Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and one-class SVM
With the rapid advancement in network technologies, the need for cybersecurity has gained increasing momentum in recent years. As a primary defense mechanism, an intrusion detection system (IDS) is expected to adapt and secure the computing infrastructures from the ever-changing sophisticated threat...
Uloženo v:
| Vydáno v: | Applied intelligence (Dordrecht, Netherlands) Ročník 51; číslo 10; s. 7094 - 7108 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0924-669X, 1573-7497 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the rapid advancement in network technologies, the need for cybersecurity has gained increasing momentum in recent years. As a primary defense mechanism, an intrusion detection system (IDS) is expected to adapt and secure the computing infrastructures from the ever-changing sophisticated threat landscape. Many deep learning approaches have recently been proposed; however, these techniques face significant challenges in identifying all types of attacks, especially rare attacks due to network traffic imbalances and the lack of a sufficient number of abnormal traffic samples for model training. To overcome these shortcomings and improve detection performance, this paper presents an unsupervised deep learning approach for intrusion detection. Unlike the existing IDS model that extracts features and trains a classifier in two separate stages, a single-stage IDS approach that integrates a one-dimensional convolutional autoencoder (1D CAE) and a one-class support vector machine (OCSVM) as a classifier into a joint optimization framework is introduced in this paper for the first time. Using only the normal traffic samples, the approach simultaneously optimizes the 1D CAE for compact feature representation and the OCSVM for classification by defining a unified objective function combining reconstruction error with classification error. Thus, the generated compact feature representation has not only reconstruction ability but also discriminative ability for classification. An in-depth ablation analysis validates the design decisions and provides further insight of the proposed approach. An extensive set of experiments on two benchmark intrusion datasets, NSL-KDD and UNSW-NB15, demonstrates the generalization ability of the proposed model for unseen attacks and confirms it as a competitive approach over the recent state-of-the-art intrusion detection baselines. Overall, the obtained results emphasize that the proposed approach has potential to serve as a baseline for building an effective IDS. |
|---|---|
| AbstractList | With the rapid advancement in network technologies, the need for cybersecurity has gained increasing momentum in recent years. As a primary defense mechanism, an intrusion detection system (IDS) is expected to adapt and secure the computing infrastructures from the ever-changing sophisticated threat landscape. Many deep learning approaches have recently been proposed; however, these techniques face significant challenges in identifying all types of attacks, especially rare attacks due to network traffic imbalances and the lack of a sufficient number of abnormal traffic samples for model training. To overcome these shortcomings and improve detection performance, this paper presents an unsupervised deep learning approach for intrusion detection. Unlike the existing IDS model that extracts features and trains a classifier in two separate stages, a single-stage IDS approach that integrates a one-dimensional convolutional autoencoder (1D CAE) and a one-class support vector machine (OCSVM) as a classifier into a joint optimization framework is introduced in this paper for the first time. Using only the normal traffic samples, the approach simultaneously optimizes the 1D CAE for compact feature representation and the OCSVM for classification by defining a unified objective function combining reconstruction error with classification error. Thus, the generated compact feature representation has not only reconstruction ability but also discriminative ability for classification. An in-depth ablation analysis validates the design decisions and provides further insight of the proposed approach. An extensive set of experiments on two benchmark intrusion datasets, NSL-KDD and UNSW-NB15, demonstrates the generalization ability of the proposed model for unseen attacks and confirms it as a competitive approach over the recent state-of-the-art intrusion detection baselines. Overall, the obtained results emphasize that the proposed approach has potential to serve as a baseline for building an effective IDS. |
| Author | Vaiyapuri, Thavavel Binbusayyis, Adel |
| Author_xml | – sequence: 1 givenname: Adel orcidid: 0000-0001-9683-2175 surname: Binbusayyis fullname: Binbusayyis, Adel email: a.binbusayyis@psau.edu.sa organization: College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University – sequence: 2 givenname: Thavavel surname: Vaiyapuri fullname: Vaiyapuri, Thavavel organization: College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University |
| BookMark | eNp9kE1LxDAURYMoOH78AVcB19WkaZtmKeIXjLjQEXchvrzRak1qkirz700dQXDhIiQ8zgn33R2y6bxDQg44O-KMyePIWdWqgpU8n5LVhdogM15LUchKyU0yY6qsiqZRD9tkJ8YXxpgQjM_IauHiOGD46CJaahEH2qMJrnNP1AxD8Aae6dIH6jB9-vBKO5fCGDvvMpwQ0vQC__bYfSvg3Yfvx2lqemrG5NGBtxiocZbmzAX0JkZ6e3-9R7aWpo-4_3PvksX52d3pZTG_ubg6PZkXILhKBSA0okbgtuTQ2IpVNWC7bBXwSoFEWwvJrW3zvCmr2ggUTAIT9cQww8UuOVz_m5d5HzEm_eLHkONFXdaN4rxspMxUu6Yg-BgDLjV0yUx7pGC6XnOmp6L1umidi9bfRWuV1fKPOoTuzYTV_5JYSzHD7gnDb6p_rC-BO5T7 |
| CitedBy_id | crossref_primary_10_1016_j_ress_2025_111011 crossref_primary_10_3390_s23084141 crossref_primary_10_1016_j_cose_2023_103144 crossref_primary_10_3390_info14010029 crossref_primary_10_1016_j_jlp_2024_105449 crossref_primary_10_1007_s11235_025_01326_7 crossref_primary_10_1088_1361_6501_ada0d2 crossref_primary_10_1016_j_scitotenv_2023_169647 crossref_primary_10_1007_s40194_024_01836_z crossref_primary_10_1111_exsy_13138 crossref_primary_10_1016_j_aei_2023_101942 crossref_primary_10_1016_j_eswa_2022_117056 crossref_primary_10_1007_s10115_025_02366_w crossref_primary_10_1007_s13369_024_08787_z crossref_primary_10_1007_s10489_022_04171_2 crossref_primary_10_1007_s12652_022_04350_6 crossref_primary_10_1109_ACCESS_2024_3509923 crossref_primary_10_1109_ACCESS_2025_3532619 crossref_primary_10_1109_ACCESS_2025_3538319 crossref_primary_10_1016_j_iot_2023_100851 crossref_primary_10_1049_wss2_12100 crossref_primary_10_1007_s10489_022_04334_1 crossref_primary_10_1109_ACCESS_2024_3351600 crossref_primary_10_3390_bioengineering11040335 crossref_primary_10_1109_ACCESS_2024_3429420 crossref_primary_10_31436_iiumej_v26i3_3746 crossref_primary_10_1007_s11227_022_04568_3 crossref_primary_10_1109_TNSM_2024_3351313 crossref_primary_10_1007_s10489_022_03244_6 crossref_primary_10_3389_fgene_2022_1090394 crossref_primary_10_1016_j_cose_2023_103656 crossref_primary_10_1007_s13369_023_08092_1 crossref_primary_10_3390_en18112887 crossref_primary_10_1016_j_cose_2024_104005 crossref_primary_10_1016_j_inffus_2023_101804 crossref_primary_10_1016_j_rineng_2025_106442 crossref_primary_10_1016_j_compeleceng_2024_109863 crossref_primary_10_1177_00405175231171720 crossref_primary_10_1016_j_comnet_2025_111147 crossref_primary_10_1109_ACCESS_2023_3266979 crossref_primary_10_32604_cmc_2023_046237 crossref_primary_10_1109_ACCESS_2023_3246660 crossref_primary_10_1109_ACCESS_2025_3532303 crossref_primary_10_1520_JTE20220074 crossref_primary_10_1007_s40747_023_01313_y crossref_primary_10_3389_fcomp_2024_1387354 crossref_primary_10_1007_s10489_024_05872_6 crossref_primary_10_1016_j_jai_2025_01_004 crossref_primary_10_1109_MNET_2025_3551154 crossref_primary_10_1007_s10489_022_04076_0 crossref_primary_10_3390_electronics14010104 crossref_primary_10_1007_s10462_024_11101_w crossref_primary_10_1016_j_comcom_2022_07_027 crossref_primary_10_1016_j_compind_2022_103689 crossref_primary_10_3390_s25010078 crossref_primary_10_1007_s10489_023_04954_1 crossref_primary_10_3390_s23218788 crossref_primary_10_4018_IJIIT_359181 crossref_primary_10_1109_TNSM_2023_3251282 crossref_primary_10_1007_s10207_023_00807_7 crossref_primary_10_1016_j_engappai_2025_111973 crossref_primary_10_3390_s24072263 crossref_primary_10_1007_s12083_025_02093_7 crossref_primary_10_1109_TIA_2022_3149848 crossref_primary_10_1109_ACCESS_2024_3353055 crossref_primary_10_1016_j_engappai_2023_106153 crossref_primary_10_1016_j_neucom_2025_130754 crossref_primary_10_1080_09540091_2023_2195595 crossref_primary_10_1007_s11227_024_06704_7 crossref_primary_10_1186_s13638_025_02462_z crossref_primary_10_3390_math10162872 crossref_primary_10_1109_JSTARS_2025_3577648 crossref_primary_10_1016_j_asoc_2025_113540 crossref_primary_10_1016_j_cose_2022_102842 crossref_primary_10_3390_photonics12010035 crossref_primary_10_3390_sym14112308 crossref_primary_10_1016_j_engappai_2023_107801 crossref_primary_10_1371_journal_pone_0325367 crossref_primary_10_3390_electronics11040652 crossref_primary_10_1016_j_cose_2022_102919 crossref_primary_10_1155_2022_8706784 crossref_primary_10_1007_s12652_023_04571_3 crossref_primary_10_3390_info15100583 crossref_primary_10_1007_s10586_025_05351_8 crossref_primary_10_3390_electronics13020288 crossref_primary_10_1007_s11227_023_05474_y crossref_primary_10_1109_ACCESS_2024_3435564 crossref_primary_10_3390_app13116369 crossref_primary_10_3390_jsan12010005 crossref_primary_10_32604_cmc_2023_044999 |
| Cites_doi | 10.1088/1742-6596/1453/1/012010 10.1016/j.jprocont.2020.01.004 10.1109/ACCESS.2019.2895334 10.1016/j.knosys.2019.105124 10.1109/TETCI.2017.2772792 10.1109/CSCloud.2017.39 10.1007/978-3-642-21735-7_7 10.1109/ACCESS.2018.2858277 10.1016/j.ipm.2020.102381 10.1109/ACCESS.2019.2933602 10.1109/ACCESS.2019.2929487 10.1109/ACCESS.2018.2867345 10.1007/s00371-019-01630-9 10.1016/j.neucom.2015.08.104 10.1016/j.patcog.2017.09.012 10.1007/978-981-15-0199-9_30 10.1109/ICCSN.2017.8230287 10.1007/s10489-019-01436-1 10.1007/978-3-658-05014-6_2 10.1016/j.neucom.2019.11.016 10.1007/s10489-018-01405-0 10.3390/app9020238 10.1109/ACCESS.2019.2928048 10.1109/CBD.2014.41 10.3390/s19112528 10.1109/ACCESS.2020.2977007 10.1016/j.patrec.2016.11.016 10.1016/j.compeleceng.2019.106460 10.1007/s10489-019-01503-7 10.1371/journal.pone.0155781 10.1007/s13042-014-0238-0 10.14722/ndss.2018.23204 10.1109/CISDA.2009.5356528 10.3390/electronics9020259 10.1155/2017/4184196 10.1109/MilCIS.2015.7348942 10.1007/s10489-017-1085-y 10.1109/NAECON.2015.7443094 10.1109/ACCESS.2018.2869577 10.1017/S026988891300043X 10.3390/electronics9061012 10.1109/ACCESS.2020.2980136 10.1016/j.heliyon.2020.e04262 10.1007/s00521-019-04557-3 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
| DOI | 10.1007/s10489-021-02205-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China One Psychology Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 7108 |
| ExternalDocumentID | 10_1007_s10489_021_02205_9 |
| GrantInformation_xml | – fundername: Prince Sattam bin Abdulaziz University grantid: 2018/01/9397 funderid: https://doi.org/10.13039/100009392 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-cec635ec1d21c6d4045ce8f89c149c7ed5371dd80456245a3e307c0358f890a13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 118 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621340600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-669X |
| IngestDate | Wed Nov 05 14:51:23 EST 2025 Tue Nov 18 22:27:05 EST 2025 Sat Nov 29 05:33:23 EST 2025 Fri Feb 21 02:48:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Deep learning Joint optimization framework Network intrusion detection Cybersecurity Feature representation learning One-class classifier OCSVM 1D convolutional autoencoder |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-cec635ec1d21c6d4045ce8f89c149c7ed5371dd80456245a3e307c0358f890a13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9683-2175 |
| PQID | 2569112677 |
| PQPubID | 326365 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2569112677 crossref_citationtrail_10_1007_s10489_021_02205_9 crossref_primary_10_1007_s10489_021_02205_9 springer_journals_10_1007_s10489_021_02205_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20211000 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 20211000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | YangYZhengKWuCYangYImproving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural networkSensors20191911252810.3390/s19112528 QureshiASKhanAShamimNDuradMHIntrusion detection using deep sparse auto-encoder and self-taught learningNeural Comput Applic201932113 Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE symposium on computational intelligence for security and defense applications. IEEE, pp 1–6 KherlenchimegZNakayaNA deep learning approach based on sparse autoencoder with long short-term memory for network intrusion detectionIEEJ Trans Electron Inform Syst20201406592599 TianYMirzabagheriMTirandaziPMojtabaSBamakanHA non-convex semi-supervised approach to opinion spam detection by ramp-one class svmInform Process Manag202057610238110.1016/j.ipm.2020.102381 Mirsky Y, Doitshman T, Elovici Y, Shabtai A (2018) Kitsune: an ensemble of autoencoders for online network intrusion detection. arXiv:1802.09089 Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980 BinbusayyisAVaiyapuriTComprehensive analysis and recommendation of feature evaluation measures for intrusion detectionHeliyon202067e0426210.1016/j.heliyon.2020.e04262 ShoneNNgocTNVuDPQiSA deep learning approach to network intrusion detectionIEEE Trans Emerg Topics Comput Intell201821415010.1109/TETCI.2017.2772792 MazaSTouahriaMFeature selection for intrusion detection using new multi-objective estimation of distribution algorithmsAppl Intell201949124237425710.1007/s10489-019-01503-7 Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC, et al. (1999) Estimating the support of a high-dimensional distribution. Technical Report MSR-t R-99–87 Microsoft Research (MSR) MusaferHAbuzneidAFaezipourMMahmoodAAn enhanced design of sparse autoencoder for latent features extraction based on trigonometric simplexes for network intrusion detection systemsElectronics20209225910.3390/electronics9020259 YangYZhengKWuBYangYWangXNetwork intrusion detection based on supervised adversarial variational auto-encoder with regularizationIEEE Access20208421694218410.1109/ACCESS.2020.2977007 Al-QatfMYuLAl-HabibMAl-SabahiKDeep learning approach combining sparse autoencoder with svm for network intrusion detectionIEEE Access20186528435285610.1109/ACCESS.2018.2869577 TanFHSParkJRJungKLeeJSKangD-KCascade of one class classifiers for water level anomaly detectionElectronics202096101210.3390/electronics9061012 Ni G, Gao L, Gao Q, Wang H (2014) An intrusion detection model based on deep belief networks. In: 2014 second international conference on advanced cloud and big data. IEEE, pp 247–252 KimCParkJSDesigning online network intrusion detection using deep auto-encoder q-learningComput Electric Eng20197910646010.1016/j.compeleceng.2019.106460 TamaBAComuzziMRheeK-HTse-ids: a two-stage classifier ensemble for intelligent anomaly-based intrusion detection systemIEEE Access20197944979450710.1109/ACCESS.2019.2928048 YangYZhengKWuCNiuXYangYBuilding an effective intrusion detection system using the modified density peak clustering algorithm and deep belief networksAppl Sci20199223810.3390/app9020238 Géron A (2019) Hands-on machine learning with Scikit-Learn, Keras, and tensorflow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media Yu Y, Long J, Cai Z (2017) Network intrusion detection through stacking dilated convolutional autoencoders. Secur Commun Netw, 2017 TajoddinAAbadiMRamd: registry-based anomaly malware detection using one-class ensemble classifiersAppl Intell20194972641265810.1007/s10489-018-01405-0 Truong TC, Zelinka I, Plucar J, Čandík M, Šulc V (2020) Artificial intelligence and cybersecurity: past, presence, and future. In: Artificial intelligence and evolutionary computations in engineering systems. Springer, pp 351–363 KangM-JKangJ-WIntrusion detection system using deep neural network for in-vehicle network securityPloS One2016116e015578110.1371/journal.pone.0155781 KhanSSMaddenMGOne-class classification: taxonomy of study and review of techniquesKnowl Eng Rev201429334537410.1017/S026988891300043X Shuaixin T (2020) An intrusion detection method based on stacked autoencoder and support vector machine. In: J phys conf series, vol 1453, pp 1–17 TchakouchtTAEzziyyaniMMultilayered echo-state machine: a novel architecture for efficient intrusion detectionIEEE Access20186724587246810.1109/ACCESS.2018.2867345 Can Aygun R, Gokhan Yavuz A (2017) Network anomaly detection with stochastically improved autoencoder based models. In: 2017 IEEE 4th international conference on cyber security and cloud computing (CSCloud). IEEE, pp 193–198 BinbusayyisAVaiyapuriTIdentifying and benchmarking key features for cyber intrusion detection: an ensemble approachIEEE Access2019710649510651310.1109/ACCESS.2019.2929487 MaoSGuoJLiZDiscriminative autoencoding framework for simple and efficient anomaly detectionIEEE Access2019714061814063010.1109/ACCESS.2019.2933602 WangSLiuQEnZPorikliFYinJHyperparameter selection of one-class support vector machine by self-adaptive data shiftingPattern Recognit20187419821110.1016/j.patcog.2017.09.012 Masci J, Meier U, Cireşan D, Schmidhuber J (2011) Stacked convolutional auto-encoders for hierarchical feature extraction. In: International conference on artificial neural networks. Springer, pp 52–59 BenmessahelIXieKChellalMA new evolutionary neural networks based on intrusion detection systems using multiverse optimizationAppl Intell20184882315232710.1007/s10489-017-1085-y Zhang X, Chen J (2017) Deep learning based intelligent intrusion detection. In: 2017 IEEE 9th international conference on communication software and networks (ICCSN). IEEE, pp 1133–1137 ChenSYuJWangSOne-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processesJ Process Control202087546710.1016/j.jprocont.2020.01.004 XiaoYWangHXuWRamp loss based robust one-class svmPattern Recogn Lett201785152010.1016/j.patrec.2016.11.016 YanBHanGEffective feature extraction via stacked sparse autoencoder to improve intrusion detection systemIEEE Access20186412384124810.1109/ACCESS.2018.2858277 YuYBianNAn intrusion detection method using few-shot learningIEEE Access20208497304974010.1109/ACCESS.2020.2980136 AleesaAMZaidanBBZaidanAASaharNMReview of intrusion detection systems based on deep learning techniques: coherent taxonomy, challenges, motivations, recommendations, substantial analysis and future directionsNeural Comput Appl202032149827985810.1007/s00521-019-04557-3 Moustafa N, Slay J (2015) Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In: 2015 military communications and information systems conference (MilCIS). IEEE, pp 1–6 KajaNShaoutAMaDAn intelligent intrusion detection systemAppl Intell20194993235324710.1007/s10489-019-01436-1 AgrawalAMittalNUsing cnn for facial expression recognition: a study of the effects of kernel size and number of filters on accuracyVisual Comput202036240541210.1007/s00371-019-01630-9 Bartock M, Cichonski J, Souppaya M (2020) 5g cybersecurity: preparing a secure evolution to 5g. Technical report, National Institute of Standards and Technology Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp 249–256 AldweeshADerhabAEmamAZDeep learning approaches for anomaly-based intrusion detection systems: a survey, taxonomy, and open issuesKnowl-Based Syst202018910512410.1016/j.knosys.2019.105124 FuADongCWangLAn experimental study on stability and generalization of extreme learning machinesInt J Machine Learn Cybern20156112913510.1007/s13042-014-0238-0 Alom MZ, Bontupalli VR, Taha TM (2015) Intrusion detection using deep belief networks. In: 2015 National aerospace and electronics conference (NAECON). IEEE, pp 339– 344 Kagermann H (2015) Change through digitization—value creation in the age of industry 4.0. In: Management of permanent change. Springer, pp 23–45 WangYYaoHZhaoSAuto-encoder based dimensionality reductionNeurocomputing201618423224210.1016/j.neucom.2015.08.104 KamasaJSecuring future 5g-networksPolicy Perspectives202084 IeracitanoCAdeelAMorabitoFCHussainAA novel statistical analysis and autoencoder driven intelligent intrusion detection approachNeurocomputing2020387516210.1016/j.neucom.2019.11.016 Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors neurocomputing: foundations of research VinayakumarRAlazabMSomanKPPoornachandranPAl-NemratAVenkatramanSDeep learning approach for intelligent intrusion detection systemIEEE Access20197415254155010.1109/ACCESS.2019.2895334 2205_CR39 A Agrawal (2205_CR45) 2020; 36 2205_CR33 TA Tchakoucht (2205_CR51) 2018; 6 I Benmessahel (2205_CR5) 2018; 48 S Wang (2205_CR37) 2018; 74 Z Kherlenchimeg (2205_CR24) 2020; 140 A Fu (2205_CR53) 2015; 6 A Binbusayyis (2205_CR4) 2019; 7 SS Khan (2205_CR32) 2014; 29 BA Tama (2205_CR50) 2019; 7 N Kaja (2205_CR9) 2019; 49 M-J Kang (2205_CR13) 2016; 11 2205_CR43 2205_CR44 2205_CR41 2205_CR42 2205_CR40 Y Yang (2205_CR46) 2019; 19 N Shone (2205_CR21) 2018; 2 Y Yu (2205_CR52) 2020; 8 Y Xiao (2205_CR38) 2017; 85 S Maza (2205_CR10) 2019; 49 2205_CR14 FHS Tan (2205_CR35) 2020; 9 2205_CR15 2205_CR12 C Ieracitano (2205_CR19) 2020; 387 A Tajoddin (2205_CR31) 2019; 49 R Vinayakumar (2205_CR48) 2019; 7 Y Yang (2205_CR49) 2019; 9 Y Yang (2205_CR47) 2020; 8 Y Wang (2205_CR30) 2016; 184 S Chen (2205_CR34) 2020; 87 2205_CR3 B Yan (2205_CR27) 2018; 6 Y Tian (2205_CR36) 2020; 57 2205_CR1 S Mao (2205_CR17) 2019; 7 2205_CR8 H Musafer (2205_CR16) 2020; 9 2205_CR18 2205_CR25 2205_CR26 J Kamasa (2205_CR2) 2020; 8 A Aldweesh (2205_CR6) 2020; 189 C Kim (2205_CR28) 2019; 79 2205_CR20 A Binbusayyis (2205_CR7) 2020; 6 M Al-Qatf (2205_CR22) 2018; 6 AM Aleesa (2205_CR11) 2020; 32 AS Qureshi (2205_CR23) 2019; 32 2205_CR29 |
| References_xml | – reference: Al-QatfMYuLAl-HabibMAl-SabahiKDeep learning approach combining sparse autoencoder with svm for network intrusion detectionIEEE Access20186528435285610.1109/ACCESS.2018.2869577 – reference: ShoneNNgocTNVuDPQiSA deep learning approach to network intrusion detectionIEEE Trans Emerg Topics Comput Intell201821415010.1109/TETCI.2017.2772792 – reference: YanBHanGEffective feature extraction via stacked sparse autoencoder to improve intrusion detection systemIEEE Access20186412384124810.1109/ACCESS.2018.2858277 – reference: IeracitanoCAdeelAMorabitoFCHussainAA novel statistical analysis and autoencoder driven intelligent intrusion detection approachNeurocomputing2020387516210.1016/j.neucom.2019.11.016 – reference: WangYYaoHZhaoSAuto-encoder based dimensionality reductionNeurocomputing201618423224210.1016/j.neucom.2015.08.104 – reference: TianYMirzabagheriMTirandaziPMojtabaSBamakanHA non-convex semi-supervised approach to opinion spam detection by ramp-one class svmInform Process Manag202057610238110.1016/j.ipm.2020.102381 – reference: AgrawalAMittalNUsing cnn for facial expression recognition: a study of the effects of kernel size and number of filters on accuracyVisual Comput202036240541210.1007/s00371-019-01630-9 – reference: XiaoYWangHXuWRamp loss based robust one-class svmPattern Recogn Lett201785152010.1016/j.patrec.2016.11.016 – reference: BinbusayyisAVaiyapuriTComprehensive analysis and recommendation of feature evaluation measures for intrusion detectionHeliyon202067e0426210.1016/j.heliyon.2020.e04262 – reference: YuYBianNAn intrusion detection method using few-shot learningIEEE Access20208497304974010.1109/ACCESS.2020.2980136 – reference: AldweeshADerhabAEmamAZDeep learning approaches for anomaly-based intrusion detection systems: a survey, taxonomy, and open issuesKnowl-Based Syst202018910512410.1016/j.knosys.2019.105124 – reference: TanFHSParkJRJungKLeeJSKangD-KCascade of one class classifiers for water level anomaly detectionElectronics202096101210.3390/electronics9061012 – reference: KajaNShaoutAMaDAn intelligent intrusion detection systemAppl Intell20194993235324710.1007/s10489-019-01436-1 – reference: Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE symposium on computational intelligence for security and defense applications. IEEE, pp 1–6 – reference: MaoSGuoJLiZDiscriminative autoencoding framework for simple and efficient anomaly detectionIEEE Access2019714061814063010.1109/ACCESS.2019.2933602 – reference: Can Aygun R, Gokhan Yavuz A (2017) Network anomaly detection with stochastically improved autoencoder based models. In: 2017 IEEE 4th international conference on cyber security and cloud computing (CSCloud). IEEE, pp 193–198 – reference: Yu Y, Long J, Cai Z (2017) Network intrusion detection through stacking dilated convolutional autoencoders. Secur Commun Netw, 2017 – reference: AleesaAMZaidanBBZaidanAASaharNMReview of intrusion detection systems based on deep learning techniques: coherent taxonomy, challenges, motivations, recommendations, substantial analysis and future directionsNeural Comput Appl202032149827985810.1007/s00521-019-04557-3 – reference: TajoddinAAbadiMRamd: registry-based anomaly malware detection using one-class ensemble classifiersAppl Intell20194972641265810.1007/s10489-018-01405-0 – reference: KhanSSMaddenMGOne-class classification: taxonomy of study and review of techniquesKnowl Eng Rev201429334537410.1017/S026988891300043X – reference: Mirsky Y, Doitshman T, Elovici Y, Shabtai A (2018) Kitsune: an ensemble of autoencoders for online network intrusion detection. arXiv:1802.09089 – reference: KangM-JKangJ-WIntrusion detection system using deep neural network for in-vehicle network securityPloS One2016116e015578110.1371/journal.pone.0155781 – reference: Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980 – reference: Bartock M, Cichonski J, Souppaya M (2020) 5g cybersecurity: preparing a secure evolution to 5g. Technical report, National Institute of Standards and Technology – reference: YangYZhengKWuCNiuXYangYBuilding an effective intrusion detection system using the modified density peak clustering algorithm and deep belief networksAppl Sci20199223810.3390/app9020238 – reference: YangYZhengKWuBYangYWangXNetwork intrusion detection based on supervised adversarial variational auto-encoder with regularizationIEEE Access20208421694218410.1109/ACCESS.2020.2977007 – reference: FuADongCWangLAn experimental study on stability and generalization of extreme learning machinesInt J Machine Learn Cybern20156112913510.1007/s13042-014-0238-0 – reference: KherlenchimegZNakayaNA deep learning approach based on sparse autoencoder with long short-term memory for network intrusion detectionIEEJ Trans Electron Inform Syst20201406592599 – reference: MusaferHAbuzneidAFaezipourMMahmoodAAn enhanced design of sparse autoencoder for latent features extraction based on trigonometric simplexes for network intrusion detection systemsElectronics20209225910.3390/electronics9020259 – reference: TchakouchtTAEzziyyaniMMultilayered echo-state machine: a novel architecture for efficient intrusion detectionIEEE Access20186724587246810.1109/ACCESS.2018.2867345 – reference: KamasaJSecuring future 5g-networksPolicy Perspectives202084 – reference: Shuaixin T (2020) An intrusion detection method based on stacked autoencoder and support vector machine. In: J phys conf series, vol 1453, pp 1–17 – reference: MazaSTouahriaMFeature selection for intrusion detection using new multi-objective estimation of distribution algorithmsAppl Intell201949124237425710.1007/s10489-019-01503-7 – reference: Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC, et al. (1999) Estimating the support of a high-dimensional distribution. Technical Report MSR-t R-99–87 Microsoft Research (MSR) – reference: Géron A (2019) Hands-on machine learning with Scikit-Learn, Keras, and tensorflow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media – reference: Zhang X, Chen J (2017) Deep learning based intelligent intrusion detection. In: 2017 IEEE 9th international conference on communication software and networks (ICCSN). IEEE, pp 1133–1137 – reference: Ni G, Gao L, Gao Q, Wang H (2014) An intrusion detection model based on deep belief networks. In: 2014 second international conference on advanced cloud and big data. IEEE, pp 247–252 – reference: Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp 249–256 – reference: BenmessahelIXieKChellalMA new evolutionary neural networks based on intrusion detection systems using multiverse optimizationAppl Intell20184882315232710.1007/s10489-017-1085-y – reference: Alom MZ, Bontupalli VR, Taha TM (2015) Intrusion detection using deep belief networks. In: 2015 National aerospace and electronics conference (NAECON). IEEE, pp 339– 344 – reference: Moustafa N, Slay J (2015) Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In: 2015 military communications and information systems conference (MilCIS). IEEE, pp 1–6 – reference: Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors neurocomputing: foundations of research – reference: Truong TC, Zelinka I, Plucar J, Čandík M, Šulc V (2020) Artificial intelligence and cybersecurity: past, presence, and future. In: Artificial intelligence and evolutionary computations in engineering systems. Springer, pp 351–363 – reference: QureshiASKhanAShamimNDuradMHIntrusion detection using deep sparse auto-encoder and self-taught learningNeural Comput Applic201932113 – reference: Masci J, Meier U, Cireşan D, Schmidhuber J (2011) Stacked convolutional auto-encoders for hierarchical feature extraction. In: International conference on artificial neural networks. Springer, pp 52–59 – reference: TamaBAComuzziMRheeK-HTse-ids: a two-stage classifier ensemble for intelligent anomaly-based intrusion detection systemIEEE Access20197944979450710.1109/ACCESS.2019.2928048 – reference: Kagermann H (2015) Change through digitization—value creation in the age of industry 4.0. In: Management of permanent change. Springer, pp 23–45 – reference: BinbusayyisAVaiyapuriTIdentifying and benchmarking key features for cyber intrusion detection: an ensemble approachIEEE Access2019710649510651310.1109/ACCESS.2019.2929487 – reference: KimCParkJSDesigning online network intrusion detection using deep auto-encoder q-learningComput Electric Eng20197910646010.1016/j.compeleceng.2019.106460 – reference: ChenSYuJWangSOne-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processesJ Process Control202087546710.1016/j.jprocont.2020.01.004 – reference: WangSLiuQEnZPorikliFYinJHyperparameter selection of one-class support vector machine by self-adaptive data shiftingPattern Recognit20187419821110.1016/j.patcog.2017.09.012 – reference: YangYZhengKWuCYangYImproving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural networkSensors20191911252810.3390/s19112528 – reference: VinayakumarRAlazabMSomanKPPoornachandranPAl-NemratAVenkatramanSDeep learning approach for intelligent intrusion detection systemIEEE Access20197415254155010.1109/ACCESS.2019.2895334 – ident: 2205_CR25 doi: 10.1088/1742-6596/1453/1/012010 – volume: 87 start-page: 54 year: 2020 ident: 2205_CR34 publication-title: J Process Control doi: 10.1016/j.jprocont.2020.01.004 – volume: 7 start-page: 41525 year: 2019 ident: 2205_CR48 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2895334 – volume: 189 start-page: 105124 year: 2020 ident: 2205_CR6 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.105124 – volume: 2 start-page: 41 issue: 1 year: 2018 ident: 2205_CR21 publication-title: IEEE Trans Emerg Topics Comput Intell doi: 10.1109/TETCI.2017.2772792 – ident: 2205_CR43 – ident: 2205_CR18 doi: 10.1109/CSCloud.2017.39 – ident: 2205_CR33 doi: 10.1007/978-3-642-21735-7_7 – volume: 6 start-page: 41238 year: 2018 ident: 2205_CR27 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2858277 – volume: 57 start-page: 102381 issue: 6 year: 2020 ident: 2205_CR36 publication-title: Inform Process Manag doi: 10.1016/j.ipm.2020.102381 – volume: 7 start-page: 140618 year: 2019 ident: 2205_CR17 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2933602 – volume: 7 start-page: 106495 year: 2019 ident: 2205_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929487 – volume: 6 start-page: 72458 year: 2018 ident: 2205_CR51 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2867345 – volume: 36 start-page: 405 issue: 2 year: 2020 ident: 2205_CR45 publication-title: Visual Comput doi: 10.1007/s00371-019-01630-9 – volume: 184 start-page: 232 year: 2016 ident: 2205_CR30 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.104 – volume: 74 start-page: 198 year: 2018 ident: 2205_CR37 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.09.012 – ident: 2205_CR8 doi: 10.1007/978-981-15-0199-9_30 – ident: 2205_CR29 – ident: 2205_CR42 – ident: 2205_CR15 doi: 10.1109/ICCSN.2017.8230287 – volume: 49 start-page: 3235 issue: 9 year: 2019 ident: 2205_CR9 publication-title: Appl Intell doi: 10.1007/s10489-019-01436-1 – ident: 2205_CR1 doi: 10.1007/978-3-658-05014-6_2 – volume: 387 start-page: 51 year: 2020 ident: 2205_CR19 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.016 – volume: 49 start-page: 2641 issue: 7 year: 2019 ident: 2205_CR31 publication-title: Appl Intell doi: 10.1007/s10489-018-01405-0 – ident: 2205_CR39 – volume: 9 start-page: 238 issue: 2 year: 2019 ident: 2205_CR49 publication-title: Appl Sci doi: 10.3390/app9020238 – volume: 32 start-page: 1 year: 2019 ident: 2205_CR23 publication-title: Neural Comput Applic – volume: 7 start-page: 94497 year: 2019 ident: 2205_CR50 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928048 – ident: 2205_CR14 doi: 10.1109/CBD.2014.41 – volume: 19 start-page: 2528 issue: 11 year: 2019 ident: 2205_CR46 publication-title: Sensors doi: 10.3390/s19112528 – volume: 8 start-page: 42169 year: 2020 ident: 2205_CR47 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2977007 – volume: 85 start-page: 15 year: 2017 ident: 2205_CR38 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2016.11.016 – volume: 79 start-page: 106460 year: 2019 ident: 2205_CR28 publication-title: Comput Electric Eng doi: 10.1016/j.compeleceng.2019.106460 – volume: 49 start-page: 4237 issue: 12 year: 2019 ident: 2205_CR10 publication-title: Appl Intell doi: 10.1007/s10489-019-01503-7 – volume: 11 start-page: e0155781 issue: 6 year: 2016 ident: 2205_CR13 publication-title: PloS One doi: 10.1371/journal.pone.0155781 – volume: 6 start-page: 129 issue: 1 year: 2015 ident: 2205_CR53 publication-title: Int J Machine Learn Cybern doi: 10.1007/s13042-014-0238-0 – ident: 2205_CR20 doi: 10.14722/ndss.2018.23204 – ident: 2205_CR40 doi: 10.1109/CISDA.2009.5356528 – volume: 9 start-page: 259 issue: 2 year: 2020 ident: 2205_CR16 publication-title: Electronics doi: 10.3390/electronics9020259 – ident: 2205_CR26 doi: 10.1155/2017/4184196 – ident: 2205_CR41 doi: 10.1109/MilCIS.2015.7348942 – volume: 48 start-page: 2315 issue: 8 year: 2018 ident: 2205_CR5 publication-title: Appl Intell doi: 10.1007/s10489-017-1085-y – ident: 2205_CR12 doi: 10.1109/NAECON.2015.7443094 – volume: 6 start-page: 52843 year: 2018 ident: 2205_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2869577 – volume: 29 start-page: 345 issue: 3 year: 2014 ident: 2205_CR32 publication-title: Knowl Eng Rev doi: 10.1017/S026988891300043X – ident: 2205_CR3 – volume: 9 start-page: 1012 issue: 6 year: 2020 ident: 2205_CR35 publication-title: Electronics doi: 10.3390/electronics9061012 – ident: 2205_CR44 – volume: 8 start-page: 4 year: 2020 ident: 2205_CR2 publication-title: Policy Perspectives – volume: 8 start-page: 49730 year: 2020 ident: 2205_CR52 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980136 – volume: 6 start-page: e04262 issue: 7 year: 2020 ident: 2205_CR7 publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e04262 – volume: 140 start-page: 592 issue: 6 year: 2020 ident: 2205_CR24 publication-title: IEEJ Trans Electron Inform Syst – volume: 32 start-page: 9827 issue: 14 year: 2020 ident: 2205_CR11 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04557-3 |
| SSID | ssj0003301 |
| Score | 2.580233 |
| Snippet | With the rapid advancement in network technologies, the need for cybersecurity has gained increasing momentum in recent years. As a primary defense mechanism,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7094 |
| SubjectTerms | Ablation Artificial Intelligence CAD Classification Classifiers Communications traffic Computer aided design Computer Science Cybersecurity Decision analysis Deep learning Feature extraction Intrusion detection systems Machine learning Machines Manufacturing Mechanical Engineering Optimization Processes Reconstruction Representations Support vector machines Traffic models |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46PXhx_sTplBy8aXBtmqY5iYjDi2Ogk-GltEkmA8mq7QT_e1-ydEXBXTw3TQLfy8v32vfeh9B5zhOaT2hMRMwYifJQkiSgGmIerSKucpFp5cQm-GCQjMdi6D-4lT6tsvaJzlGrmbTfyK_gaha23IXz6-KdWNUo-3fVS2iso40gBK4P9jxkL0tPDLG6U8yDGIPEsRj7ohlfOhfZZKEQgmlba0rEz4upYZu_fpC6e6ff_u-Od9C2Z5z4ZmEiu2hNmz3UrtUcsD_c--hrZMp5YV1HqRVWWhfYS0q84rrzOAaKi80icxxPjS3YAFxhcOUyugyGneVOcgLbdHZv1rB6Nq9mtmWmghUzo_DMaCItccePzw8HaNS_e7q9J16YgUg4sRWRWgJP0TJQYSBjFQEtlDqZJEICBpJrxSgPlEpceBWxjGrwJLJHmR3TywJ6iFoGFjpCuKeBwUQ8jznMQ9kkYbEMwXg4MCWd92gHBTUqqfRdy614xlva9Fu2SKaAZOqQTEUHXSzfKRY9O1aO7tbwpf78lmmDXQdd1gbQPP57tuPVs52grdDanMsG7KIW4KRP0ab8rKblx5mz3m8HjfYo priority: 102 providerName: ProQuest |
| Title | Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and one-class SVM |
| URI | https://link.springer.com/article/10.1007/s10489-021-02205-9 https://www.proquest.com/docview/2569112677 |
| Volume | 51 |
| WOSCitedRecordID | wos000621340600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals New Starts & Take-Overs Collection customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-uCL8xOnc-TBNw20TdO0jyqKII7h_Ji-lDbJZCDdsJvgf-8lSzcVFfQlUHr5IHe5_I7cB8BBLmKW91lEk4hzGuaBpLHPNNo8WoVC5UmmlS02IdrtuNdLOi4orKy83asnSaupPwS7hca9J0Dz10SH0mQRlrjJo2ds9O7dTP-ihW7r5KFlQaMo6blQme_H-HwdzTHml2dRe9uc1_-3zjVYdeiSHE_FYR0WdLEB9apyA3EHeRPebotyMjJqotSKKK1HxJWPeCJVlnGCcJYUUy9xMihMcAbyEInH1nurILic3JaXIMZ13Ykwzp5NxkOTHlPhjFmhyLDQVBqQTrp3V1twe352c3pBXREGKvF0jqnUEjGJlr4KfBmpECGg1HE_TiTaVlJoxZnwlYqtKRXyjGnUGtJj3NB4mc-2oVbgRDtAPI1oJRR5JHAcxvsxj2SAgiIQFencYw3wK16k0mUoN4UyntN5bmWztynubWr3Nk0acDjrM5rm5_iVulmxOHVntUwR9CUmkEqIBhxVLJ3__nm03b-R78FKYKTCegI2oYZ80_uwLF_Hg_KlBYvi_qEFSydn7c41fl0Kiu2Vd2pa0cW2wx9bVtLfAWQw8kY |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BrQQXKG0Ry6P40J5aq0mcxMkBIQRFIGBVCaj2lib2LFoJZReygPhT_EZmvA6rVio3Dj3HGUv2N69kZj6Az5XOVNVXqczTJJFxFRmZhQop50Eba1vlJVpHNqG73azXy3_OwGPbC8Nlla1NdIbaDg1_I_9Orjnndhetd0bXklmj-O9qS6ExgcUxPtxTytZsH-3T_X6JooMf53uH0rMKSENwG0uDhpwsmtBGoUltTDGNwayf5YaSBaPRJkqH1mYuN4iTUiGpgQlUwmuCMlQkdxbexFwf6UoFz54tv1KObjmgnEamad7zTTq-VS_m4qSIknfubZX5n45wGt3-9UPW-bmDpf_thN7Boo-oxe5EBZZhBuv3sNSyVQhvvD7Aw0Xd3I7YNDZohUUcCU-ZcSnayeqCQnhRTyrjxaDmhhTCLS0eu4q1WtBJVI5SQ3C5vldb2r28HQ95JKilHcvaimGN0nBiIs5-nX6Ei1c5gBWYq2mjVRABUoQW6yrVJEcl_SxJTUTKoSkSxCpQHQhbFBTGT2VncpCrYjpPmpFTEHIKh5wi78DX53dGk5kkL67eaOFSePvUFFOsdOBbC7jp439LW3tZ2hbMH56fnhQnR93jdViIGO-u8nED5ujOcBPemrvxoLn55DRHwO_XBuIT-8dRpg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BUiEu0BdiKS0-tCdqkcRJHB8QosAKRLtataXaW0jsWYSEsgtZQPy1_jrGXocVSHDjwDnOWLK_eSUz8wF8LWUmyoFIuUqThMdlpHkWCqScB00sTakKNI5sQna7Wb-vejPwv-mFsWWVjU10htoMtf1GvkmuWdl2Fyk3B74sorfX2R5dcMsgZf-0NnQaE4gc4e0NpW_11uEe3fW3KOrs_9094J5hgGuC3phr1ORwUYcmCnVqYopvNGaDTGlKHLREkwgZGpO5PCFOCoGkEjoQiV0TFKEgubMwJ4UKghbM_djv9n7f-wEhHPlyQBkOT1PV9y07vnEvtqVKEaXyttOVq4ducRrrPvo967xeZ-k1n9dbWPSxNtuZKMc7mMHqPSw1PBbMm7UPcHtc1VcjazRrNMwgjpgn0zhlzcx1RsE9qyY18-yssq0qhGhaPHa1bBWjUykd2QazhfxeoWn34mo8tMNCDe1YVIYNK-Tapizsz79fH-H4RQ5gGVoVbbQCLECK3WJZppLkiGSQJamOSG0kxYhYBqINYYOIXPt57ZY25DyfTpq2KMoJRblDUa7asHH_zmgyreTZ1WsNdHJvuep8ips2fG_AN338tLTV56WtwzzhL_952D36BAuRhb4riVyDFl0ZfoY3-np8Vl9-8WrE4OSlkXgH7VhbrQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+deep+learning+approach+for+network+intrusion+detection+combining+convolutional+autoencoder+and+one-class+SVM&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Binbusayyis%2C+Adel&rft.au=Vaiyapuri%2C+Thavavel&rft.date=2021-10-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=51&rft.issue=10&rft.spage=7094&rft.epage=7108&rft_id=info:doi/10.1007%2Fs10489-021-02205-9&rft.externalDocID=10_1007_s10489_021_02205_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |