bengio, Manzagol (CR12) 2010; 11 CR19 CR18 Hosseini-Asl, Zurada, Nasraoui (CR2) 2016; 27 CR39 Jae-Neung Lee, Kwak (CR43) 2018; 9 CR16 CR15 CR37 CR14 CR36 CR13 Hong, Yu, Wan, Tao, Wang (CR9) 2015; 24 CR11 CR10 CR32 CR31 CR30 Wahid, Ghazali, Fayaz, Shah (CR25) 2017; 8 Aamir, Mohd Nawi, Mahdin, Naseem, Zulqarnain (CR1) 2020; 20 CR3 Jia, Sun, Gao, Song, Shi (CR4) 2015; 160 CR6 Liu, Ma, Tao, You (CR7) 2016; 187 CR29 Sankaran, Vatsa, Singh, Majumdar (CR33) 2017; 60 Chan, Jia, Gao, Lu, Zeng, Ma (CR34) 2015; 24 Lee, Byeon, Kwak (CR44) 2018; 9 CR28 CR27 Zhang, Ding, Shi (CR5) 2016; 171 CR24 Biglari, Ebadian (CR42) 2015; 60 Wahid, Ismail, Ghazali, Aamir (CR20) 2019; 13 CR23 Zi, Xie, Jiang (CR35) 2018; 10 Lee, Byeon, Pan, Kwak (CR38) 2018 Liu, Feng, Zhou (CR17) 2016; 120 Soon, Khaw, Chuah, Kanesan (CR40) 2018; 99 Chorowski, Zurada (CR8) 2015; 26 Aamir, Mohd Nawi, Wahid, Mahdin (CR26) 2019; 10 Mohd Nawi, Hamzah, Hamid, Rehman, Aamir, Azhar (CR21) 2017; 7 Liao, Jin, Pavel (CR41) 2016; 63 V Snášel (424_CR22) 2017; 67 424_CR6 N Zhang (424_CR5) 2016; 171 424_CR3 N Mohd Nawi (424_CR21) 2017; 7 M Aamir (424_CR1) 2020; 20 F Wahid (424_CR25) 2017; 8 YHB Jae-Neung Lee (424_CR43) 2018; 9 424_CR19 F Biglari (424_CR42) 2015; 60 P Vincent (424_CR12) 2010; 11 424_CR24 424_CR23 424_CR29 C Hong (424_CR9) 2015; 24 424_CR28 424_CR27 A Sankaran (424_CR33) 2017; 60 FC Soon (424_CR40) 2018; 99 E Hosseini-Asl (424_CR2) 2016; 27 JN Lee (424_CR38) 2018 L Liao (424_CR41) 2016; 63 J Chorowski (424_CR8) 2015; 26 Y Zi (424_CR35) 2018; 10 K Jia (424_CR4) 2015; 160 W Liu (424_CR7) 2016; 187 424_CR14 Y Liu (424_CR17) 2016; 120 424_CR36 424_CR13 M Aamir (424_CR26) 2019; 10 424_CR11 424_CR18 424_CR39 424_CR16 F Wahid (424_CR20) 2019; 13 424_CR15 424_CR37 424_CR10 424_CR32 TH Chan (424_CR34) 2015; 24 424_CR31 424_CR30 JN Lee (424_CR44) 2018; 9 |
| References_xml | – volume: 67 start-page: 286 year: 2017 end-page: 296 ident: CR22 article-title: Geometrical and topological approaches to Big Data publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2016.06.005 – volume: 99 start-page: 1 year: 2018 end-page: 11 ident: CR40 article-title: PCANet-Based Convolutional Neural Network Architecture For a Vehicle Model Recognition System publication-title: IEEE Trans Intell Transp Syst – ident: CR18 – volume: 171 start-page: 1066 year: 2016 end-page: 1074 ident: CR5 article-title: Denoising Laplacian multi-layer extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.058 – volume: 27 start-page: 2486 issue: 12 year: 2016 end-page: 2498 ident: CR2 article-title: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2479223 – ident: CR14 – ident: CR39 – ident: CR16 – ident: CR37 – ident: CR30 – volume: 26 start-page: 62 issue: 1 year: 2015 end-page: 69 ident: CR8 article-title: Learning understandable neural networks with nonnegative weight constraints publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2310059 – volume: 8 start-page: 9 year: 2017 ident: CR25 article-title: Statistical features based approach (SFBA) for hourly energy consumption prediction using neural network publication-title: Networks – ident: CR10 – volume: 9 start-page: 411 issue: 8 year: 2018 ident: CR44 article-title: Design of ensemble stacked auto-encoder for classification of horse gaits with MEMS inertial sensor technology publication-title: Micromachines doi: 10.3390/mi9080411 – ident: CR6 – ident: CR29 – volume: 60 start-page: 413 issue: 2 year: 2015 end-page: 422 ident: CR42 article-title: Limited memory BFGS method based on a high-order tensor model publication-title: Comput Optim Appl doi: 10.1007/s10589-014-9678-4 – volume: 187 start-page: 59 year: 2016 end-page: 65 ident: CR7 article-title: HSAE: a Hessian regularized sparse auto-encoders publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.119 – volume: 10 start-page: 416 issue: 8 year: 2019 end-page: 426 ident: CR26 article-title: An efficient normalized restricted Boltzmann machine for solving multiclassclassification problems publication-title: Int J Adv Comput Sci Appl – year: 2018 ident: CR38 article-title: An EigenECG network approach based on PCANet for personal identification from ECG Signal publication-title: Sensors doi: 10.3390/s18114024 – ident: CR27 – ident: CR23 – volume: 20 start-page: 8 issue: 1 year: 2020 end-page: 16 ident: CR1 article-title: Auto-encoder variants for solving handwritten digits classification problem publication-title: Int J Fuzzy Logic Intell Syst doi: 10.5391/IJFIS.2020.20.1.8 – ident: CR19 – volume: 60 start-page: 64 year: 2017 end-page: 74 ident: CR33 article-title: Group sparse autoencoder publication-title: Image Vis Comput doi: 10.1016/j.imavis.2017.01.005 – volume: 160 start-page: 250 year: 2015 end-page: 260 ident: CR4 article-title: Laplacian auto-encoders: an explicit learning of nonlinear data manifold publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.023 – ident: CR3 – ident: CR15 – ident: CR31 – volume: 24 start-page: 5659 issue: 12 year: 2015 end-page: 5670 ident: CR9 article-title: Multimodal deep autoencoder for human pose recovery publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2015.2487860 – ident: CR13 – ident: CR11 – volume: 63 start-page: 7076 issue: 11 year: 2016 end-page: 7083 ident: CR41 article-title: Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment publication-title: IEEE Trans Industr Electron doi: 10.1109/TIE.2016.2586442 – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: CR12 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – volume: 24 start-page: 5017 issue: 12 year: 2015 end-page: 5032 ident: CR34 article-title: PCANet: A simple deep learning baseline for image classification? publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2015.2475625 – ident: CR32 – volume: 13 start-page: 5904 issue: 12 year: 2019 end-page: 5927 ident: CR20 article-title: An efficient artificial intelligence hybrid approach for energy management in intelligent buildings publication-title: KSII Trans Internet Inf Syst – ident: CR36 – volume: 120 start-page: 761 year: 2016 end-page: 766 ident: CR17 article-title: Multimodal video classification with stacked contractive autoencoders publication-title: Sig Process doi: 10.1016/j.sigpro.2015.01.001 – volume: 9 start-page: 411 issue: 4 year: 2018 ident: CR43 article-title: An EigenECG network approach based on PCANet for personal identification from ECG signal publication-title: Micromachines – volume: 7 start-page: 1693 issue: 5 year: 2017 end-page: 1700 ident: CR21 article-title: An optimized back propagation learning algorithm with adaptive learning rate publication-title: Int J Adv Sci Eng Inf Technol doi: 10.18517/ijaseit.7.5.2972 – ident: CR28 – volume: 10 start-page: 877 issue: 6 year: 2018 ident: CR35 article-title: A cloud detection method for Landsat 8 images based on PCANet publication-title: Remote Sens doi: 10.3390/rs10060877 – ident: CR24 – ident: 424_CR10 doi: 10.1609/aaai.v30i1.9952 – volume: 171 start-page: 1066 year: 2016 ident: 424_CR5 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.058 – ident: 424_CR18 – volume: 99 start-page: 1 year: 2018 ident: 424_CR40 publication-title: IEEE Trans Intell Transp Syst – volume: 160 start-page: 250 year: 2015 ident: 424_CR4 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.023 – volume: 67 start-page: 286 year: 2017 ident: 424_CR22 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2016.06.005 – ident: 424_CR39 – ident: 424_CR13 doi: 10.1109/ICASSP.2014.6854900 – ident: 424_CR28 doi: 10.1145/1273496.1273556 – volume: 27 start-page: 2486 issue: 12 year: 2016 ident: 424_CR2 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2479223 – ident: 424_CR24 doi: 10.1007/978-0-387-78189-1_8 – ident: 424_CR15 doi: 10.1145/2502081.2502112 – ident: 424_CR27 doi: 10.1007/978-3-319-72550-5_2 – ident: 424_CR14 – volume: 7 start-page: 1693 issue: 5 year: 2017 ident: 424_CR21 publication-title: Int J Adv Sci Eng Inf Technol doi: 10.18517/ijaseit.7.5.2972 – ident: 424_CR31 – ident: 424_CR16 – volume: 8 start-page: 9 year: 2017 ident: 424_CR25 publication-title: Networks – ident: 424_CR37 doi: 10.1109/ISPDC.2016.60 – volume: 10 start-page: 877 issue: 6 year: 2018 ident: 424_CR35 publication-title: Remote Sens doi: 10.3390/rs10060877 – volume: 120 start-page: 761 year: 2016 ident: 424_CR17 publication-title: Sig Process doi: 10.1016/j.sigpro.2015.01.001 – volume: 187 start-page: 59 year: 2016 ident: 424_CR7 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.119 – ident: 424_CR6 – volume: 9 start-page: 411 issue: 8 year: 2018 ident: 424_CR44 publication-title: Micromachines doi: 10.3390/mi9080411 – volume: 11 start-page: 3371 year: 2010 ident: 424_CR12 publication-title: J Mach Learn Res – volume: 9 start-page: 411 issue: 4 year: 2018 ident: 424_CR43 publication-title: Micromachines – volume: 13 start-page: 5904 issue: 12 year: 2019 ident: 424_CR20 publication-title: KSII Trans Internet Inf Syst – volume: 20 start-page: 8 issue: 1 year: 2020 ident: 424_CR1 publication-title: Int J Fuzzy Logic Intell Syst doi: 10.5391/IJFIS.2020.20.1.8 – volume: 26 start-page: 62 issue: 1 year: 2015 ident: 424_CR8 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2310059 – ident: 424_CR23 doi: 10.1007/s12065-018-0165-1 – volume: 24 start-page: 5659 issue: 12 year: 2015 ident: 424_CR9 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2015.2487860 – ident: 424_CR3 – volume: 60 start-page: 64 year: 2017 ident: 424_CR33 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2017.01.005 – ident: 424_CR11 doi: 10.1007/978-3-642-23783-6_41 – ident: 424_CR36 doi: 10.1109/IJCNN.2015.7280669 – ident: 424_CR32 doi: 10.1109/CISP.2015.7407967 – volume: 24 start-page: 5017 issue: 12 year: 2015 ident: 424_CR34 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2015.2475625 – year: 2018 ident: 424_CR38 publication-title: Sensors doi: 10.3390/s18114024 – volume: 60 start-page: 413 issue: 2 year: 2015 ident: 424_CR42 publication-title: Comput Optim Appl doi: 10.1007/s10589-014-9678-4 – ident: 424_CR19 doi: 10.1007/978-3-642-17622-7_18 – ident: 424_CR29 – ident: 424_CR30 – volume: 63 start-page: 7076 issue: 11 year: 2016 ident: 424_CR41 publication-title: IEEE Trans Industr Electron doi: 10.1109/TIE.2016.2586442 – volume: 10 start-page: 416 issue: 8 year: 2019 ident: 424_CR26 publication-title: Int J Adv Comput Sci Appl |
| SSID | ssj0062074 |
| Score | 2.3110058 |
| Snippet | Contractive auto encoder (CAE) is on of the most robust variant of standard Auto Encoder (AE). The major drawback associated with the conventional CAE is its... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1619 |
| SubjectTerms | Applications of Mathematics Artificial Intelligence Bioinformatics Classification Classifiers Coders Control Engineering Errors Feature extraction Mathematical and Computational Engineering Mechatronics Model testing Reconstruction Research Paper Robotics Statistical Physics and Dynamical Systems |
| Title | A deep contractive autoencoder for solving multiclass classification problems |
| URI | https://link.springer.com/article/10.1007/s12065-020-00424-6 https://www.proquest.com/docview/2585419687 |
| Volume | 14 |
| WOSCitedRecordID | wos000539503900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1864-5917 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: RSV dateStart: 20080301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCD1apYrZKDNw3sezfHIhYvFvFFb8tuMgFBaulu_f1O0qyrooJe9pIHyySZ-b7MZAbgVOjE0I7CILeAR5FCLlAQS0EtI9QEQZRni02k43E2mYgb9yisaqLdG5ek1dTtY7eAzCU3dMf663iyCmtk7jJTsOH27rHRv0ng2dzLfpZEPBaecE9lvp_jszlqMeYXt6i1NqPu__5zG7YcumTD5XbYgRWc9qDbVG5g7iD3YPNDGsJduB4yhThjNmy9sAqQFYv6xeS4VDSMcC2jLWquHpgNQJQGcjP7NZFGdnGZK01T7cHD6PL-4oq7Mgtc0vmruSIMFPulX0To6dJLU5V4GKalUASeCpGVUqBPrE-mBYEzDHWgI3P3IVWsSl0U4T50pi9TPAAWa4UiMK5dYmElMT8USYYykzHGZaizPviNtHPpcpCbUhjPeZs92UgvJ-nlVnp50oez9zGzZQaOX3sPmkXM3Wms8oA4UUSqJkv7cN4sWtv882yHf-t-BBuBCXmx0S4D6NTzBR7Dunytn6r5id2lbymj4DM |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06k4nZoH37TQdv3K4xDHxG2ITtlbaZMLCLKNtfPv95K1VkUFfelLPiiX5O53ucvvAM65CrTbkWjk5lqeJ9HiyMlLQSU8VARBpG2KTYTDYTQe87viUVhWZruXIUmjqavHbi6ZS0u7OyZeZwWrsOaRxdKM-fcPT6X-DVzbcC87UeBZPrd58VTm-zk-m6MKY34Jixpr063_7z93YLtAl6yz3A67sIKTBtTLyg2sOMgN2PpAQ7gHgw6TiDNm0tYTowBZssinmuNS0jDCtYy2qL56YCYBUWjIzcxXZxqZxWVFaZpsHx6716OrnlWUWbAEnb_ckoSBfCd1Eg9tldphKAMb22HKJYGnhEep4OiQ1yfChMAZtpWrPH33IaQvU5Uk7QOoTaYTPATmK4nc1aFd8sJS8vyQBxGKSPjop20VNcEppR2LgoNcl8J4iSv2ZC29mKQXG-nFQRMu3sfMlgwcv_ZulYsYF6cxi13yiTxSNVHYhMty0armn2c7-lv3M9jojQb9uH8zvD2GTVenv5jMlxbU8vkCT2BdvObP2fzU7Ng3tMLjFw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60iujBalWsVs3Bmy7dR_aRY1GLopaCD3pbsskEBGlLu_X3m6S7bhUVxMteNgnL5PV9OzPfAJwyFRnawQ1y8x1KJToMmWYpqARFpSGIdG2xibjXSwYD1l_I4rfR7qVLcp7TYFSahnl7LFW7Snzz9dXpGOpjfXdOtAwr1ATSG77-8FyexZHvWh1mL4moEzKXFWkz34_x-Wqq8OYXF6m9ebr1_3_zFmwWqJN05stkG5Zw2IB6WdGBFBu8ARsL8oQ7cN8hEnFMbDg7twcj4bN8ZLQvpe6m8S7RS9f8kiA2MFEYKE7s00Qg2UknRcma6S48da8eL66dovyCI_S-zB2psVHoZR6n6KrMjWMZuRjEGZMaVHGWZIKhp9mgiLkGbRgoX1HzT0TIUGaK82APasPREPeBhEoi843LV7OzTDNCZFGCIhEhhlmgkiZ4peVTUWiTmxIZr2mlqmysl2rrpdZ6adSEs48-47kyx6-tW-WEpsUunaa-5kpUH0FJ3ITzcgKr1z-PdvC35iew1r_spnc3vdtDWPdNVIwNiGlBLZ_M8AhWxVv-Mp0c28X7Dn366_s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+contractive+autoencoder+for+solving+multiclass+classification+problems&rft.jtitle=Evolutionary+intelligence&rft.au=Aamir%2C+Muhammad&rft.au=Mohd+Nawi%2C+Nazri&rft.au=Wahid%2C+Fazli&rft.au=Mahdin%2C+Hairulnizam&rft.date=2021-12-01&rft.issn=1864-5909&rft.eissn=1864-5917&rft.volume=14&rft.issue=4&rft.spage=1619&rft.epage=1633&rft_id=info:doi/10.1007%2Fs12065-020-00424-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12065_020_00424_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5909&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5909&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5909&client=summon |