Variational Quantum Computation Integer Factorization Algorithm

The integer factorization problem is a major challenge in the field of computer science, and Shor’s algorithm provides a promising solution for this problem. However, Shor’s algorithm involves complex modular exponentiation computation, which leads to the construction of complicated quantum circuits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical physics Jg. 62; H. 11; S. 245
Hauptverfasser: Zhang, Xinglan, Zhang, Feng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 15.11.2023
Springer Nature B.V
Schlagworte:
ISSN:1572-9575, 0020-7748, 1572-9575
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The integer factorization problem is a major challenge in the field of computer science, and Shor’s algorithm provides a promising solution for this problem. However, Shor’s algorithm involves complex modular exponentiation computation, which leads to the construction of complicated quantum circuits. Moreover, the precision of continued fraction computations in Shor’s algorithm is influenced by the number of qubits, making it difficult to implement the algorithm on Noisy Intermediate-Scale Quantum (NISQ) computers. To address these issues, this paper proposes variational quantum computation integer factorization (VQCIF) algorithm based on variational quantum algorithm (VQA). Inspired by classical computing, this algorithm utilizes the parallelism of quantum computing to calculate the product of parameterized quantum states. Subsequently, the quantum multi-control gate is used to map the product satisfying p q = N onto an auxiliary qubit. Then the variational quantum circuit is adjusted by the optimizer, and it is possible to obtain a prime factor of the integer N with a high probability. While maintaining generality, VQCIF has a simple quantum circuit structure and requires only 2 n + 1 qubits. Furthermore, the time complexity is exponentially accelerated. VQCIF algorithm is implemented using the Qiskit framework, and tests are conducted on factorization instances to demonstrate its feasibility.
AbstractList The integer factorization problem is a major challenge in the field of computer science, and Shor’s algorithm provides a promising solution for this problem. However, Shor’s algorithm involves complex modular exponentiation computation, which leads to the construction of complicated quantum circuits. Moreover, the precision of continued fraction computations in Shor’s algorithm is influenced by the number of qubits, making it difficult to implement the algorithm on Noisy Intermediate-Scale Quantum (NISQ) computers. To address these issues, this paper proposes variational quantum computation integer factorization (VQCIF) algorithm based on variational quantum algorithm (VQA). Inspired by classical computing, this algorithm utilizes the parallelism of quantum computing to calculate the product of parameterized quantum states. Subsequently, the quantum multi-control gate is used to map the product satisfying pq=N onto an auxiliary qubit. Then the variational quantum circuit is adjusted by the optimizer, and it is possible to obtain a prime factor of the integer N with a high probability. While maintaining generality, VQCIF has a simple quantum circuit structure and requires only 2n+1 qubits. Furthermore, the time complexity is exponentially accelerated. VQCIF algorithm is implemented using the Qiskit framework, and tests are conducted on factorization instances to demonstrate its feasibility.
The integer factorization problem is a major challenge in the field of computer science, and Shor’s algorithm provides a promising solution for this problem. However, Shor’s algorithm involves complex modular exponentiation computation, which leads to the construction of complicated quantum circuits. Moreover, the precision of continued fraction computations in Shor’s algorithm is influenced by the number of qubits, making it difficult to implement the algorithm on Noisy Intermediate-Scale Quantum (NISQ) computers. To address these issues, this paper proposes variational quantum computation integer factorization (VQCIF) algorithm based on variational quantum algorithm (VQA). Inspired by classical computing, this algorithm utilizes the parallelism of quantum computing to calculate the product of parameterized quantum states. Subsequently, the quantum multi-control gate is used to map the product satisfying p q = N onto an auxiliary qubit. Then the variational quantum circuit is adjusted by the optimizer, and it is possible to obtain a prime factor of the integer N with a high probability. While maintaining generality, VQCIF has a simple quantum circuit structure and requires only 2 n + 1 qubits. Furthermore, the time complexity is exponentially accelerated. VQCIF algorithm is implemented using the Qiskit framework, and tests are conducted on factorization instances to demonstrate its feasibility.
ArticleNumber 245
Author Zhang, Xinglan
Zhang, Feng
Author_xml – sequence: 1
  givenname: Xinglan
  surname: Zhang
  fullname: Zhang, Xinglan
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing Key Laboratory of Trusted Computing
– sequence: 2
  givenname: Feng
  surname: Zhang
  fullname: Zhang, Feng
  email: changfeng@emails.bjut.edu.cn
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing Key Laboratory of Trusted Computing
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnlcnX033JKXYWiiIoF5DNp2tW_ajJtlD_fXGrqB46GGYyfC-4Z1nRAZN2yAh1xRuKYC68xSU4imwWFLE6XBGhlQqlmZSycGf-YKMvN8BQAZiOiT3b8aVJpRtY6rkuTNN6Opk3tb7Lhy3yaoJuEWXLIwNrSs_--2s2sZHeK8vyXlhKo9XP31MXhcPL_PHdP20XM1n69RymoV0AwItZEbGCIg5ZwaZpCpHy4wVhgppZcExUxuBgpscpFKbeJKdAMNC5XxMbvp_96796NAHvWs7F0N7zZkUkwkIClE17VXWtd47LLQt-zuCM2WlKehvXLrHpSMufcSlD9HK_ln3rqyNO5w28d7ko7iJmH5TnXB9AX6jgJo
CitedBy_id crossref_primary_10_1038_s41534_025_01061_6
Cites_doi 10.1038/s42254-021-00348-9
10.1103/PhysRevA.102.032420
10.1103/PhysRevLett.114.140504
10.1038/nphys3029
10.1007/s11432-022-3492-x
10.1145/359340.359342
10.1103/PhysRevLett.103.150502
10.1007/s11128-023-03869-7
10.1103/PhysRevA.106.042602
10.1007/978-3-030-14082-3_7
10.1103/PhysRevA.52.3457
10.1007/978-3-319-96424-9
10.1145/237814.237866
10.1038/s41598-020-62802-5
10.22331/q-2020-05-25-269
10.1103/PhysRevA.99.032331
10.5555/2011517.2011525
10.1103/PhysRevLett.70.1895
10.1007/s10773-022-05040-x
10.1007/978-94-015-8330-5_4
10.22331/q-2021-10-20-567
10.26421/QIC23.1-2-3
10.1038/s41586-019-0980-2
10.1002/qute.201900070
10.5555/3179553.3179560
10.1038/nature23879
10.22331/q-2018-08-06-79
10.1109/SFCS.1994.365700
10.48550/arXiv.2304.12100
10.1103/PhysRevLett.86.1889
10.1109/ICCCA49541.2020.9250806
10.1142/9789813237230_0001
10.48550/arXiv.1310.6446
10.48550/arXiv.2101.11020
10.1109/JPROC.2018.2884353
10.1103/PhysRevA.103.042415
10.48550/arXiv.2107.09155
10.1109/ICTC46691.2019.8939749
10.1038/srep03023
10.1007/s11128-017-1603-1
10.1017/CBO9780511976667
10.5281/zenodo.8090426
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
DBID AAYXX
CITATION
7XB
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10773-023-05473-y
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1572-9575
ExternalDocumentID 10_1007_s10773_023_05473_y
GrantInformation_xml – fundername: Beijing Municipal Natural Science Foundation
  grantid: 4212015
  funderid: http://dx.doi.org/10.13039/501100005089
GroupedDBID -54
-5F
-5G
-BR
-DZ
-EM
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ3
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UPT
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7U
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PQGLB
7XB
8FE
8FG
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-d04ec09a5957eeb32ae2517bec2ac4a145c5f3e97d4e43ab0577d077c602ef7b3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001101059200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1572-9575
0020-7748
IngestDate Sat Sep 27 04:20:53 EDT 2025
Tue Nov 18 22:40:09 EST 2025
Sat Nov 29 06:31:08 EST 2025
Fri Feb 21 02:41:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Shor’s algorithm
Variational quantum algorithm
Variational quantum computation integer factorization algorithm
Integer factorization
Qiskit
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d04ec09a5957eeb32ae2517bec2ac4a145c5f3e97d4e43ab0577d077c602ef7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3254660410
PQPubID 2043554
ParticipantIDs proquest_journals_3254660410
crossref_citationtrail_10_1007_s10773_023_05473_y
crossref_primary_10_1007_s10773_023_05473_y
springer_journals_10_1007_s10773_023_05473_y
PublicationCentury 2000
PublicationDate 2023-11-15
PublicationDateYYYYMMDD 2023-11-15
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of theoretical physics
PublicationTitleAbbrev Int J Theor Phys
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References LiQHuangYJinSHouXWangXQuantum spectral clustering algorithm for unsupervised learningSci. China Inf. Sci.20226510445513810.1007/s11432-022-3492-x
BeauregardSCircuit for shor’s algorithm using 2n+3 qubitsQuantum Info. Comput.200332175185196558810.5555/2011517.20115251152.81676
Xiao, L., Qiu, D., Luo, L., Mateus, P.: Distributed Quantum-classical Hybrid Shor’s Algorithm (2023). https://doi.org/10.48550/arXiv.2304.12100
RivestRLShamirAAdlemanLA method for obtaining digital signatures and public-key cryptosystemsCommun. ACM.197821212012670010310.1145/359340.3593420368.94005
AraujoIFParkDKLudermirTBOliveiraWRPetruccioneFSilvaAJConfigurable sublinear circuits for quantum state preparationQuantum Inf. Process.20232221232023QuIP...22..123A455168610.1007/s11128-023-03869-71509.81237
LaRoseRCoyleBRobust data encodings for quantum classifiersPhys. Rev. A.20201022020PhRvA.102c2420L10.1103/PhysRevA.102.032420
BarencoABennettCHCleveRDiVincenzoDPMargolusNShorPSleatorTSmolinJAWeinfurterHElementary gates for quantum computationPhys Rev A.199552534571995PhRvA..52.3457B10.1103/PhysRevA.52.3457
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual acm symposium on theory of computing. STOC ’96, pp. 212–219. Association for Computing Machinery, New York, NY, USA (1996). https://doi.org/10.1145/237814.237866
KerenidisILandmanJQuantum spectral clusteringPhys. Rev. A.20211032021PhRvA.103d2415K425681610.1103/PhysRevA.103.042415
Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum. 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79
Benenti, G., Casati, G., Rossini, D., Strini, G.: Principles of Quantum Computation and Information. World Scientific, Singapore (2019). https://doi.org/10.1142/9789813237230_0001
Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers vol. 17. Springer, Switzerland (2018). https://doi.org/10.1007/978-3-319-96424-9
SchuldMBergholmVGogolinCIzaacJKilloranNEvaluating analytic gradients on quantum hardwarePhys. Rev. A.2019992019PhRvA..99c2331S10.1103/PhysRevA.99.032331
LiZLiuXXuNDuJExperimental realization of a quantum support vector machinePhys. Rev. Lett.20151142015PhRvL.114n0504L10.1103/PhysRevLett.114.140504
SimSJohnsonPDAspuru-GuzikAExpressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithmsAdv. Quantum Technol.2019212190007010.1002/qute.201900070
Stokes, J., Izaac, J., Killoran, N., Carleo, G.: Quantum Natural Gradient. Quantum. 4, 269 (2020). https://doi.org/10.22331/q-2020-05-25-269
LiHJiangNZhangRWangZWangHQuantum support vector machine based on gradient descentInt. J. Theor. Phys.202261392440271910.1007/s10773-022-05040-x1490.81049
Schuld, M.: Supervised quantum machine learning models are kernel methods. arXiv preprint arXiv:2101.11020. (2021) https://doi.org/10.48550/arXiv.2101.11020
Gacon, J., Zoufal, C., Carleo, G., Woerner, S.: Simultaneous Perturbation Stochastic Approximation of the Quantum Fisher Information. Quantum. 5, 567 (2021). https://doi.org/10.22331/q-2021-10-20-567
BennettCHBrassardGCrépeauCJozsaRPeresAWoottersWKTeleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channelsPhys Rev Lett.1993701318951993PhRvL..70.1895B120824710.1103/PhysRevLett.70.18951051.81505
WangBHuFYaoHWangCPrime factorization algorithm based on parameter optimization of ising modelSci. Rep.202010171062020NatSR..10.7106W10.1038/s41598-020-62802-5
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th annual symposium on foundations of computer science, pp. 124–134 (1994). https://doi.org/10.1109/SFCS.1994.365700
MaslovDNamYKimJAn outlook for quantum computing [point of view]Proc. IEEE.2019107151010.1109/JPROC.2018.2884353
SilvaAJParkDKLinear-depth quantum circuits for multiqubit controlled gatesPhys. Rev. A.20221062022PhRvA.106d2602D451129510.1103/PhysRevA.106.042602
LloydSMohseniMRebentrostPQuantum principal component analysisNat. Phys.201410963163310.1038/nphys3029
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667
WeinsteinYSPraviaMAFortunatoEMLloydSCoryDGImplementation of the quantum fourier transformPhys. Rev. Lett.200186188918912001PhRvL..86.1889W10.1103/PhysRevLett.86.1889
GellerMRZhouZFactoring 51 and 85 with 8 qubitsSci Rep.20133130232013NatSR...3E3023G10.1038/srep03023
Häner, T., Roetteler, M., Svore, K.M.: Factoring using 2n+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n + 2$$\end{document} qubits with toffoli based modular multiplication. Quantum Info. Comput. 17(7–8), 673–684 (2017). https://doi.org/10.5555/3179553.3179560
Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. nature. 549(7671), 242–246 (2017). https://doi.org/10.1038/nature23879
Choi, J., Kim, J.: A tutorial on quantum approximate optimization algorithm (qaoa): Fundamentals and applications. In: 2019 international conference on information and communication technology convergence (ICTC), pp. 138–142 (2019). https://doi.org/10.1109/ICTC46691.2019.8939749
Treinish, M., Gambetta, J., Thomas, S., qiskit-bot, Nation, P., Kassebaum, P., Arellano, E., Rodríguez, D.M., Puente González, S., Bello, L., Lishman, J., Hu, S., Garrison, J., Huang, J., Krsulich, K., Yu, J., Gacon, J., Marques, M., McKay, D., Gomez, J., Capelluto, L., Wood, S., Travis-S-IBM, Mitchell, A., Panigrahi, A., Hartman, K., lerongil, Rahman, R.I., Itoko, T., Pozas-Kerstjens, A.: Qiskit/qiskit-metapackage: Qiskit 0.43.2. https://doi.org/10.5281/zenodo.8090426
CerezoMArrasmithABabbushRBenjaminSCEndoSFujiiKMcCleanJRMitaraiKYuanXCincioLVariational quantum algorithms.Nat. Rev. Phys.20213962564410.1038/s42254-021-00348-9
HarrowAWHassidimALloydSQuantum algorithm for linear systems of equationsPhys. Rev. Lett.20091032009PhRvL.103o0502H255168810.1103/PhysRevLett.103.150502
Anschuetz, E., Olson, J., Aspuru-Guzik, A., Cao, Y.: Variational quantum factoring. In: Feld, S., Linnhoff-Popien, C. (eds.) Quantum Technology and Optimization Problems, pp. 74–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14082-3_7
Ruiz-PerezLGarcia-EscartinJCQuantum arithmetic with the quantum fourier transformQuantum Inf. Process.201716114364200710.1007/s11128-017-1603-11373.81150
Gamel, O., James, D.F.V.: Simplified Factoring Algorithms for Validating Small-Scale Quantum Information Processing Technologies (2013). https://doi.org/10.48550/arXiv.1310.6446
Bhatia, V., Ramkumar, K.R.: An efficient quantum computing technique for cracking rsa using shor’s algorithm. In: 2020 IEEE 5th international conference on computing communication and automation (ICCCA), pp. 89–94 (2020). https://doi.org/10.1109/ICCCA49541.2020.9250806
HavlíčekVCórcolesADTemmeKHarrowAWKandalaAChowJMGambettaJMSupervised learning with quantum-enhanced feature spacesNature.201956777472092122019Natur.567..209H10.1038/s41586-019-0980-2
Powell, M.J.: A Direct Search Optimization Method that Models the Objective and Constraint Functions by Linear Interpolation. Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-015-8330-5_4
Ghosh, K.: Encoding classical data into a quantum computer (2021). https://doi.org/10.48550/arXiv.2107.09155
Xiao, L., Qiu, D., Luo, L., Mateus, P.: Distributed shor’s algorithm. Quantum Inform. Comput. 23(1-2), 27–44 (2023). https://doi.org/10.26421/QIC23.1-2-3
H Li (5473_CR7) 2022; 61
D Maslov (5473_CR2) 2019; 107
S Lloyd (5473_CR8) 2014; 10
5473_CR30
S Sim (5473_CR33) 2019; 2
RL Rivest (5473_CR11) 1978; 21
5473_CR12
5473_CR34
YS Weinstein (5473_CR40) 2001; 86
5473_CR4
5473_CR14
5473_CR36
5473_CR3
5473_CR15
5473_CR37
5473_CR16
5473_CR38
MR Geller (5473_CR17) 2013; 3
5473_CR18
5473_CR19
S Beauregard (5473_CR13) 2003; 3
M Schuld (5473_CR35) 2019; 99
AW Harrow (5473_CR5) 2009; 103
AJ Silva (5473_CR41) 2022; 106
R LaRose (5473_CR32) 2020; 102
M Cerezo (5473_CR25) 2021; 3
V Havlíček (5473_CR31) 2019; 567
5473_CR1
CH Bennett (5473_CR20) 1993; 70
L Ruiz-Perez (5473_CR39) 2017; 16
5473_CR22
Q Li (5473_CR10) 2022; 65
5473_CR23
Z Li (5473_CR6) 2015; 114
5473_CR24
5473_CR26
5473_CR27
5473_CR28
I Kerenidis (5473_CR9) 2021; 103
IF Araujo (5473_CR29) 2023; 22
A Barenco (5473_CR42) 1995; 52
B Wang (5473_CR21) 2020; 10
References_xml – reference: LloydSMohseniMRebentrostPQuantum principal component analysisNat. Phys.201410963163310.1038/nphys3029
– reference: Anschuetz, E., Olson, J., Aspuru-Guzik, A., Cao, Y.: Variational quantum factoring. In: Feld, S., Linnhoff-Popien, C. (eds.) Quantum Technology and Optimization Problems, pp. 74–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14082-3_7
– reference: Xiao, L., Qiu, D., Luo, L., Mateus, P.: Distributed Quantum-classical Hybrid Shor’s Algorithm (2023). https://doi.org/10.48550/arXiv.2304.12100
– reference: Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum. 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79
– reference: Gacon, J., Zoufal, C., Carleo, G., Woerner, S.: Simultaneous Perturbation Stochastic Approximation of the Quantum Fisher Information. Quantum. 5, 567 (2021). https://doi.org/10.22331/q-2021-10-20-567
– reference: MaslovDNamYKimJAn outlook for quantum computing [point of view]Proc. IEEE.2019107151010.1109/JPROC.2018.2884353
– reference: Choi, J., Kim, J.: A tutorial on quantum approximate optimization algorithm (qaoa): Fundamentals and applications. In: 2019 international conference on information and communication technology convergence (ICTC), pp. 138–142 (2019). https://doi.org/10.1109/ICTC46691.2019.8939749
– reference: Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667
– reference: WangBHuFYaoHWangCPrime factorization algorithm based on parameter optimization of ising modelSci. Rep.202010171062020NatSR..10.7106W10.1038/s41598-020-62802-5
– reference: WeinsteinYSPraviaMAFortunatoEMLloydSCoryDGImplementation of the quantum fourier transformPhys. Rev. Lett.200186188918912001PhRvL..86.1889W10.1103/PhysRevLett.86.1889
– reference: LiHJiangNZhangRWangZWangHQuantum support vector machine based on gradient descentInt. J. Theor. Phys.202261392440271910.1007/s10773-022-05040-x1490.81049
– reference: Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. nature. 549(7671), 242–246 (2017). https://doi.org/10.1038/nature23879
– reference: CerezoMArrasmithABabbushRBenjaminSCEndoSFujiiKMcCleanJRMitaraiKYuanXCincioLVariational quantum algorithms.Nat. Rev. Phys.20213962564410.1038/s42254-021-00348-9
– reference: LaRoseRCoyleBRobust data encodings for quantum classifiersPhys. Rev. A.20201022020PhRvA.102c2420L10.1103/PhysRevA.102.032420
– reference: RivestRLShamirAAdlemanLA method for obtaining digital signatures and public-key cryptosystemsCommun. ACM.197821212012670010310.1145/359340.3593420368.94005
– reference: SilvaAJParkDKLinear-depth quantum circuits for multiqubit controlled gatesPhys. Rev. A.20221062022PhRvA.106d2602D451129510.1103/PhysRevA.106.042602
– reference: GellerMRZhouZFactoring 51 and 85 with 8 qubitsSci Rep.20133130232013NatSR...3E3023G10.1038/srep03023
– reference: Benenti, G., Casati, G., Rossini, D., Strini, G.: Principles of Quantum Computation and Information. World Scientific, Singapore (2019). https://doi.org/10.1142/9789813237230_0001
– reference: BarencoABennettCHCleveRDiVincenzoDPMargolusNShorPSleatorTSmolinJAWeinfurterHElementary gates for quantum computationPhys Rev A.199552534571995PhRvA..52.3457B10.1103/PhysRevA.52.3457
– reference: BennettCHBrassardGCrépeauCJozsaRPeresAWoottersWKTeleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channelsPhys Rev Lett.1993701318951993PhRvL..70.1895B120824710.1103/PhysRevLett.70.18951051.81505
– reference: Treinish, M., Gambetta, J., Thomas, S., qiskit-bot, Nation, P., Kassebaum, P., Arellano, E., Rodríguez, D.M., Puente González, S., Bello, L., Lishman, J., Hu, S., Garrison, J., Huang, J., Krsulich, K., Yu, J., Gacon, J., Marques, M., McKay, D., Gomez, J., Capelluto, L., Wood, S., Travis-S-IBM, Mitchell, A., Panigrahi, A., Hartman, K., lerongil, Rahman, R.I., Itoko, T., Pozas-Kerstjens, A.: Qiskit/qiskit-metapackage: Qiskit 0.43.2. https://doi.org/10.5281/zenodo.8090426
– reference: BeauregardSCircuit for shor’s algorithm using 2n+3 qubitsQuantum Info. Comput.200332175185196558810.5555/2011517.20115251152.81676
– reference: SimSJohnsonPDAspuru-GuzikAExpressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithmsAdv. Quantum Technol.2019212190007010.1002/qute.201900070
– reference: Powell, M.J.: A Direct Search Optimization Method that Models the Objective and Constraint Functions by Linear Interpolation. Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-015-8330-5_4
– reference: Häner, T., Roetteler, M., Svore, K.M.: Factoring using 2n+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n + 2$$\end{document} qubits with toffoli based modular multiplication. Quantum Info. Comput. 17(7–8), 673–684 (2017). https://doi.org/10.5555/3179553.3179560
– reference: KerenidisILandmanJQuantum spectral clusteringPhys. Rev. A.20211032021PhRvA.103d2415K425681610.1103/PhysRevA.103.042415
– reference: Gamel, O., James, D.F.V.: Simplified Factoring Algorithms for Validating Small-Scale Quantum Information Processing Technologies (2013). https://doi.org/10.48550/arXiv.1310.6446
– reference: Schuld, M.: Supervised quantum machine learning models are kernel methods. arXiv preprint arXiv:2101.11020. (2021) https://doi.org/10.48550/arXiv.2101.11020
– reference: LiQHuangYJinSHouXWangXQuantum spectral clustering algorithm for unsupervised learningSci. China Inf. Sci.20226510445513810.1007/s11432-022-3492-x
– reference: Ghosh, K.: Encoding classical data into a quantum computer (2021). https://doi.org/10.48550/arXiv.2107.09155
– reference: Stokes, J., Izaac, J., Killoran, N., Carleo, G.: Quantum Natural Gradient. Quantum. 4, 269 (2020). https://doi.org/10.22331/q-2020-05-25-269
– reference: HarrowAWHassidimALloydSQuantum algorithm for linear systems of equationsPhys. Rev. Lett.20091032009PhRvL.103o0502H255168810.1103/PhysRevLett.103.150502
– reference: HavlíčekVCórcolesADTemmeKHarrowAWKandalaAChowJMGambettaJMSupervised learning with quantum-enhanced feature spacesNature.201956777472092122019Natur.567..209H10.1038/s41586-019-0980-2
– reference: Bhatia, V., Ramkumar, K.R.: An efficient quantum computing technique for cracking rsa using shor’s algorithm. In: 2020 IEEE 5th international conference on computing communication and automation (ICCCA), pp. 89–94 (2020). https://doi.org/10.1109/ICCCA49541.2020.9250806
– reference: Ruiz-PerezLGarcia-EscartinJCQuantum arithmetic with the quantum fourier transformQuantum Inf. Process.201716114364200710.1007/s11128-017-1603-11373.81150
– reference: Xiao, L., Qiu, D., Luo, L., Mateus, P.: Distributed shor’s algorithm. Quantum Inform. Comput. 23(1-2), 27–44 (2023). https://doi.org/10.26421/QIC23.1-2-3
– reference: Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th annual symposium on foundations of computer science, pp. 124–134 (1994). https://doi.org/10.1109/SFCS.1994.365700
– reference: LiZLiuXXuNDuJExperimental realization of a quantum support vector machinePhys. Rev. Lett.20151142015PhRvL.114n0504L10.1103/PhysRevLett.114.140504
– reference: Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual acm symposium on theory of computing. STOC ’96, pp. 212–219. Association for Computing Machinery, New York, NY, USA (1996). https://doi.org/10.1145/237814.237866
– reference: AraujoIFParkDKLudermirTBOliveiraWRPetruccioneFSilvaAJConfigurable sublinear circuits for quantum state preparationQuantum Inf. Process.20232221232023QuIP...22..123A455168610.1007/s11128-023-03869-71509.81237
– reference: Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers vol. 17. Springer, Switzerland (2018). https://doi.org/10.1007/978-3-319-96424-9
– reference: SchuldMBergholmVGogolinCIzaacJKilloranNEvaluating analytic gradients on quantum hardwarePhys. Rev. A.2019992019PhRvA..99c2331S10.1103/PhysRevA.99.032331
– volume: 3
  start-page: 625
  issue: 9
  year: 2021
  ident: 5473_CR25
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00348-9
– volume: 102
  year: 2020
  ident: 5473_CR32
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.102.032420
– volume: 114
  year: 2015
  ident: 5473_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.140504
– volume: 10
  start-page: 631
  issue: 9
  year: 2014
  ident: 5473_CR8
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3029
– volume: 65
  issue: 10
  year: 2022
  ident: 5473_CR10
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-022-3492-x
– volume: 21
  start-page: 120
  issue: 2
  year: 1978
  ident: 5473_CR11
  publication-title: Commun. ACM.
  doi: 10.1145/359340.359342
– volume: 103
  year: 2009
  ident: 5473_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.150502
– volume: 22
  start-page: 123
  issue: 2
  year: 2023
  ident: 5473_CR29
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-023-03869-7
– volume: 106
  year: 2022
  ident: 5473_CR41
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.106.042602
– ident: 5473_CR22
  doi: 10.1007/978-3-030-14082-3_7
– volume: 52
  start-page: 3457
  issue: 5
  year: 1995
  ident: 5473_CR42
  publication-title: Phys Rev A.
  doi: 10.1103/PhysRevA.52.3457
– ident: 5473_CR27
  doi: 10.1007/978-3-319-96424-9
– ident: 5473_CR4
  doi: 10.1145/237814.237866
– volume: 10
  start-page: 7106
  issue: 1
  year: 2020
  ident: 5473_CR21
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-62802-5
– ident: 5473_CR36
  doi: 10.22331/q-2020-05-25-269
– volume: 99
  year: 2019
  ident: 5473_CR35
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.99.032331
– volume: 3
  start-page: 175
  issue: 2
  year: 2003
  ident: 5473_CR13
  publication-title: Quantum Info. Comput.
  doi: 10.5555/2011517.2011525
– volume: 70
  start-page: 1895
  issue: 13
  year: 1993
  ident: 5473_CR20
  publication-title: Phys Rev Lett.
  doi: 10.1103/PhysRevLett.70.1895
– volume: 61
  start-page: 92
  issue: 3
  year: 2022
  ident: 5473_CR7
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-022-05040-x
– ident: 5473_CR38
  doi: 10.1007/978-94-015-8330-5_4
– ident: 5473_CR37
  doi: 10.22331/q-2021-10-20-567
– ident: 5473_CR18
  doi: 10.26421/QIC23.1-2-3
– volume: 567
  start-page: 209
  issue: 7747
  year: 2019
  ident: 5473_CR31
  publication-title: Nature.
  doi: 10.1038/s41586-019-0980-2
– volume: 2
  start-page: 1900070
  issue: 12
  year: 2019
  ident: 5473_CR33
  publication-title: Adv. Quantum Technol.
  doi: 10.1002/qute.201900070
– ident: 5473_CR15
  doi: 10.5555/3179553.3179560
– ident: 5473_CR34
  doi: 10.1038/nature23879
– ident: 5473_CR24
  doi: 10.22331/q-2018-08-06-79
– ident: 5473_CR3
  doi: 10.1109/SFCS.1994.365700
– ident: 5473_CR19
  doi: 10.48550/arXiv.2304.12100
– volume: 86
  start-page: 1889
  year: 2001
  ident: 5473_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.1889
– ident: 5473_CR1
  doi: 10.1109/ICCCA49541.2020.9250806
– ident: 5473_CR12
  doi: 10.1142/9789813237230_0001
– ident: 5473_CR16
  doi: 10.48550/arXiv.1310.6446
– ident: 5473_CR28
  doi: 10.48550/arXiv.2101.11020
– volume: 107
  start-page: 5
  issue: 1
  year: 2019
  ident: 5473_CR2
  publication-title: Proc. IEEE.
  doi: 10.1109/JPROC.2018.2884353
– volume: 103
  year: 2021
  ident: 5473_CR9
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.103.042415
– ident: 5473_CR30
  doi: 10.48550/arXiv.2107.09155
– ident: 5473_CR23
  doi: 10.1109/ICTC46691.2019.8939749
– volume: 3
  start-page: 3023
  issue: 1
  year: 2013
  ident: 5473_CR17
  publication-title: Sci Rep.
  doi: 10.1038/srep03023
– volume: 16
  start-page: 1
  year: 2017
  ident: 5473_CR39
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-017-1603-1
– ident: 5473_CR14
  doi: 10.1017/CBO9780511976667
– ident: 5473_CR26
  doi: 10.5281/zenodo.8090426
SSID ssj0009048
Score 2.3463938
Snippet The integer factorization problem is a major challenge in the field of computer science, and Shor’s algorithm provides a promising solution for this problem....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 245
SubjectTerms Algorithms
Circuits
Complexity
Computers
Elementary Particles
Factorization
Integers
Machine learning
Mathematical and Computational Physics
Optimization techniques
Physics
Physics and Astronomy
Prime numbers
Quantum computing
Quantum Field Theory
Quantum Physics
Qubits (quantum computing)
Theoretical
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH5oq-DFXaxWycGbBrPMZDKnUqXFg5QqKr2FyWSqQjebVOi_900yMSjYi7esw_DeLG-Z930AFzELJPGFshUVnk1wE7FDLpkthirB8UQVjXPI_HvW64WDAe-bgFtqjlWWa2K-UCdTqWPk174Gbg8c4jqt2YetWaN0dtVQaKxDXSOVkRrUbzq9_mMFu-uQYi1GJwkNndCUzZjiOcZ0DlOfXyN4tfy5NVX25q8Uab7zdHf-2-dd2DY2p9UuBskerKnJPmzmZz9legCtF_SXTUzQeligqBdjq2B7yJ9aOmqI_bK6OTePKdy02qNXvMnexofw3O083d7ZhlfBljjhMjtxiJIOF5RTptCZ9oTSwGWoTU9IIlxCJR36irOEKNRjjCYdS1BYMnA8NWSxfwS1yXSijsFyYnQ5uETRB4LEAROxm3DlqzDkwzDmogFuKdJIGtBxzX0xiiq4ZK2GCNUQ5WqIlg24_P5nVkBurPy6Wco-MtMvjSrBN-Cq1F71-u_WTla3dgpbmm5e1yK6tAm1bL5QZ7AhP7P3dH5uBt8Xi5DgCA
  priority: 102
  providerName: ProQuest
Title Variational Quantum Computation Integer Factorization Algorithm
URI https://link.springer.com/article/10.1007/s10773-023-05473-y
https://www.proquest.com/docview/3254660410
Volume 62
WOSCitedRecordID wos001101059200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-9575
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009048
  issn: 1572-9575
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9575
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009048
  issn: 1572-9575
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1572-9575
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009048
  issn: 1572-9575
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1572-9575
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009048
  issn: 1572-9575
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_cpuCL3-J0jj74poV-JE3zJFM2fNBRp47hS0nTVIVtytoJ---9dK1TUUFfSj-SNtxH75Lc_Q7gKGKeJK5QpqLCMQkaEdPnkpkiUTHKE1U0yiHzL1m36w8GPCiSwtIy2r3cksz_1B-S3RjTe4463ozg2awCNTR3vlbH3k1_AbWLQlmkx3zf77MJWviVX7ZCcwvTWf_f2DZgrfAojdZcBDZhSY23YCWP7JTpNpz2cTZcrPgZ11Mk5HRkzGs55HcNvSaIXzI6eeWdIi3TaA0f8CJ7HO3AXad9e35hFlUTTInqlJmxRZS0uKCcMoVTZUcoDUuGvHKEJMImVNLEVZzFRCGXInTYWIzDl57lqIRF7i5Ux89jtQeGFeGEgkubE0-QyGMismOuXOX7PPEjLupgl4QMZQEpritbDMMFGLImTIiECXPChLM6HL_3eZkDavzaulHyJyyUKw1djeHvWcS26nBS8mPx-Oe37f-t-QGs6uLyOvPQpg2oZpOpOoRl-Zo9pZMm1M7a3aDXhMqVE-AxoPfNXBDfAG9x11w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VAoILO6JQIAc4QUQWJ44PqKqAiqqLigSIW3AcFyp1owuoP8U3Ms5CBBLcOHDLasV-L-MZexaAo4C6gthc6tLhlk5wEtE9JqjO2zJEPjnSCaKU-XXabHoPD6yVg_c0Fka5VaYyMRLU4UCoNfIzWyVudw1iGqXhi66qRqnd1bSERkyLmpy9ock2Pq9eIr7HllW5ur241pOqArpAuk300CBSGIw7zKESTUmLS5W2C_ticUG4SRzhtG3JaEgk9iJAhYaGBqXCNSzZpoGN7c7BPEFLSP1XDauVJfk1SCz50SRDtcpLgnSSUD1K1Y6p8pYjeDT7OhFm2u23Ddlonqus_rcRWoOVRKPWyvEvsA452d-AxcizVYw3oXTPR51kxVO7mSKRpj0trmURXdXUmiiOg1aJKg8lYalaufuEJ5Pn3hbc_cnXb0O-P-jLHdCMAA0qJkxGXE4Cl_LADJm0peexthcwXgAzhdAXSUp1Vdmj62fJoBXsPsLuR7D7swKcfL4zjBOK_Pp0McXaT4TL2M-ALsBpypbs9s-t7f7e2iEsXd826n692qztwbKlyKocHp0i5CejqdyHBfE66YxHBxHtNXj8axZ9AGa3PO8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgPMSFN2IwoAduUNFH2jQnNAEViGkaAqbdqjRNAWkr09Yh7d_j9EEHAiTErY-kjWxHtmP7M8BxSF1BbC516XBLJ6hEdI8JqvNYRihPjnTCDDK_Rdttr9djnZkq_izbvQxJ5jUNCqUpSc-GUXw2U_hGqYo_qtwzglfTeVggqmmQ8tfvuxXsLgpoUSrz_bzP6qiyMb-ERTNt46_9f53rsFpYmlozF40NmJPJJixlGZ9ivAXnXfSSi5NA7W6CBJ4MtLzHQ_ZUU2eF-FfNzzryFOWaWrP_hDfp82AbHv2rh4trveimoAvcZqkeGUQKg3GHOVSiC21xqeDKkIcWF4SbxBFObEtGIyKReyEacjTC5QvXsGRMQ3sHaslrIndBM0J0NJgwGXE5CV3KQzNi0paex2IvZLwOZknUQBRQ46rjRT-oQJIVYQIkTJARJpjW4eRjzjAH2vh1dKPkVVBsunFgK2x_10A5qMNpyZvq9c9f2_vb8CNY7lz6QeumfbsPK6r_vCpONJ0G1NLRRB7AonhLX8ajw0wW3wH3kd-a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Quantum+Computation+Integer+Factorization+Algorithm&rft.jtitle=International+journal+of+theoretical+physics&rft.au=Zhang%2C+Xinglan&rft.au=Zhang%2C+Feng&rft.date=2023-11-15&rft.issn=1572-9575&rft.eissn=1572-9575&rft.volume=62&rft.issue=11&rft_id=info:doi/10.1007%2Fs10773-023-05473-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10773_023_05473_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-9575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-9575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-9575&client=summon