Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and one-class SVM

With the rapid advancement in network technologies, the need for cybersecurity has gained increasing momentum in recent years. As a primary defense mechanism, an intrusion detection system (IDS) is expected to adapt and secure the computing infrastructures from the ever-changing sophisticated threat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied intelligence (Dordrecht, Netherlands) Ročník 51; číslo 10; s. 7094 - 7108
Hlavní autoři: Binbusayyis, Adel, Vaiyapuri, Thavavel
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2021
Springer Nature B.V
Témata:
ISSN:0924-669X, 1573-7497
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the rapid advancement in network technologies, the need for cybersecurity has gained increasing momentum in recent years. As a primary defense mechanism, an intrusion detection system (IDS) is expected to adapt and secure the computing infrastructures from the ever-changing sophisticated threat landscape. Many deep learning approaches have recently been proposed; however, these techniques face significant challenges in identifying all types of attacks, especially rare attacks due to network traffic imbalances and the lack of a sufficient number of abnormal traffic samples for model training. To overcome these shortcomings and improve detection performance, this paper presents an unsupervised deep learning approach for intrusion detection. Unlike the existing IDS model that extracts features and trains a classifier in two separate stages, a single-stage IDS approach that integrates a one-dimensional convolutional autoencoder (1D CAE) and a one-class support vector machine (OCSVM) as a classifier into a joint optimization framework is introduced in this paper for the first time. Using only the normal traffic samples, the approach simultaneously optimizes the 1D CAE for compact feature representation and the OCSVM for classification by defining a unified objective function combining reconstruction error with classification error. Thus, the generated compact feature representation has not only reconstruction ability but also discriminative ability for classification. An in-depth ablation analysis validates the design decisions and provides further insight of the proposed approach. An extensive set of experiments on two benchmark intrusion datasets, NSL-KDD and UNSW-NB15, demonstrates the generalization ability of the proposed model for unseen attacks and confirms it as a competitive approach over the recent state-of-the-art intrusion detection baselines. Overall, the obtained results emphasize that the proposed approach has potential to serve as a baseline for building an effective IDS.
AbstractList With the rapid advancement in network technologies, the need for cybersecurity has gained increasing momentum in recent years. As a primary defense mechanism, an intrusion detection system (IDS) is expected to adapt and secure the computing infrastructures from the ever-changing sophisticated threat landscape. Many deep learning approaches have recently been proposed; however, these techniques face significant challenges in identifying all types of attacks, especially rare attacks due to network traffic imbalances and the lack of a sufficient number of abnormal traffic samples for model training. To overcome these shortcomings and improve detection performance, this paper presents an unsupervised deep learning approach for intrusion detection. Unlike the existing IDS model that extracts features and trains a classifier in two separate stages, a single-stage IDS approach that integrates a one-dimensional convolutional autoencoder (1D CAE) and a one-class support vector machine (OCSVM) as a classifier into a joint optimization framework is introduced in this paper for the first time. Using only the normal traffic samples, the approach simultaneously optimizes the 1D CAE for compact feature representation and the OCSVM for classification by defining a unified objective function combining reconstruction error with classification error. Thus, the generated compact feature representation has not only reconstruction ability but also discriminative ability for classification. An in-depth ablation analysis validates the design decisions and provides further insight of the proposed approach. An extensive set of experiments on two benchmark intrusion datasets, NSL-KDD and UNSW-NB15, demonstrates the generalization ability of the proposed model for unseen attacks and confirms it as a competitive approach over the recent state-of-the-art intrusion detection baselines. Overall, the obtained results emphasize that the proposed approach has potential to serve as a baseline for building an effective IDS.
Author Vaiyapuri, Thavavel
Binbusayyis, Adel
Author_xml – sequence: 1
  givenname: Adel
  orcidid: 0000-0001-9683-2175
  surname: Binbusayyis
  fullname: Binbusayyis, Adel
  email: a.binbusayyis@psau.edu.sa
  organization: College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University
– sequence: 2
  givenname: Thavavel
  surname: Vaiyapuri
  fullname: Vaiyapuri, Thavavel
  organization: College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University
BookMark eNp9kE1LxDAURYMoOH78AVcB19WkaZtmKeIXjLjQEXchvrzRak1qkirz700dQXDhIiQ8zgn33R2y6bxDQg44O-KMyePIWdWqgpU8n5LVhdogM15LUchKyU0yY6qsiqZRD9tkJ8YXxpgQjM_IauHiOGD46CJaahEH2qMJrnNP1AxD8Aae6dIH6jB9-vBKO5fCGDvvMpwQ0vQC__bYfSvg3Yfvx2lqemrG5NGBtxiocZbmzAX0JkZ6e3-9R7aWpo-4_3PvksX52d3pZTG_ubg6PZkXILhKBSA0okbgtuTQ2IpVNWC7bBXwSoFEWwvJrW3zvCmr2ggUTAIT9cQww8UuOVz_m5d5HzEm_eLHkONFXdaN4rxspMxUu6Yg-BgDLjV0yUx7pGC6XnOmp6L1umidi9bfRWuV1fKPOoTuzYTV_5JYSzHD7gnDb6p_rC-BO5T7
CitedBy_id crossref_primary_10_1016_j_ress_2025_111011
crossref_primary_10_3390_s23084141
crossref_primary_10_1016_j_cose_2023_103144
crossref_primary_10_3390_info14010029
crossref_primary_10_1016_j_jlp_2024_105449
crossref_primary_10_1007_s11235_025_01326_7
crossref_primary_10_1088_1361_6501_ada0d2
crossref_primary_10_1016_j_scitotenv_2023_169647
crossref_primary_10_1007_s40194_024_01836_z
crossref_primary_10_1111_exsy_13138
crossref_primary_10_1016_j_aei_2023_101942
crossref_primary_10_1016_j_eswa_2022_117056
crossref_primary_10_1007_s10115_025_02366_w
crossref_primary_10_1007_s13369_024_08787_z
crossref_primary_10_1007_s10489_022_04171_2
crossref_primary_10_1007_s12652_022_04350_6
crossref_primary_10_1109_ACCESS_2024_3509923
crossref_primary_10_1109_ACCESS_2025_3532619
crossref_primary_10_1109_ACCESS_2025_3538319
crossref_primary_10_1016_j_iot_2023_100851
crossref_primary_10_1049_wss2_12100
crossref_primary_10_1007_s10489_022_04334_1
crossref_primary_10_1109_ACCESS_2024_3351600
crossref_primary_10_3390_bioengineering11040335
crossref_primary_10_1109_ACCESS_2024_3429420
crossref_primary_10_31436_iiumej_v26i3_3746
crossref_primary_10_1007_s11227_022_04568_3
crossref_primary_10_1109_TNSM_2024_3351313
crossref_primary_10_1007_s10489_022_03244_6
crossref_primary_10_3389_fgene_2022_1090394
crossref_primary_10_1016_j_cose_2023_103656
crossref_primary_10_1007_s13369_023_08092_1
crossref_primary_10_3390_en18112887
crossref_primary_10_1016_j_cose_2024_104005
crossref_primary_10_1016_j_inffus_2023_101804
crossref_primary_10_1016_j_rineng_2025_106442
crossref_primary_10_1016_j_compeleceng_2024_109863
crossref_primary_10_1177_00405175231171720
crossref_primary_10_1016_j_comnet_2025_111147
crossref_primary_10_1109_ACCESS_2023_3266979
crossref_primary_10_32604_cmc_2023_046237
crossref_primary_10_1109_ACCESS_2023_3246660
crossref_primary_10_1109_ACCESS_2025_3532303
crossref_primary_10_1520_JTE20220074
crossref_primary_10_1007_s40747_023_01313_y
crossref_primary_10_3389_fcomp_2024_1387354
crossref_primary_10_1007_s10489_024_05872_6
crossref_primary_10_1016_j_jai_2025_01_004
crossref_primary_10_1109_MNET_2025_3551154
crossref_primary_10_1007_s10489_022_04076_0
crossref_primary_10_3390_electronics14010104
crossref_primary_10_1007_s10462_024_11101_w
crossref_primary_10_1016_j_comcom_2022_07_027
crossref_primary_10_1016_j_compind_2022_103689
crossref_primary_10_3390_s25010078
crossref_primary_10_1007_s10489_023_04954_1
crossref_primary_10_3390_s23218788
crossref_primary_10_4018_IJIIT_359181
crossref_primary_10_1109_TNSM_2023_3251282
crossref_primary_10_1007_s10207_023_00807_7
crossref_primary_10_1016_j_engappai_2025_111973
crossref_primary_10_3390_s24072263
crossref_primary_10_1007_s12083_025_02093_7
crossref_primary_10_1109_TIA_2022_3149848
crossref_primary_10_1109_ACCESS_2024_3353055
crossref_primary_10_1016_j_engappai_2023_106153
crossref_primary_10_1016_j_neucom_2025_130754
crossref_primary_10_1080_09540091_2023_2195595
crossref_primary_10_1007_s11227_024_06704_7
crossref_primary_10_1186_s13638_025_02462_z
crossref_primary_10_3390_math10162872
crossref_primary_10_1109_JSTARS_2025_3577648
crossref_primary_10_1016_j_asoc_2025_113540
crossref_primary_10_1016_j_cose_2022_102842
crossref_primary_10_3390_photonics12010035
crossref_primary_10_3390_sym14112308
crossref_primary_10_1016_j_engappai_2023_107801
crossref_primary_10_1371_journal_pone_0325367
crossref_primary_10_3390_electronics11040652
crossref_primary_10_1016_j_cose_2022_102919
crossref_primary_10_1155_2022_8706784
crossref_primary_10_1007_s12652_023_04571_3
crossref_primary_10_3390_info15100583
crossref_primary_10_1007_s10586_025_05351_8
crossref_primary_10_3390_electronics13020288
crossref_primary_10_1007_s11227_023_05474_y
crossref_primary_10_1109_ACCESS_2024_3435564
crossref_primary_10_3390_app13116369
crossref_primary_10_3390_jsan12010005
crossref_primary_10_32604_cmc_2023_044999
Cites_doi 10.1088/1742-6596/1453/1/012010
10.1016/j.jprocont.2020.01.004
10.1109/ACCESS.2019.2895334
10.1016/j.knosys.2019.105124
10.1109/TETCI.2017.2772792
10.1109/CSCloud.2017.39
10.1007/978-3-642-21735-7_7
10.1109/ACCESS.2018.2858277
10.1016/j.ipm.2020.102381
10.1109/ACCESS.2019.2933602
10.1109/ACCESS.2019.2929487
10.1109/ACCESS.2018.2867345
10.1007/s00371-019-01630-9
10.1016/j.neucom.2015.08.104
10.1016/j.patcog.2017.09.012
10.1007/978-981-15-0199-9_30
10.1109/ICCSN.2017.8230287
10.1007/s10489-019-01436-1
10.1007/978-3-658-05014-6_2
10.1016/j.neucom.2019.11.016
10.1007/s10489-018-01405-0
10.3390/app9020238
10.1109/ACCESS.2019.2928048
10.1109/CBD.2014.41
10.3390/s19112528
10.1109/ACCESS.2020.2977007
10.1016/j.patrec.2016.11.016
10.1016/j.compeleceng.2019.106460
10.1007/s10489-019-01503-7
10.1371/journal.pone.0155781
10.1007/s13042-014-0238-0
10.14722/ndss.2018.23204
10.1109/CISDA.2009.5356528
10.3390/electronics9020259
10.1155/2017/4184196
10.1109/MilCIS.2015.7348942
10.1007/s10489-017-1085-y
10.1109/NAECON.2015.7443094
10.1109/ACCESS.2018.2869577
10.1017/S026988891300043X
10.3390/electronics9061012
10.1109/ACCESS.2020.2980136
10.1016/j.heliyon.2020.e04262
10.1007/s00521-019-04557-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-021-02205-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 7108
ExternalDocumentID 10_1007_s10489_021_02205_9
GrantInformation_xml – fundername: Prince Sattam bin Abdulaziz University
  grantid: 2018/01/9397
  funderid: https://doi.org/10.13039/100009392
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-cec635ec1d21c6d4045ce8f89c149c7ed5371dd80456245a3e307c0358f890a13
IEDL.DBID RSV
ISICitedReferencesCount 118
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621340600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:51:23 EST 2025
Tue Nov 18 22:27:05 EST 2025
Sat Nov 29 05:33:23 EST 2025
Fri Feb 21 02:48:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Deep learning
Joint optimization framework
Network intrusion detection
Cybersecurity
Feature representation learning
One-class classifier
OCSVM
1D convolutional autoencoder
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-cec635ec1d21c6d4045ce8f89c149c7ed5371dd80456245a3e307c0358f890a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9683-2175
PQID 2569112677
PQPubID 326365
PageCount 15
ParticipantIDs proquest_journals_2569112677
crossref_citationtrail_10_1007_s10489_021_02205_9
crossref_primary_10_1007_s10489_021_02205_9
springer_journals_10_1007_s10489_021_02205_9
PublicationCentury 2000
PublicationDate 20211000
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References YangYZhengKWuCYangYImproving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural networkSensors20191911252810.3390/s19112528
QureshiASKhanAShamimNDuradMHIntrusion detection using deep sparse auto-encoder and self-taught learningNeural Comput Applic201932113
Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE symposium on computational intelligence for security and defense applications. IEEE, pp 1–6
KherlenchimegZNakayaNA deep learning approach based on sparse autoencoder with long short-term memory for network intrusion detectionIEEJ Trans Electron Inform Syst20201406592599
TianYMirzabagheriMTirandaziPMojtabaSBamakanHA non-convex semi-supervised approach to opinion spam detection by ramp-one class svmInform Process Manag202057610238110.1016/j.ipm.2020.102381
Mirsky Y, Doitshman T, Elovici Y, Shabtai A (2018) Kitsune: an ensemble of autoencoders for online network intrusion detection. arXiv:1802.09089
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980
BinbusayyisAVaiyapuriTComprehensive analysis and recommendation of feature evaluation measures for intrusion detectionHeliyon202067e0426210.1016/j.heliyon.2020.e04262
ShoneNNgocTNVuDPQiSA deep learning approach to network intrusion detectionIEEE Trans Emerg Topics Comput Intell201821415010.1109/TETCI.2017.2772792
MazaSTouahriaMFeature selection for intrusion detection using new multi-objective estimation of distribution algorithmsAppl Intell201949124237425710.1007/s10489-019-01503-7
Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC, et al. (1999) Estimating the support of a high-dimensional distribution. Technical Report MSR-t R-99–87 Microsoft Research (MSR)
MusaferHAbuzneidAFaezipourMMahmoodAAn enhanced design of sparse autoencoder for latent features extraction based on trigonometric simplexes for network intrusion detection systemsElectronics20209225910.3390/electronics9020259
YangYZhengKWuBYangYWangXNetwork intrusion detection based on supervised adversarial variational auto-encoder with regularizationIEEE Access20208421694218410.1109/ACCESS.2020.2977007
Al-QatfMYuLAl-HabibMAl-SabahiKDeep learning approach combining sparse autoencoder with svm for network intrusion detectionIEEE Access20186528435285610.1109/ACCESS.2018.2869577
TanFHSParkJRJungKLeeJSKangD-KCascade of one class classifiers for water level anomaly detectionElectronics202096101210.3390/electronics9061012
Ni G, Gao L, Gao Q, Wang H (2014) An intrusion detection model based on deep belief networks. In: 2014 second international conference on advanced cloud and big data. IEEE, pp 247–252
KimCParkJSDesigning online network intrusion detection using deep auto-encoder q-learningComput Electric Eng20197910646010.1016/j.compeleceng.2019.106460
TamaBAComuzziMRheeK-HTse-ids: a two-stage classifier ensemble for intelligent anomaly-based intrusion detection systemIEEE Access20197944979450710.1109/ACCESS.2019.2928048
YangYZhengKWuCNiuXYangYBuilding an effective intrusion detection system using the modified density peak clustering algorithm and deep belief networksAppl Sci20199223810.3390/app9020238
Géron A (2019) Hands-on machine learning with Scikit-Learn, Keras, and tensorflow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media
Yu Y, Long J, Cai Z (2017) Network intrusion detection through stacking dilated convolutional autoencoders. Secur Commun Netw, 2017
TajoddinAAbadiMRamd: registry-based anomaly malware detection using one-class ensemble classifiersAppl Intell20194972641265810.1007/s10489-018-01405-0
Truong TC, Zelinka I, Plucar J, Čandík M, Šulc V (2020) Artificial intelligence and cybersecurity: past, presence, and future. In: Artificial intelligence and evolutionary computations in engineering systems. Springer, pp 351–363
KangM-JKangJ-WIntrusion detection system using deep neural network for in-vehicle network securityPloS One2016116e015578110.1371/journal.pone.0155781
KhanSSMaddenMGOne-class classification: taxonomy of study and review of techniquesKnowl Eng Rev201429334537410.1017/S026988891300043X
Shuaixin T (2020) An intrusion detection method based on stacked autoencoder and support vector machine. In: J phys conf series, vol 1453, pp 1–17
TchakouchtTAEzziyyaniMMultilayered echo-state machine: a novel architecture for efficient intrusion detectionIEEE Access20186724587246810.1109/ACCESS.2018.2867345
Can Aygun R, Gokhan Yavuz A (2017) Network anomaly detection with stochastically improved autoencoder based models. In: 2017 IEEE 4th international conference on cyber security and cloud computing (CSCloud). IEEE, pp 193–198
BinbusayyisAVaiyapuriTIdentifying and benchmarking key features for cyber intrusion detection: an ensemble approachIEEE Access2019710649510651310.1109/ACCESS.2019.2929487
MaoSGuoJLiZDiscriminative autoencoding framework for simple and efficient anomaly detectionIEEE Access2019714061814063010.1109/ACCESS.2019.2933602
WangSLiuQEnZPorikliFYinJHyperparameter selection of one-class support vector machine by self-adaptive data shiftingPattern Recognit20187419821110.1016/j.patcog.2017.09.012
Masci J, Meier U, Cireşan D, Schmidhuber J (2011) Stacked convolutional auto-encoders for hierarchical feature extraction. In: International conference on artificial neural networks. Springer, pp 52–59
BenmessahelIXieKChellalMA new evolutionary neural networks based on intrusion detection systems using multiverse optimizationAppl Intell20184882315232710.1007/s10489-017-1085-y
Zhang X, Chen J (2017) Deep learning based intelligent intrusion detection. In: 2017 IEEE 9th international conference on communication software and networks (ICCSN). IEEE, pp 1133–1137
ChenSYuJWangSOne-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processesJ Process Control202087546710.1016/j.jprocont.2020.01.004
XiaoYWangHXuWRamp loss based robust one-class svmPattern Recogn Lett201785152010.1016/j.patrec.2016.11.016
YanBHanGEffective feature extraction via stacked sparse autoencoder to improve intrusion detection systemIEEE Access20186412384124810.1109/ACCESS.2018.2858277
YuYBianNAn intrusion detection method using few-shot learningIEEE Access20208497304974010.1109/ACCESS.2020.2980136
AleesaAMZaidanBBZaidanAASaharNMReview of intrusion detection systems based on deep learning techniques: coherent taxonomy, challenges, motivations, recommendations, substantial analysis and future directionsNeural Comput Appl202032149827985810.1007/s00521-019-04557-3
Moustafa N, Slay J (2015) Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In: 2015 military communications and information systems conference (MilCIS). IEEE, pp 1–6
KajaNShaoutAMaDAn intelligent intrusion detection systemAppl Intell20194993235324710.1007/s10489-019-01436-1
AgrawalAMittalNUsing cnn for facial expression recognition: a study of the effects of kernel size and number of filters on accuracyVisual Comput202036240541210.1007/s00371-019-01630-9
Bartock M, Cichonski J, Souppaya M (2020) 5g cybersecurity: preparing a secure evolution to 5g. Technical report, National Institute of Standards and Technology
Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp 249–256
AldweeshADerhabAEmamAZDeep learning approaches for anomaly-based intrusion detection systems: a survey, taxonomy, and open issuesKnowl-Based Syst202018910512410.1016/j.knosys.2019.105124
FuADongCWangLAn experimental study on stability and generalization of extreme learning machinesInt J Machine Learn Cybern20156112913510.1007/s13042-014-0238-0
Alom MZ, Bontupalli VR, Taha TM (2015) Intrusion detection using deep belief networks. In: 2015 National aerospace and electronics conference (NAECON). IEEE, pp 339– 344
Kagermann H (2015) Change through digitization—value creation in the age of industry 4.0. In: Management of permanent change. Springer, pp 23–45
WangYYaoHZhaoSAuto-encoder based dimensionality reductionNeurocomputing201618423224210.1016/j.neucom.2015.08.104
KamasaJSecuring future 5g-networksPolicy Perspectives202084
IeracitanoCAdeelAMorabitoFCHussainAA novel statistical analysis and autoencoder driven intelligent intrusion detection approachNeurocomputing2020387516210.1016/j.neucom.2019.11.016
Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors neurocomputing: foundations of research
VinayakumarRAlazabMSomanKPPoornachandranPAl-NemratAVenkatramanSDeep learning approach for intelligent intrusion detection systemIEEE Access20197415254155010.1109/ACCESS.2019.2895334
2205_CR39
A Agrawal (2205_CR45) 2020; 36
2205_CR33
TA Tchakoucht (2205_CR51) 2018; 6
I Benmessahel (2205_CR5) 2018; 48
S Wang (2205_CR37) 2018; 74
Z Kherlenchimeg (2205_CR24) 2020; 140
A Fu (2205_CR53) 2015; 6
A Binbusayyis (2205_CR4) 2019; 7
SS Khan (2205_CR32) 2014; 29
BA Tama (2205_CR50) 2019; 7
N Kaja (2205_CR9) 2019; 49
M-J Kang (2205_CR13) 2016; 11
2205_CR43
2205_CR44
2205_CR41
2205_CR42
2205_CR40
Y Yang (2205_CR46) 2019; 19
N Shone (2205_CR21) 2018; 2
Y Yu (2205_CR52) 2020; 8
Y Xiao (2205_CR38) 2017; 85
S Maza (2205_CR10) 2019; 49
2205_CR14
FHS Tan (2205_CR35) 2020; 9
2205_CR15
2205_CR12
C Ieracitano (2205_CR19) 2020; 387
A Tajoddin (2205_CR31) 2019; 49
R Vinayakumar (2205_CR48) 2019; 7
Y Yang (2205_CR49) 2019; 9
Y Yang (2205_CR47) 2020; 8
Y Wang (2205_CR30) 2016; 184
S Chen (2205_CR34) 2020; 87
2205_CR3
B Yan (2205_CR27) 2018; 6
Y Tian (2205_CR36) 2020; 57
2205_CR1
S Mao (2205_CR17) 2019; 7
2205_CR8
H Musafer (2205_CR16) 2020; 9
2205_CR18
2205_CR25
2205_CR26
J Kamasa (2205_CR2) 2020; 8
A Aldweesh (2205_CR6) 2020; 189
C Kim (2205_CR28) 2019; 79
2205_CR20
A Binbusayyis (2205_CR7) 2020; 6
M Al-Qatf (2205_CR22) 2018; 6
AM Aleesa (2205_CR11) 2020; 32
AS Qureshi (2205_CR23) 2019; 32
2205_CR29
References_xml – reference: Al-QatfMYuLAl-HabibMAl-SabahiKDeep learning approach combining sparse autoencoder with svm for network intrusion detectionIEEE Access20186528435285610.1109/ACCESS.2018.2869577
– reference: ShoneNNgocTNVuDPQiSA deep learning approach to network intrusion detectionIEEE Trans Emerg Topics Comput Intell201821415010.1109/TETCI.2017.2772792
– reference: YanBHanGEffective feature extraction via stacked sparse autoencoder to improve intrusion detection systemIEEE Access20186412384124810.1109/ACCESS.2018.2858277
– reference: IeracitanoCAdeelAMorabitoFCHussainAA novel statistical analysis and autoencoder driven intelligent intrusion detection approachNeurocomputing2020387516210.1016/j.neucom.2019.11.016
– reference: WangYYaoHZhaoSAuto-encoder based dimensionality reductionNeurocomputing201618423224210.1016/j.neucom.2015.08.104
– reference: TianYMirzabagheriMTirandaziPMojtabaSBamakanHA non-convex semi-supervised approach to opinion spam detection by ramp-one class svmInform Process Manag202057610238110.1016/j.ipm.2020.102381
– reference: AgrawalAMittalNUsing cnn for facial expression recognition: a study of the effects of kernel size and number of filters on accuracyVisual Comput202036240541210.1007/s00371-019-01630-9
– reference: XiaoYWangHXuWRamp loss based robust one-class svmPattern Recogn Lett201785152010.1016/j.patrec.2016.11.016
– reference: BinbusayyisAVaiyapuriTComprehensive analysis and recommendation of feature evaluation measures for intrusion detectionHeliyon202067e0426210.1016/j.heliyon.2020.e04262
– reference: YuYBianNAn intrusion detection method using few-shot learningIEEE Access20208497304974010.1109/ACCESS.2020.2980136
– reference: AldweeshADerhabAEmamAZDeep learning approaches for anomaly-based intrusion detection systems: a survey, taxonomy, and open issuesKnowl-Based Syst202018910512410.1016/j.knosys.2019.105124
– reference: TanFHSParkJRJungKLeeJSKangD-KCascade of one class classifiers for water level anomaly detectionElectronics202096101210.3390/electronics9061012
– reference: KajaNShaoutAMaDAn intelligent intrusion detection systemAppl Intell20194993235324710.1007/s10489-019-01436-1
– reference: Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE symposium on computational intelligence for security and defense applications. IEEE, pp 1–6
– reference: MaoSGuoJLiZDiscriminative autoencoding framework for simple and efficient anomaly detectionIEEE Access2019714061814063010.1109/ACCESS.2019.2933602
– reference: Can Aygun R, Gokhan Yavuz A (2017) Network anomaly detection with stochastically improved autoencoder based models. In: 2017 IEEE 4th international conference on cyber security and cloud computing (CSCloud). IEEE, pp 193–198
– reference: Yu Y, Long J, Cai Z (2017) Network intrusion detection through stacking dilated convolutional autoencoders. Secur Commun Netw, 2017
– reference: AleesaAMZaidanBBZaidanAASaharNMReview of intrusion detection systems based on deep learning techniques: coherent taxonomy, challenges, motivations, recommendations, substantial analysis and future directionsNeural Comput Appl202032149827985810.1007/s00521-019-04557-3
– reference: TajoddinAAbadiMRamd: registry-based anomaly malware detection using one-class ensemble classifiersAppl Intell20194972641265810.1007/s10489-018-01405-0
– reference: KhanSSMaddenMGOne-class classification: taxonomy of study and review of techniquesKnowl Eng Rev201429334537410.1017/S026988891300043X
– reference: Mirsky Y, Doitshman T, Elovici Y, Shabtai A (2018) Kitsune: an ensemble of autoencoders for online network intrusion detection. arXiv:1802.09089
– reference: KangM-JKangJ-WIntrusion detection system using deep neural network for in-vehicle network securityPloS One2016116e015578110.1371/journal.pone.0155781
– reference: Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980
– reference: Bartock M, Cichonski J, Souppaya M (2020) 5g cybersecurity: preparing a secure evolution to 5g. Technical report, National Institute of Standards and Technology
– reference: YangYZhengKWuCNiuXYangYBuilding an effective intrusion detection system using the modified density peak clustering algorithm and deep belief networksAppl Sci20199223810.3390/app9020238
– reference: YangYZhengKWuBYangYWangXNetwork intrusion detection based on supervised adversarial variational auto-encoder with regularizationIEEE Access20208421694218410.1109/ACCESS.2020.2977007
– reference: FuADongCWangLAn experimental study on stability and generalization of extreme learning machinesInt J Machine Learn Cybern20156112913510.1007/s13042-014-0238-0
– reference: KherlenchimegZNakayaNA deep learning approach based on sparse autoencoder with long short-term memory for network intrusion detectionIEEJ Trans Electron Inform Syst20201406592599
– reference: MusaferHAbuzneidAFaezipourMMahmoodAAn enhanced design of sparse autoencoder for latent features extraction based on trigonometric simplexes for network intrusion detection systemsElectronics20209225910.3390/electronics9020259
– reference: TchakouchtTAEzziyyaniMMultilayered echo-state machine: a novel architecture for efficient intrusion detectionIEEE Access20186724587246810.1109/ACCESS.2018.2867345
– reference: KamasaJSecuring future 5g-networksPolicy Perspectives202084
– reference: Shuaixin T (2020) An intrusion detection method based on stacked autoencoder and support vector machine. In: J phys conf series, vol 1453, pp 1–17
– reference: MazaSTouahriaMFeature selection for intrusion detection using new multi-objective estimation of distribution algorithmsAppl Intell201949124237425710.1007/s10489-019-01503-7
– reference: Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC, et al. (1999) Estimating the support of a high-dimensional distribution. Technical Report MSR-t R-99–87 Microsoft Research (MSR)
– reference: Géron A (2019) Hands-on machine learning with Scikit-Learn, Keras, and tensorflow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media
– reference: Zhang X, Chen J (2017) Deep learning based intelligent intrusion detection. In: 2017 IEEE 9th international conference on communication software and networks (ICCSN). IEEE, pp 1133–1137
– reference: Ni G, Gao L, Gao Q, Wang H (2014) An intrusion detection model based on deep belief networks. In: 2014 second international conference on advanced cloud and big data. IEEE, pp 247–252
– reference: Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp 249–256
– reference: BenmessahelIXieKChellalMA new evolutionary neural networks based on intrusion detection systems using multiverse optimizationAppl Intell20184882315232710.1007/s10489-017-1085-y
– reference: Alom MZ, Bontupalli VR, Taha TM (2015) Intrusion detection using deep belief networks. In: 2015 National aerospace and electronics conference (NAECON). IEEE, pp 339– 344
– reference: Moustafa N, Slay J (2015) Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In: 2015 military communications and information systems conference (MilCIS). IEEE, pp 1–6
– reference: Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors neurocomputing: foundations of research
– reference: Truong TC, Zelinka I, Plucar J, Čandík M, Šulc V (2020) Artificial intelligence and cybersecurity: past, presence, and future. In: Artificial intelligence and evolutionary computations in engineering systems. Springer, pp 351–363
– reference: QureshiASKhanAShamimNDuradMHIntrusion detection using deep sparse auto-encoder and self-taught learningNeural Comput Applic201932113
– reference: Masci J, Meier U, Cireşan D, Schmidhuber J (2011) Stacked convolutional auto-encoders for hierarchical feature extraction. In: International conference on artificial neural networks. Springer, pp 52–59
– reference: TamaBAComuzziMRheeK-HTse-ids: a two-stage classifier ensemble for intelligent anomaly-based intrusion detection systemIEEE Access20197944979450710.1109/ACCESS.2019.2928048
– reference: Kagermann H (2015) Change through digitization—value creation in the age of industry 4.0. In: Management of permanent change. Springer, pp 23–45
– reference: BinbusayyisAVaiyapuriTIdentifying and benchmarking key features for cyber intrusion detection: an ensemble approachIEEE Access2019710649510651310.1109/ACCESS.2019.2929487
– reference: KimCParkJSDesigning online network intrusion detection using deep auto-encoder q-learningComput Electric Eng20197910646010.1016/j.compeleceng.2019.106460
– reference: ChenSYuJWangSOne-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processesJ Process Control202087546710.1016/j.jprocont.2020.01.004
– reference: WangSLiuQEnZPorikliFYinJHyperparameter selection of one-class support vector machine by self-adaptive data shiftingPattern Recognit20187419821110.1016/j.patcog.2017.09.012
– reference: YangYZhengKWuCYangYImproving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural networkSensors20191911252810.3390/s19112528
– reference: VinayakumarRAlazabMSomanKPPoornachandranPAl-NemratAVenkatramanSDeep learning approach for intelligent intrusion detection systemIEEE Access20197415254155010.1109/ACCESS.2019.2895334
– ident: 2205_CR25
  doi: 10.1088/1742-6596/1453/1/012010
– volume: 87
  start-page: 54
  year: 2020
  ident: 2205_CR34
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2020.01.004
– volume: 7
  start-page: 41525
  year: 2019
  ident: 2205_CR48
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2895334
– volume: 189
  start-page: 105124
  year: 2020
  ident: 2205_CR6
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.105124
– volume: 2
  start-page: 41
  issue: 1
  year: 2018
  ident: 2205_CR21
  publication-title: IEEE Trans Emerg Topics Comput Intell
  doi: 10.1109/TETCI.2017.2772792
– ident: 2205_CR43
– ident: 2205_CR18
  doi: 10.1109/CSCloud.2017.39
– ident: 2205_CR33
  doi: 10.1007/978-3-642-21735-7_7
– volume: 6
  start-page: 41238
  year: 2018
  ident: 2205_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2858277
– volume: 57
  start-page: 102381
  issue: 6
  year: 2020
  ident: 2205_CR36
  publication-title: Inform Process Manag
  doi: 10.1016/j.ipm.2020.102381
– volume: 7
  start-page: 140618
  year: 2019
  ident: 2205_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933602
– volume: 7
  start-page: 106495
  year: 2019
  ident: 2205_CR4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929487
– volume: 6
  start-page: 72458
  year: 2018
  ident: 2205_CR51
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2867345
– volume: 36
  start-page: 405
  issue: 2
  year: 2020
  ident: 2205_CR45
  publication-title: Visual Comput
  doi: 10.1007/s00371-019-01630-9
– volume: 184
  start-page: 232
  year: 2016
  ident: 2205_CR30
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.104
– volume: 74
  start-page: 198
  year: 2018
  ident: 2205_CR37
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.09.012
– ident: 2205_CR8
  doi: 10.1007/978-981-15-0199-9_30
– ident: 2205_CR29
– ident: 2205_CR42
– ident: 2205_CR15
  doi: 10.1109/ICCSN.2017.8230287
– volume: 49
  start-page: 3235
  issue: 9
  year: 2019
  ident: 2205_CR9
  publication-title: Appl Intell
  doi: 10.1007/s10489-019-01436-1
– ident: 2205_CR1
  doi: 10.1007/978-3-658-05014-6_2
– volume: 387
  start-page: 51
  year: 2020
  ident: 2205_CR19
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.016
– volume: 49
  start-page: 2641
  issue: 7
  year: 2019
  ident: 2205_CR31
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-01405-0
– ident: 2205_CR39
– volume: 9
  start-page: 238
  issue: 2
  year: 2019
  ident: 2205_CR49
  publication-title: Appl Sci
  doi: 10.3390/app9020238
– volume: 32
  start-page: 1
  year: 2019
  ident: 2205_CR23
  publication-title: Neural Comput Applic
– volume: 7
  start-page: 94497
  year: 2019
  ident: 2205_CR50
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928048
– ident: 2205_CR14
  doi: 10.1109/CBD.2014.41
– volume: 19
  start-page: 2528
  issue: 11
  year: 2019
  ident: 2205_CR46
  publication-title: Sensors
  doi: 10.3390/s19112528
– volume: 8
  start-page: 42169
  year: 2020
  ident: 2205_CR47
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2977007
– volume: 85
  start-page: 15
  year: 2017
  ident: 2205_CR38
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2016.11.016
– volume: 79
  start-page: 106460
  year: 2019
  ident: 2205_CR28
  publication-title: Comput Electric Eng
  doi: 10.1016/j.compeleceng.2019.106460
– volume: 49
  start-page: 4237
  issue: 12
  year: 2019
  ident: 2205_CR10
  publication-title: Appl Intell
  doi: 10.1007/s10489-019-01503-7
– volume: 11
  start-page: e0155781
  issue: 6
  year: 2016
  ident: 2205_CR13
  publication-title: PloS One
  doi: 10.1371/journal.pone.0155781
– volume: 6
  start-page: 129
  issue: 1
  year: 2015
  ident: 2205_CR53
  publication-title: Int J Machine Learn Cybern
  doi: 10.1007/s13042-014-0238-0
– ident: 2205_CR20
  doi: 10.14722/ndss.2018.23204
– ident: 2205_CR40
  doi: 10.1109/CISDA.2009.5356528
– volume: 9
  start-page: 259
  issue: 2
  year: 2020
  ident: 2205_CR16
  publication-title: Electronics
  doi: 10.3390/electronics9020259
– ident: 2205_CR26
  doi: 10.1155/2017/4184196
– ident: 2205_CR41
  doi: 10.1109/MilCIS.2015.7348942
– volume: 48
  start-page: 2315
  issue: 8
  year: 2018
  ident: 2205_CR5
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-1085-y
– ident: 2205_CR12
  doi: 10.1109/NAECON.2015.7443094
– volume: 6
  start-page: 52843
  year: 2018
  ident: 2205_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2869577
– volume: 29
  start-page: 345
  issue: 3
  year: 2014
  ident: 2205_CR32
  publication-title: Knowl Eng Rev
  doi: 10.1017/S026988891300043X
– ident: 2205_CR3
– volume: 9
  start-page: 1012
  issue: 6
  year: 2020
  ident: 2205_CR35
  publication-title: Electronics
  doi: 10.3390/electronics9061012
– ident: 2205_CR44
– volume: 8
  start-page: 4
  year: 2020
  ident: 2205_CR2
  publication-title: Policy Perspectives
– volume: 8
  start-page: 49730
  year: 2020
  ident: 2205_CR52
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980136
– volume: 6
  start-page: e04262
  issue: 7
  year: 2020
  ident: 2205_CR7
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e04262
– volume: 140
  start-page: 592
  issue: 6
  year: 2020
  ident: 2205_CR24
  publication-title: IEEJ Trans Electron Inform Syst
– volume: 32
  start-page: 9827
  issue: 14
  year: 2020
  ident: 2205_CR11
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04557-3
SSID ssj0003301
Score 2.580233
Snippet With the rapid advancement in network technologies, the need for cybersecurity has gained increasing momentum in recent years. As a primary defense mechanism,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7094
SubjectTerms Ablation
Artificial Intelligence
CAD
Classification
Classifiers
Communications traffic
Computer aided design
Computer Science
Cybersecurity
Decision analysis
Deep learning
Feature extraction
Intrusion detection systems
Machine learning
Machines
Manufacturing
Mechanical Engineering
Optimization
Processes
Reconstruction
Representations
Support vector machines
Traffic models
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46PXhx_sTplBy8aXBtmqY5iYjDi2Ogk-GltEkmA8mq7QT_e1-ydEXBXTw3TQLfy8v32vfeh9B5zhOaT2hMRMwYifJQkiSgGmIerSKucpFp5cQm-GCQjMdi6D-4lT6tsvaJzlGrmbTfyK_gaha23IXz6-KdWNUo-3fVS2iso40gBK4P9jxkL0tPDLG6U8yDGIPEsRj7ohlfOhfZZKEQgmlba0rEz4upYZu_fpC6e6ff_u-Od9C2Z5z4ZmEiu2hNmz3UrtUcsD_c--hrZMp5YV1HqRVWWhfYS0q84rrzOAaKi80icxxPjS3YAFxhcOUyugyGneVOcgLbdHZv1rB6Nq9mtmWmghUzo_DMaCItccePzw8HaNS_e7q9J16YgUg4sRWRWgJP0TJQYSBjFQEtlDqZJEICBpJrxSgPlEpceBWxjGrwJLJHmR3TywJ6iFoGFjpCuKeBwUQ8jznMQ9kkYbEMwXg4MCWd92gHBTUqqfRdy614xlva9Fu2SKaAZOqQTEUHXSzfKRY9O1aO7tbwpf78lmmDXQdd1gbQPP57tuPVs52grdDanMsG7KIW4KRP0ab8rKblx5mz3m8HjfYo
  priority: 102
  providerName: ProQuest
Title Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and one-class SVM
URI https://link.springer.com/article/10.1007/s10489-021-02205-9
https://www.proquest.com/docview/2569112677
Volume 51
WOSCitedRecordID wos000621340600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-uCL8xOnc-TBNw20TdO0jyqKII7h_Ji-lDbJZCDdsJvgf-8lSzcVFfQlUHr5IHe5_I7cB8BBLmKW91lEk4hzGuaBpLHPNNo8WoVC5UmmlS02IdrtuNdLOi4orKy83asnSaupPwS7hca9J0Dz10SH0mQRlrjJo2ds9O7dTP-ihW7r5KFlQaMo6blQme_H-HwdzTHml2dRe9uc1_-3zjVYdeiSHE_FYR0WdLEB9apyA3EHeRPebotyMjJqotSKKK1HxJWPeCJVlnGCcJYUUy9xMihMcAbyEInH1nurILic3JaXIMZ13Ykwzp5NxkOTHlPhjFmhyLDQVBqQTrp3V1twe352c3pBXREGKvF0jqnUEjGJlr4KfBmpECGg1HE_TiTaVlJoxZnwlYqtKRXyjGnUGtJj3NB4mc-2oVbgRDtAPI1oJRR5JHAcxvsxj2SAgiIQFencYw3wK16k0mUoN4UyntN5bmWztynubWr3Nk0acDjrM5rm5_iVulmxOHVntUwR9CUmkEqIBhxVLJ3__nm03b-R78FKYKTCegI2oYZ80_uwLF_Hg_KlBYvi_qEFSydn7c41fl0Kiu2Vd2pa0cW2wx9bVtLfAWQw8kY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BrQQXKG0Ry6P40J5aq0mcxMkBIQRFIGBVCaj2lib2LFoJZReygPhT_EZmvA6rVio3Dj3HGUv2N69kZj6Az5XOVNVXqczTJJFxFRmZhQop50Eba1vlJVpHNqG73azXy3_OwGPbC8Nlla1NdIbaDg1_I_9Orjnndhetd0bXklmj-O9qS6ExgcUxPtxTytZsH-3T_X6JooMf53uH0rMKSENwG0uDhpwsmtBGoUltTDGNwayf5YaSBaPRJkqH1mYuN4iTUiGpgQlUwmuCMlQkdxbexFwf6UoFz54tv1KObjmgnEamad7zTTq-VS_m4qSIknfubZX5n45wGt3-9UPW-bmDpf_thN7Boo-oxe5EBZZhBuv3sNSyVQhvvD7Aw0Xd3I7YNDZohUUcCU-ZcSnayeqCQnhRTyrjxaDmhhTCLS0eu4q1WtBJVI5SQ3C5vldb2r28HQ95JKilHcvaimGN0nBiIs5-nX6Ei1c5gBWYq2mjVRABUoQW6yrVJEcl_SxJTUTKoSkSxCpQHQhbFBTGT2VncpCrYjpPmpFTEHIKh5wi78DX53dGk5kkL67eaOFSePvUFFOsdOBbC7jp439LW3tZ2hbMH56fnhQnR93jdViIGO-u8nED5ujOcBPemrvxoLn55DRHwO_XBuIT-8dRpg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BUiEu0BdiKS0-tCdqkcRJHB8QosAKRLtataXaW0jsWYSEsgtZQPy1_jrGXocVSHDjwDnOWLK_eSUz8wF8LWUmyoFIuUqThMdlpHkWCqScB00sTakKNI5sQna7Wb-vejPwv-mFsWWVjU10htoMtf1GvkmuWdl2Fyk3B74sorfX2R5dcMsgZf-0NnQaE4gc4e0NpW_11uEe3fW3KOrs_9094J5hgGuC3phr1ORwUYcmCnVqYopvNGaDTGlKHLREkwgZGpO5PCFOCoGkEjoQiV0TFKEgubMwJ4UKghbM_djv9n7f-wEhHPlyQBkOT1PV9y07vnEvtqVKEaXyttOVq4ducRrrPvo967xeZ-k1n9dbWPSxNtuZKMc7mMHqPSw1PBbMm7UPcHtc1VcjazRrNMwgjpgn0zhlzcx1RsE9qyY18-yssq0qhGhaPHa1bBWjUykd2QazhfxeoWn34mo8tMNCDe1YVIYNK-Tapizsz79fH-H4RQ5gGVoVbbQCLECK3WJZppLkiGSQJamOSG0kxYhYBqINYYOIXPt57ZY25DyfTpq2KMoJRblDUa7asHH_zmgyreTZ1WsNdHJvuep8ips2fG_AN338tLTV56WtwzzhL_952D36BAuRhb4riVyDFl0ZfoY3-np8Vl9-8WrE4OSlkXgH7VhbrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+deep+learning+approach+for+network+intrusion+detection+combining+convolutional+autoencoder+and+one-class+SVM&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Binbusayyis%2C+Adel&rft.au=Vaiyapuri%2C+Thavavel&rft.date=2021-10-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=51&rft.issue=10&rft.spage=7094&rft.epage=7108&rft_id=info:doi/10.1007%2Fs10489-021-02205-9&rft.externalDocID=10_1007_s10489_021_02205_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon