Sharp Power Mean Inequalities for the Generalized Elliptic Integral of the First Kind

We establish two sharp inequalities involving the power mean and generalized elliptic integral of the first kind. As applications, the analogous inequalities concerning the complete p -elliptic integral of the first kind are also derived.

Saved in:
Bibliographic Details
Published in:Computational methods and function theory Vol. 20; no. 1; pp. 111 - 124
Main Authors: Wang, Miao-Kun, He, Zai-Yin, Chu, Yu-Ming
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020
Springer Nature B.V
Subjects:
ISSN:1617-9447, 2195-3724
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We establish two sharp inequalities involving the power mean and generalized elliptic integral of the first kind. As applications, the analogous inequalities concerning the complete p -elliptic integral of the first kind are also derived.
AbstractList We establish two sharp inequalities involving the power mean and generalized elliptic integral of the first kind. As applications, the analogous inequalities concerning the complete p-elliptic integral of the first kind are also derived.
We establish two sharp inequalities involving the power mean and generalized elliptic integral of the first kind. As applications, the analogous inequalities concerning the complete p -elliptic integral of the first kind are also derived.
Author Chu, Yu-Ming
He, Zai-Yin
Wang, Miao-Kun
Author_xml – sequence: 1
  givenname: Miao-Kun
  surname: Wang
  fullname: Wang, Miao-Kun
  organization: Department of Mathematics, Huzhou University
– sequence: 2
  givenname: Zai-Yin
  surname: He
  fullname: He, Zai-Yin
  organization: School of Mathematics, Hunan University
– sequence: 3
  givenname: Yu-Ming
  surname: Chu
  fullname: Chu, Yu-Ming
  email: chuyuming@zjhu.edu.cn
  organization: College of Science, Hunan City University, School of Mathematics and Statistics, Changsha University of Science and Technology
BookMark eNp9kE1LAzEQhoMoWKt_wFPA8-rkYzfmKMUvVBTUc8gmsxpZs22SUvTXu1pB8NDTwMv7zAzPHtmOQ0RCDhkcMwB1kiUIVlfAoQLg-rRabZEJZ7quhOJym0xYw1SlpVS7ZC_nN4BaaiEm5Pnx1aY5fRhWmOgd2kivIy6Wtg8lYKbdkGh5RXqJEdMYfqKn530f5iW4sVnwZUzp0P2ULkLKhd6E6PfJTmf7jAe_c0qeL86fZlfV7f3l9ezstnKC6VI5bEXXeu20an0jWitbD84J1TVolQYQFhsvvW4kZ05517aatQgoGg7oOzElR-u98zQslpiLeRuWKY4nDRcK6lpLwccWX7dcGnJO2Jl5Cu82fRgG5lufWeszoz7zo8-sRuj0H-RCsSUMsSQb-s2oWKN5vBNfMP19tYH6Ar9_iDo
CitedBy_id crossref_primary_10_1515_ms_2021_0012
crossref_primary_10_1155_2020_9154139
crossref_primary_10_1007_s13398_021_01021_7
crossref_primary_10_1007_s13398_021_01027_1
crossref_primary_10_1515_math_2022_0045
crossref_primary_10_1186_s13662_020_02878_5
crossref_primary_10_3390_sym15122123
crossref_primary_10_1155_2020_7630260
crossref_primary_10_1007_s40315_020_00352_7
crossref_primary_10_1186_s13662_020_02720_y
crossref_primary_10_1007_s13398_020_00949_6
crossref_primary_10_1016_j_ijhydene_2020_08_017
crossref_primary_10_1155_2020_8262860
crossref_primary_10_1007_s10473_021_0211_4
crossref_primary_10_1007_s13398_020_00825_3
crossref_primary_10_1155_2020_9676231
crossref_primary_10_3390_sym15040862
crossref_primary_10_1186_s13660_020_02393_x
crossref_primary_10_1016_j_jmaa_2020_124469
crossref_primary_10_1007_s13398_021_01162_9
crossref_primary_10_1007_s13398_022_01211_x
crossref_primary_10_1142_S0218348X25401589
crossref_primary_10_1016_j_molliq_2020_114188
crossref_primary_10_1515_dema_2025_0103
crossref_primary_10_1155_2020_3720798
crossref_primary_10_3390_math11030656
crossref_primary_10_1186_s13662_020_03036_7
crossref_primary_10_1007_s13398_025_01783_4
crossref_primary_10_3390_fractalfract7070567
crossref_primary_10_3390_math9040449
crossref_primary_10_1007_s10473_021_0306_y
crossref_primary_10_3390_math10091560
crossref_primary_10_1007_s10473_022_0302_x
crossref_primary_10_1007_s13398_021_01031_5
crossref_primary_10_1186_s13660_020_02384_y
crossref_primary_10_1007_s13398_020_00848_w
crossref_primary_10_1002_mma_6937
crossref_primary_10_1007_s13398_021_01194_1
crossref_primary_10_1007_s10473_022_0204_y
crossref_primary_10_1155_2020_4984612
crossref_primary_10_1186_s13660_020_02327_7
crossref_primary_10_1007_s13398_020_00908_1
crossref_primary_10_1186_s13662_020_02782_y
crossref_primary_10_1515_ms_2017_0417
crossref_primary_10_1515_phys_2020_0114
crossref_primary_10_1515_math_2022_0493
crossref_primary_10_1007_s13398_021_01040_4
crossref_primary_10_3390_axioms12040399
crossref_primary_10_1007_s13398_021_01145_w
crossref_primary_10_1016_j_molliq_2020_114121
crossref_primary_10_1186_s13662_020_2516_3
Cites_doi 10.1016/j.aml.2010.12.044
10.7153/jca-09-04
10.1007/s00209-007-0111-x
10.1186/s13660-019-1962-5
10.1007/BF02767349
10.1007/s13398-019-00643-2
10.1090/S1088-4173-07-00168-3
10.1090/proc/13337
10.1007/s11139-018-9993-y
10.1007/s10473-019-0520-z
10.1016/j.jmaa.2019.02.018
10.1137/0521029
10.1017/S0305004198002692
10.2996/kmj/1458651700
10.1007/978-3-642-65138-0
10.1016/j.jmaa.2018.08.061
10.1017/S0013091511000356
10.2140/pjm.2000.192.1
10.1016/j.jmaa.2019.123388
10.1007/s11139-017-9888-3
10.1137/0523025
10.1216/RMJ-2014-44-5-1661
10.1016/j.jmaa.2016.06.074
10.1007/s11139-018-0130-8
10.1216/RMJ-2013-43-5-1489
10.1007/s00025-010-0090-9
10.1007/s12044-012-0062-y
10.1007/978-3-642-65513-5
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
2020© Springer-Verlag GmbH Germany, part of Springer Nature 2020
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: 2020© Springer-Verlag GmbH Germany, part of Springer Nature 2020
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s40315-020-00298-w
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2195-3724
EndPage 124
ExternalDocumentID 10_1007_s40315_020_00298_w
GroupedDBID -EM
06D
0R~
199
203
2LR
30V
4.4
406
95.
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AM4
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARMRJ
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
J-C
J9A
JBSCW
JZLTJ
KOV
L7B
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PT4
ROL
RSV
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
VH1
W48
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-ceb3fbd9c97bd63ba4bd0cc37f6ea79003ae6d4d96421c7dcbb91be0e3620edf3
IEDL.DBID RSV
ISICitedReferencesCount 88
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510100400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1617-9447
IngestDate Thu Sep 18 00:00:40 EDT 2025
Sat Nov 29 03:09:54 EST 2025
Tue Nov 18 21:26:39 EST 2025
Fri Feb 21 02:27:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 26E60
Complete elliptic integral
Generalized elliptic integral
Complete
33E05
Gaussian hypergeometric function
33C05
elliptic integral
Power mean
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ceb3fbd9c97bd63ba4bd0cc37f6ea79003ae6d4d96421c7dcbb91be0e3620edf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2370559432
PQPubID 2043941
PageCount 14
ParticipantIDs proquest_journals_2370559432
crossref_primary_10_1007_s40315_020_00298_w
crossref_citationtrail_10_1007_s40315_020_00298_w
springer_journals_10_1007_s40315_020_00298_w
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Computational methods and function theory
PublicationTitleAbbrev Comput. Methods Funct. Theory
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References AlzerHSharp inequalities for the complete elliptic integral of the first kindMath. Proc. Cambridge Philos. Soc.19981242309314163113510.1017/S0305004198002692
AlzerHRichardsKInequalities for the ratio of complete elliptic integralsProc. Amer. Math. Soc.201714541661167036015571360.33015
BariczÁTurán type inequalities for generalized complete elliptic integralsMath. Z.20072564895911230889610.1007/s00209-007-0111-x
AndersonGDVamanamurthyMKVuorinenMDistortion functions for plane quasiconformal mappingsIsrael J. Math.198862111694782510.1007/BF02767349
Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Topics in special functions. In: Heinonen, J., Kilpeläinen, T., Koskela, P. (eds.) Papers on Analysis: A Volume Dedicated to Olli Martio on the Occasion of His 60th Birthday, vol. 83, pp. 5–26, Rep. Univ. Jyväskylä Dep. Math. Stat., Univ. Jyväskylä, Jyväskylä (2001)
Yang, Zh.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function. J. Inequal. Appl. 2017, 17 (2017). Article ID 210
AndersonGDQiuS-LVamanamurthyMKVuorinenMGeneralized elliptic integrals and modular equationsPacific J. Math.20001921137174103110.2140/pjm.2000.192.1
LehtoOVirtanenKIQuasiconformal Mappings in the Plane1973New York-HeidelbergSpringer-Verlag10.1007/978-3-642-65513-5
HuangC-XZhangHCaoJ-DHuH-JStability and Hopf bifurcation of a delayed prey-predator model with disease in the predator, InternatJ. Bifur. Chaos Appl. Sci. Engrg.2019297231425.34093Article ID 1950091
WangM-KZhangWChuY-MMonotonicity, convexity and inequalities involving the generalized elliptic integralsActa Math. Sci.201939B514401450406883010.1007/s10473-019-0520-z
BhayoBAVuorinenMOn generalized complete elliptic integrals and modular functionsProc. Edinb. Math. Soc. (2)2012553591611297524410.1017/S0013091511000356
HuangT-RQiuS-LMaX-YMonotonicity properties and inequalities for the generalized elliptic integral of the first kindJ. Math. Anal. Appl.2019469195116385751210.1016/j.jmaa.2018.08.061
Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integrals. J. Inequal. Appl. 2018, 11 (2018). Article ID 239
BorweinJMBorweinPBPi and AGM1987New YorkJohn Wiley & Sons0611.10001
TakeuchiSLegendre-type relations for generalized complete elliptic integralsJ. Class. Anal.2016913542358008410.7153/jca-09-04
WangM-KChuH-HChuY-MPrecise bounds for the weighted Hölder mean of the complete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integralsJ. Math. Anal. Appl.201948029389347810.1016/j.jmaa.2019.1233881426.33050Article ID 123388
AbramowitzMStegunIAHandbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables1965New YorkDover0171.38503
HeX-HQianW-MXuZ-HChuY-MSharp power mean bounds for two Sándor-Yang meansRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.2019113326272638395627210.1007/s13398-019-00643-2
WangM-KChuY-MZhangWMonotonicity and inequalities involving zero-balanced hypergeometric functionMath. Inequal. Appl.201922260161739345051416.33007
ZhaoT-HChuY-MWangHLogarithmically complete monotonicity properties relating to the gamma functionAbstr. Appl. Anal.201120111328172831221.33008Article ID 896483
Yang, Zh.-H., Qian, W.-M., Chu, Y.-M.: Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math. Inequal. Appl. 21(4), 1185–1199 (2018)
TakeuchiSComplete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integrals and a computation formula of πp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{p}$$\end{document} for p=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=4$$\end{document}Ramanujan J.2018462309321380396210.1007/s11139-018-9993-y
Yang, Zh.-H., Y.-M., Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl. Math. Comput. 348, 552–564 (2019)
ByrdPFFriedmanMDHandbook of Elliptic Integrals of Engineer and Physicists1971New YorkSpringer10.1007/978-3-642-65138-0
WangM-KChuY-MZhangWPrecise estimates for the solution of Ramanujan’s generalized modular equationRamanujan J.2019493653668397969610.1007/s11139-018-0130-8
WangG-DZhangX-HChuY-MA power mean inequality involving the complete elliptic integralsRocky Mountain J. Math.201444516611667329564810.1216/RMJ-2014-44-5-1661
AndersonGDVamanamurthyMKVuorinenMFunctional inequalities for hypergeometric functions and complete elliptic integralsSIAM. J. Math. Anal.1992232512524114787510.1137/0523025
Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler-Mascheroni constant. J. Inequal. Appl. 2018, 9 (2018). Article ID 118
WangM-KChuY-MQiuY-FQiuS-LAn optimal power mean inequality for the complete elliptic integralsAppl. Math. Lett.2011246887890277615510.1016/j.aml.2010.12.044
WangM-KLiY-MChuY-MInequalities and infinite product formula for Ramanujan generalized modular equation functionRamanujan J.2018461189200378574610.1007/s11139-017-9888-3
MaX-YQiuS-LProperties of the generalized elliptic integralsJ. Zhejiang Sci-Tech Univ.2007242200205(in Chinese)
ChuY-MZhaoT-HConcavity of the error function with respect to Hölder meansMath. Inequal. Appl.201619258959534587661336.33007
AndersonGDVamanamurthyMKVuorinenMTopics in special functions IIConform. Geom. Dyn.200711250270235409810.1090/S1088-4173-07-00168-3
ChuY-MWangM-KQiuS-LOptimal combinations bounds of root-square and arithmetic means for Toader meanProc. Indian Acad. Sci. Math. Sci.201212214151290958210.1007/s12044-012-0062-y
TakeuchiSA new form of the generalized complete elliptic integralsKodai Math. J.2016391202226347827910.2996/kmj/1458651700
Zhao, T.-H., Wang, M.-K., Zhang, W., Chu, Y.-M.: Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018, 15 (2018). Article ID 251
AndersonGDVamanmurthyMKVuorinenMFunctional inequalities for complete elliptic integrals and their ratiosSIAM J. Math. Anal.1990212536549103890610.1137/0521029
Qian, W.-M., He, Z.-Y., Zhang, H.-W., Chu, Y.-M.: Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean, J. Inequal. Appl. 2019, 13 (2019). Article ID 168
Yang, Zh.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018)
ChuY-MQiuS-LWangM-KSharp inequalities involving the power mean and complete ellipitc integral of the first kindRocky Mountain J. Math.201343514891496312783310.1216/RMJ-2013-43-5-1489
ChuY-MWangM-KOptimal Lehmer mean bounds for the Toader meanResults Math.2012613–4223229292511710.1007/s00025-010-0090-9
QianW-MYangY-YZhangH-WChuY-MOptimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang meanJ. Inequal. Appl.201920191210.1186/s13660-019-1962-5Article ID 287
Yang, Zh.-H., Chu, Y.-M.: A monotonicity property involving the generalized elliptic integral of the first kind. Math. Inequal. Appl. 20(3), 729–735 (2017)
AndersonGDVamanamurthyMKVuorinenMConformal Invariants, Inequalities, and Quasiconformal Maps1997New YorkJohn Wiley & Sons0885.30012
TakeuchiSMultiple-angle formulas of generalized trigonometric functions with two parametersJ. Math. Anal. Appl.2016444210001014353574610.1016/j.jmaa.2016.06.074
QiuS-LMaX-YChuY-MSharp Landen transformation inequalities for hypergeometric functions, with applicationsJ. Math. Anal. Appl.2019474213061337392616810.1016/j.jmaa.2019.02.018
H Alzer (298_CR2) 1998; 124
298_CR9
Y-M Chu (298_CR17) 2012; 122
H Alzer (298_CR3) 2017; 145
Á Baricz (298_CR11) 2007; 256
S-L Qiu (298_CR28) 2019; 474
GD Anderson (298_CR5) 1988; 62
298_CR26
M Abramowitz (298_CR1) 1965
G-D Wang (298_CR38) 2014; 44
GD Anderson (298_CR10) 2007; 11
T-H Zhao (298_CR45) 2011; 2011
Y-M Chu (298_CR16) 2012; 61
M-K Wang (298_CR37) 2018; 46
X-Y Ma (298_CR25) 2007; 24
S Takeuchi (298_CR31) 2016; 444
M-K Wang (298_CR35) 2019; 22
S Takeuchi (298_CR32) 2018; 46
JM Borwein (298_CR13) 1987
S Takeuchi (298_CR29) 2016; 39
S Takeuchi (298_CR30) 2016; 9
GD Anderson (298_CR4) 2000; 192
Y-M Chu (298_CR15) 2013; 43
PF Byrd (298_CR14) 1971
O Lehto (298_CR24) 1973
M-K Wang (298_CR33) 2019; 480
T-R Huang (298_CR21) 2019; 469
C-X Huang (298_CR23) 2019; 29
GD Anderson (298_CR8) 1997
GD Anderson (298_CR6) 1990; 21
M-K Wang (298_CR36) 2019; 49
298_CR46
W-M Qian (298_CR27) 2019; 2019
BA Bhayo (298_CR12) 2012; 55
Y-M Chu (298_CR18) 2016; 19
298_CR22
298_CR44
M-K Wang (298_CR39) 2019; 39B
298_CR43
GD Anderson (298_CR7) 1992; 23
298_CR20
298_CR42
298_CR41
298_CR40
X-H He (298_CR19) 2019; 113
M-K Wang (298_CR34) 2011; 24
References_xml – reference: AndersonGDVamanmurthyMKVuorinenMFunctional inequalities for complete elliptic integrals and their ratiosSIAM J. Math. Anal.1990212536549103890610.1137/0521029
– reference: QianW-MYangY-YZhangH-WChuY-MOptimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang meanJ. Inequal. Appl.201920191210.1186/s13660-019-1962-5Article ID 287
– reference: BariczÁTurán type inequalities for generalized complete elliptic integralsMath. Z.20072564895911230889610.1007/s00209-007-0111-x
– reference: WangM-KChuY-MZhangWMonotonicity and inequalities involving zero-balanced hypergeometric functionMath. Inequal. Appl.201922260161739345051416.33007
– reference: WangM-KChuY-MZhangWPrecise estimates for the solution of Ramanujan’s generalized modular equationRamanujan J.2019493653668397969610.1007/s11139-018-0130-8
– reference: BhayoBAVuorinenMOn generalized complete elliptic integrals and modular functionsProc. Edinb. Math. Soc. (2)2012553591611297524410.1017/S0013091511000356
– reference: WangM-KChuY-MQiuY-FQiuS-LAn optimal power mean inequality for the complete elliptic integralsAppl. Math. Lett.2011246887890277615510.1016/j.aml.2010.12.044
– reference: WangG-DZhangX-HChuY-MA power mean inequality involving the complete elliptic integralsRocky Mountain J. Math.201444516611667329564810.1216/RMJ-2014-44-5-1661
– reference: ChuY-MWangM-KOptimal Lehmer mean bounds for the Toader meanResults Math.2012613–4223229292511710.1007/s00025-010-0090-9
– reference: AndersonGDVamanamurthyMKVuorinenMConformal Invariants, Inequalities, and Quasiconformal Maps1997New YorkJohn Wiley & Sons0885.30012
– reference: ByrdPFFriedmanMDHandbook of Elliptic Integrals of Engineer and Physicists1971New YorkSpringer10.1007/978-3-642-65138-0
– reference: Yang, Zh.-H., Chu, Y.-M.: A monotonicity property involving the generalized elliptic integral of the first kind. Math. Inequal. Appl. 20(3), 729–735 (2017)
– reference: AndersonGDQiuS-LVamanamurthyMKVuorinenMGeneralized elliptic integrals and modular equationsPacific J. Math.20001921137174103110.2140/pjm.2000.192.1
– reference: MaX-YQiuS-LProperties of the generalized elliptic integralsJ. Zhejiang Sci-Tech Univ.2007242200205(in Chinese)
– reference: Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler-Mascheroni constant. J. Inequal. Appl. 2018, 9 (2018). Article ID 118
– reference: Qian, W.-M., He, Z.-Y., Zhang, H.-W., Chu, Y.-M.: Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean, J. Inequal. Appl. 2019, 13 (2019). Article ID 168
– reference: Yang, Zh.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function. J. Inequal. Appl. 2017, 17 (2017). Article ID 210
– reference: BorweinJMBorweinPBPi and AGM1987New YorkJohn Wiley & Sons0611.10001
– reference: Yang, Zh.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018)
– reference: TakeuchiSLegendre-type relations for generalized complete elliptic integralsJ. Class. Anal.2016913542358008410.7153/jca-09-04
– reference: WangM-KZhangWChuY-MMonotonicity, convexity and inequalities involving the generalized elliptic integralsActa Math. Sci.201939B514401450406883010.1007/s10473-019-0520-z
– reference: WangM-KLiY-MChuY-MInequalities and infinite product formula for Ramanujan generalized modular equation functionRamanujan J.2018461189200378574610.1007/s11139-017-9888-3
– reference: Yang, Zh.-H., Y.-M., Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl. Math. Comput. 348, 552–564 (2019)
– reference: Zhao, T.-H., Wang, M.-K., Zhang, W., Chu, Y.-M.: Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018, 15 (2018). Article ID 251
– reference: TakeuchiSA new form of the generalized complete elliptic integralsKodai Math. J.2016391202226347827910.2996/kmj/1458651700
– reference: ChuY-MZhaoT-HConcavity of the error function with respect to Hölder meansMath. Inequal. Appl.201619258959534587661336.33007
– reference: Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Topics in special functions. In: Heinonen, J., Kilpeläinen, T., Koskela, P. (eds.) Papers on Analysis: A Volume Dedicated to Olli Martio on the Occasion of His 60th Birthday, vol. 83, pp. 5–26, Rep. Univ. Jyväskylä Dep. Math. Stat., Univ. Jyväskylä, Jyväskylä (2001)
– reference: WangM-KChuH-HChuY-MPrecise bounds for the weighted Hölder mean of the complete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integralsJ. Math. Anal. Appl.201948029389347810.1016/j.jmaa.2019.1233881426.33050Article ID 123388
– reference: TakeuchiSMultiple-angle formulas of generalized trigonometric functions with two parametersJ. Math. Anal. Appl.2016444210001014353574610.1016/j.jmaa.2016.06.074
– reference: TakeuchiSComplete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integrals and a computation formula of πp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{p}$$\end{document} for p=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=4$$\end{document}Ramanujan J.2018462309321380396210.1007/s11139-018-9993-y
– reference: ChuY-MWangM-KQiuS-LOptimal combinations bounds of root-square and arithmetic means for Toader meanProc. Indian Acad. Sci. Math. Sci.201212214151290958210.1007/s12044-012-0062-y
– reference: AndersonGDVamanamurthyMKVuorinenMFunctional inequalities for hypergeometric functions and complete elliptic integralsSIAM. J. Math. Anal.1992232512524114787510.1137/0523025
– reference: AbramowitzMStegunIAHandbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables1965New YorkDover0171.38503
– reference: ChuY-MQiuS-LWangM-KSharp inequalities involving the power mean and complete ellipitc integral of the first kindRocky Mountain J. Math.201343514891496312783310.1216/RMJ-2013-43-5-1489
– reference: ZhaoT-HChuY-MWangHLogarithmically complete monotonicity properties relating to the gamma functionAbstr. Appl. Anal.201120111328172831221.33008Article ID 896483
– reference: AndersonGDVamanamurthyMKVuorinenMDistortion functions for plane quasiconformal mappingsIsrael J. Math.198862111694782510.1007/BF02767349
– reference: AlzerHSharp inequalities for the complete elliptic integral of the first kindMath. Proc. Cambridge Philos. Soc.19981242309314163113510.1017/S0305004198002692
– reference: QiuS-LMaX-YChuY-MSharp Landen transformation inequalities for hypergeometric functions, with applicationsJ. Math. Anal. Appl.2019474213061337392616810.1016/j.jmaa.2019.02.018
– reference: Yang, Zh.-H., Qian, W.-M., Chu, Y.-M.: Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math. Inequal. Appl. 21(4), 1185–1199 (2018)
– reference: AndersonGDVamanamurthyMKVuorinenMTopics in special functions IIConform. Geom. Dyn.200711250270235409810.1090/S1088-4173-07-00168-3
– reference: HuangC-XZhangHCaoJ-DHuH-JStability and Hopf bifurcation of a delayed prey-predator model with disease in the predator, InternatJ. Bifur. Chaos Appl. Sci. Engrg.2019297231425.34093Article ID 1950091
– reference: HeX-HQianW-MXuZ-HChuY-MSharp power mean bounds for two Sándor-Yang meansRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.2019113326272638395627210.1007/s13398-019-00643-2
– reference: Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integrals. J. Inequal. Appl. 2018, 11 (2018). Article ID 239
– reference: LehtoOVirtanenKIQuasiconformal Mappings in the Plane1973New York-HeidelbergSpringer-Verlag10.1007/978-3-642-65513-5
– reference: HuangT-RQiuS-LMaX-YMonotonicity properties and inequalities for the generalized elliptic integral of the first kindJ. Math. Anal. Appl.2019469195116385751210.1016/j.jmaa.2018.08.061
– reference: AlzerHRichardsKInequalities for the ratio of complete elliptic integralsProc. Amer. Math. Soc.201714541661167036015571360.33015
– volume: 24
  start-page: 887
  issue: 6
  year: 2011
  ident: 298_CR34
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2010.12.044
– volume: 9
  start-page: 35
  issue: 1
  year: 2016
  ident: 298_CR30
  publication-title: J. Class. Anal.
  doi: 10.7153/jca-09-04
– volume: 256
  start-page: 895
  issue: 4
  year: 2007
  ident: 298_CR11
  publication-title: Math. Z.
  doi: 10.1007/s00209-007-0111-x
– volume: 2019
  start-page: 12
  year: 2019
  ident: 298_CR27
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-019-1962-5
– ident: 298_CR42
– volume: 62
  start-page: 1
  issue: 1
  year: 1988
  ident: 298_CR5
  publication-title: Israel J. Math.
  doi: 10.1007/BF02767349
– ident: 298_CR44
– ident: 298_CR26
– volume: 22
  start-page: 601
  issue: 2
  year: 2019
  ident: 298_CR35
  publication-title: Math. Inequal. Appl.
– volume: 113
  start-page: 2627
  issue: 3
  year: 2019
  ident: 298_CR19
  publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.
  doi: 10.1007/s13398-019-00643-2
– ident: 298_CR40
– volume: 11
  start-page: 250
  year: 2007
  ident: 298_CR10
  publication-title: Conform. Geom. Dyn.
  doi: 10.1090/S1088-4173-07-00168-3
– volume: 145
  start-page: 1661
  issue: 4
  year: 2017
  ident: 298_CR3
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/proc/13337
– ident: 298_CR46
– volume-title: Conformal Invariants, Inequalities, and Quasiconformal Maps
  year: 1997
  ident: 298_CR8
– volume: 46
  start-page: 309
  issue: 2
  year: 2018
  ident: 298_CR32
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-018-9993-y
– volume-title: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables
  year: 1965
  ident: 298_CR1
– volume: 39B
  start-page: 1440
  issue: 5
  year: 2019
  ident: 298_CR39
  publication-title: Acta Math. Sci.
  doi: 10.1007/s10473-019-0520-z
– volume-title: Pi and AGM
  year: 1987
  ident: 298_CR13
– volume: 474
  start-page: 1306
  issue: 2
  year: 2019
  ident: 298_CR28
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2019.02.018
– volume: 21
  start-page: 536
  issue: 2
  year: 1990
  ident: 298_CR6
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0521029
– volume: 124
  start-page: 309
  issue: 2
  year: 1998
  ident: 298_CR2
  publication-title: Math. Proc. Cambridge Philos. Soc.
  doi: 10.1017/S0305004198002692
– volume: 39
  start-page: 202
  issue: 1
  year: 2016
  ident: 298_CR29
  publication-title: Kodai Math. J.
  doi: 10.2996/kmj/1458651700
– volume-title: Handbook of Elliptic Integrals of Engineer and Physicists
  year: 1971
  ident: 298_CR14
  doi: 10.1007/978-3-642-65138-0
– ident: 298_CR9
– volume: 469
  start-page: 95
  issue: 1
  year: 2019
  ident: 298_CR21
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2018.08.061
– volume: 55
  start-page: 591
  issue: 3
  year: 2012
  ident: 298_CR12
  publication-title: Proc. Edinb. Math. Soc. (2)
  doi: 10.1017/S0013091511000356
– ident: 298_CR41
– volume: 24
  start-page: 200
  issue: 2
  year: 2007
  ident: 298_CR25
  publication-title: J. Zhejiang Sci-Tech Univ.
– ident: 298_CR43
– ident: 298_CR22
– volume: 192
  start-page: 1
  issue: 1
  year: 2000
  ident: 298_CR4
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.2000.192.1
– ident: 298_CR20
– volume: 480
  start-page: 9
  issue: 2
  year: 2019
  ident: 298_CR33
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2019.123388
– volume: 46
  start-page: 189
  issue: 1
  year: 2018
  ident: 298_CR37
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-017-9888-3
– volume: 23
  start-page: 512
  issue: 2
  year: 1992
  ident: 298_CR7
  publication-title: SIAM. J. Math. Anal.
  doi: 10.1137/0523025
– volume: 44
  start-page: 1661
  issue: 5
  year: 2014
  ident: 298_CR38
  publication-title: Rocky Mountain J. Math.
  doi: 10.1216/RMJ-2014-44-5-1661
– volume: 29
  start-page: 23
  issue: 7
  year: 2019
  ident: 298_CR23
  publication-title: J. Bifur. Chaos Appl. Sci. Engrg.
– volume: 444
  start-page: 1000
  issue: 2
  year: 2016
  ident: 298_CR31
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2016.06.074
– volume: 49
  start-page: 653
  issue: 3
  year: 2019
  ident: 298_CR36
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-018-0130-8
– volume: 43
  start-page: 1489
  issue: 5
  year: 2013
  ident: 298_CR15
  publication-title: Rocky Mountain J. Math.
  doi: 10.1216/RMJ-2013-43-5-1489
– volume: 61
  start-page: 223
  issue: 3–4
  year: 2012
  ident: 298_CR16
  publication-title: Results Math.
  doi: 10.1007/s00025-010-0090-9
– volume: 122
  start-page: 41
  issue: 1
  year: 2012
  ident: 298_CR17
  publication-title: Proc. Indian Acad. Sci. Math. Sci.
  doi: 10.1007/s12044-012-0062-y
– volume-title: Quasiconformal Mappings in the Plane
  year: 1973
  ident: 298_CR24
  doi: 10.1007/978-3-642-65513-5
– volume: 19
  start-page: 589
  issue: 2
  year: 2016
  ident: 298_CR18
  publication-title: Math. Inequal. Appl.
– volume: 2011
  start-page: 13
  year: 2011
  ident: 298_CR45
  publication-title: Abstr. Appl. Anal.
SSID ssj0054933
Score 2.4446316
Snippet We establish two sharp inequalities involving the power mean and generalized elliptic integral of the first kind. As applications, the analogous inequalities...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111
SubjectTerms Analysis
Computational Mathematics and Numerical Analysis
Functions of a Complex Variable
Inequalities
Integrals
Mathematics
Mathematics and Statistics
Title Sharp Power Mean Inequalities for the Generalized Elliptic Integral of the First Kind
URI https://link.springer.com/article/10.1007/s40315-020-00298-w
https://www.proquest.com/docview/2370559432
Volume 20
WOSCitedRecordID wos000510100400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2195-3724
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054933
  issn: 1617-9447
  databaseCode: RSV
  dateStart: 20010901
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCDb7FaZQ_edCHJbpPsUcSiaEtRK72FfQUKJS1NteCvd3bzKIoKesgps0uYnWd25huEzrUKdSyZJCAcbcK0CYgAk0AoZzr0pNDUOBDXh6jXi4dD3i-bwvKq2r26knSWum52Y3YgAbHpjsMNJ4tVtAbuLrYDGx6fXir7CwmPGyBvA3fCGYvKVpnv9_jsjpYx5pdrUedtOtv_-84dtFVGl_iqEIddtGKyPbTZraFZ8300sBDNU9y309Fw14gM32WmaK2EpBlDDIuBGpdw1KN3o7Gt6wDLovBdgS0xxpPUEXVGEDvie0jrD9Cgc_N8fUvK2QpEgdLNiYIkOpWaKx5JHVIpmNSeUjRKQyMi-3tTmFAzzW0jrIq0kpL70ngGHJ5ndEoPUSObZOYIYaGotorNfHhiIwTVXMJ6wdsq4n7aRH7F4kSVwON2_sU4qSGTHcsSYFniWJYsmuiiXjMtYDd-pW5VJ5eUKpgnAbVAQZzRoIkuq5Navv55t-O_kZ-gjcAdtq1La6HGfPZqTtG6epuP8tmZE80PKBTfDA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurBt1ifOXjTwLZJd5ujiKWlD4q20lvIa6FQtqWtFvz1JunuFkUFPexpJ2GZzHMz8w3AjVahrkoqsRWOCqbalLGwJgETRnUYSKGJ8SCurajTqQ4GrJs2hc2yavfsStJb6rzZjbqBBNilOx43HC_WYYNaj-UQ85-eXzL7axMeP0DeBe6YURqlrTLf7_HZHa1izC_Xot7b1Pb-9537sJtGl-h-KQ4HsGaSQ9hp59CssyPoO4jmCeq66WiobUSCGolZtlbapBnZGBZZapTCUQ_fjUaursNaFoUaS2yJERrHnqg2tLEjatq0_hj6tcfeQx2nsxWwsko3x8om0bHUTLFI6pBIQaUOlCJRHBoRud-bwoSaauYaYVWklZSsJE1grMMLjI7JCRSScWJOAQlFtFNsWrJP1QhBNJN2vWAVFbFSXIRSxmKuUuBxN_9ixHPIZM8yblnGPcv4ogi3-ZrJEnbjV-qL7OR4qoIzXiYOKIhRUi7CXXZSq9c_73b2N_Jr2Kr32i3eanSa57Bd9gfvatQuoDCfvppL2FRv8-FseuXF9AOlreHw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60iujBt1itmoM3DX0k3W2Ooi6WPihopbclr4VC2Za2WvDXm2QfVVFBPOxpJ2GZV2Y2M98AXCrpqYagAhvlqGOqdA1z4xIwYVR5FcEV0Q7Ete13u43BgPU-dPG7avfsSjLpabAoTfG8PFFROW98o3Y4Abapj8MQx4tVWKO2kN7m64_PmS82yY8bJm-DeMwo9dO2me_3-Hw0LePNL1ek7uQJdv7_zbuwnUad6CZRkz1Y0fE-bHVyyNbZAfQtdPME9ezUNNTRPEbNWCctlyaZRia2RYYapTDVwzetkK33MB5HomaCOTFC48gRBUMTU6KWSfcPoR_cP90-4HTmApbGGOdYmuQ6EopJ5gvlEcGpUBUpiR95mvv2tyfXnqKK2QZZ6SspBKsKXdHmIKxoFZEjKMTjWB8D4pIoa_C0ap6G5pwoJsx6zurSZ9WoCNWM3aFMAcntXIxRmEMpO5aFhmWhY1m4KMJVvmaSwHH8Sl3KpBimpjkLa8QCCDFKakW4zqS2fP3zbid_I7-Ajd5dELab3dYpbNac3G3pWgkK8-mLPoN1-TofzqbnTmPfASFb6tQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sharp+Power+Mean+Inequalities+for+the+Generalized+Elliptic+Integral+of+the+First+Kind&rft.jtitle=Computational+methods+and+function+theory&rft.au=Miao-Kun%2C+Wang&rft.au=Zai-Yin%2C+He&rft.au=Yu-Ming%2C+Chu&rft.date=2020-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1617-9447&rft.eissn=2195-3724&rft.volume=20&rft.issue=1&rft.spage=111&rft.epage=124&rft_id=info:doi/10.1007%2Fs40315-020-00298-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-9447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-9447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-9447&client=summon