Second-Order Optimality Conditions for Infinite-Dimensional Quadratic Programs

Second-order necessary and sufficient optimality conditions for local solutions and locally unique solutions of generalized quadratic programming problems in Banach spaces are established in this paper. Since the decomposition procedures using orthogonality relations in Euclidean spaces and the comp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications Vol. 192; no. 2; pp. 426 - 442
Main Author: An, Duong Thi Viet
Format: Journal Article
Language:English
Published: New York Springer US 01.02.2022
Springer Nature B.V
Subjects:
ISSN:0022-3239, 1573-2878
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Second-order necessary and sufficient optimality conditions for local solutions and locally unique solutions of generalized quadratic programming problems in Banach spaces are established in this paper. Since the decomposition procedures using orthogonality relations in Euclidean spaces and the compactness of finite-dimensional unit spheres, which worked well for finite-dimensional quadratic programs, cannot be applied to the Banach space setting, a series of new constructions and arguments are proposed. These results give a comprehensive extension of the corresponding theorems on finite-dimensional quadratic programs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-021-01967-z