Is GitHub’s Copilot as bad as humans at introducing vulnerabilities in code?

Several advances in deep learning have been successfully applied to the software development process. Of recent interest is the use of neural language models to build tools, such as Copilot, that assist in writing code. In this paper we perform a comparative empirical analysis of Copilot-generated c...

Full description

Saved in:
Bibliographic Details
Published in:Empirical software engineering : an international journal Vol. 28; no. 6; p. 129
Main Authors: Asare, Owura, Nagappan, Meiyappan, Asokan, N.
Format: Journal Article
Language:English
Published: New York Springer US 01.11.2023
Springer Nature B.V
Subjects:
ISSN:1382-3256, 1573-7616
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Several advances in deep learning have been successfully applied to the software development process. Of recent interest is the use of neural language models to build tools, such as Copilot, that assist in writing code. In this paper we perform a comparative empirical analysis of Copilot-generated code from a security perspective. The aim of this study is to determine if Copilot is as bad as human developers. We investigate whether Copilot is just as likely to introduce the same software vulnerabilities as human developers. Using a dataset of C/C++ vulnerabilities, we prompt Copilot to generate suggestions in scenarios that led to the introduction of vulnerabilities by human developers. The suggestions are inspected and categorized in a 2-stage process based on whether the original vulnerability or fix is reintroduced. We find that Copilot replicates the original vulnerable code about 33% of the time while replicating the fixed code at a 25% rate. However this behaviour is not consistent: Copilot is more likely to introduce some types of vulnerabilities than others and is also more likely to generate vulnerable code in response to prompts that correspond to older vulnerabilities. Overall, given that in a significant number of cases it did not replicate the vulnerabilities previously introduced by human developers, we conclude that Copilot, despite performing differently across various vulnerability types, is not as bad as human developers at introducing vulnerabilities in code.
AbstractList Several advances in deep learning have been successfully applied to the software development process. Of recent interest is the use of neural language models to build tools, such as Copilot, that assist in writing code. In this paper we perform a comparative empirical analysis of Copilot-generated code from a security perspective. The aim of this study is to determine if Copilot is as bad as human developers. We investigate whether Copilot is just as likely to introduce the same software vulnerabilities as human developers. Using a dataset of C/C++ vulnerabilities, we prompt Copilot to generate suggestions in scenarios that led to the introduction of vulnerabilities by human developers. The suggestions are inspected and categorized in a 2-stage process based on whether the original vulnerability or fix is reintroduced. We find that Copilot replicates the original vulnerable code about 33% of the time while replicating the fixed code at a 25% rate. However this behaviour is not consistent: Copilot is more likely to introduce some types of vulnerabilities than others and is also more likely to generate vulnerable code in response to prompts that correspond to older vulnerabilities. Overall, given that in a significant number of cases it did not replicate the vulnerabilities previously introduced by human developers, we conclude that Copilot, despite performing differently across various vulnerability types, is not as bad as human developers at introducing vulnerabilities in code.
ArticleNumber 129
Author Nagappan, Meiyappan
Asokan, N.
Asare, Owura
Author_xml – sequence: 1
  givenname: Owura
  orcidid: 0000-0002-6755-605X
  surname: Asare
  fullname: Asare, Owura
  email: oasare@uwaterloo.ca
  organization: Cheriton School of Computer Science, University of Waterloo
– sequence: 2
  givenname: Meiyappan
  surname: Nagappan
  fullname: Nagappan, Meiyappan
  organization: Cheriton School of Computer Science, University of Waterloo
– sequence: 3
  givenname: N.
  surname: Asokan
  fullname: Asokan, N.
  organization: Cheriton School of Computer Science, University of Waterloo
BookMark eNp9kM1KAzEUhYNUsFZfwFXAdfQmmcnMrESKtoWiG12HTJKpKdNJTTKCO1_D1_NJnFpBcNHVuXDPd3_OKRp1vrMIXVC4ogDFdaQgREaAcUKBl0DoERrTvOCkEFSMhpqXjHCWixN0GuMaAKoiy8foYRHxzKV5X399fEY89VvX-oRVxLUyO3npN6qLWCXsuhS86bXrVvitbzsbVO1al5yNQw9rb-zNGTpuVBvt-a9O0PP93dN0TpaPs8X0dkk0p1Ui2lbMcFbzXDHKAbJaV0YpKK02kGU55Ywb3ahSGcUYM1TnBnJoNBNlo23DJ-hyP3cb_GtvY5Jr34duWClZKQqRCc7p4Cr3Lh18jME2UrukkvPDJ8q1koLcpSf36ckhPfmTntyh7B-6DW6jwvthiO-hOJi7lQ1_Vx2gvgFyQYS8
CitedBy_id crossref_primary_10_3390_info16050401
crossref_primary_10_1002_spe_3432
crossref_primary_10_3390_a17070287
crossref_primary_10_1007_s10664_025_10614_4
crossref_primary_10_1007_s10664_023_10380_1
crossref_primary_10_1145_3709354
crossref_primary_10_1145_3709355
crossref_primary_10_1145_3709353
crossref_primary_10_1145_3708533
crossref_primary_10_32604_cmc_2025_062552
crossref_primary_10_1016_j_csi_2024_103938
crossref_primary_10_1145_3715108
crossref_primary_10_1016_j_jss_2024_112204
crossref_primary_10_1145_3708519
crossref_primary_10_1007_s10664_025_10658_6
crossref_primary_10_1016_j_infsof_2024_107610
crossref_primary_10_1016_j_infsof_2025_107737
crossref_primary_10_1145_3709360
crossref_primary_10_1016_j_jss_2024_112330
crossref_primary_10_3390_math12050629
crossref_primary_10_1002_spe_70005
crossref_primary_10_1016_j_jss_2024_112135
crossref_primary_10_1109_ACCESS_2024_3403858
crossref_primary_10_1109_TDSC_2025_3535218
crossref_primary_10_1145_3660807
crossref_primary_10_1145_3714464
crossref_primary_10_1007_s10515_024_00451_y
crossref_primary_10_1109_TAI_2025_3527398
crossref_primary_10_1016_j_jss_2025_112519
Cites_doi 10.1109/TNNLS.2020.3019893
10.1162/tacl_a_00105
10.1145/3586030
10.1162/neco.1997.9.8.1735
10.1162/neco.10.1145/3383458
10.1145/3510454.3516866
10.3115/v1/D14-1082
10.18653/v1/W16-0106
10.1145/3106237.3106290
10.1109/ICSE.2012.6227135
10.1007/s10664-023-10380-1
10.1145/3524842.3528440
10.18653/v1/2020.findings-emnlp.139
10.1126/science.abq1158
10.1145/3520312.3534864
10.1145/3379597.3387501
10.1109/SP46214.2022.9833571
10.1145/3520312.3534862
10.1145/3524459.3527351
10.1145/2594291.2594321
10.1109/SP46215.2023.10179324
10.18653/v1/P17-1041
10.1145/3512290.3528700
10.1145/3368089.3417058
10.1145/3524842.3528470
10.1109/ICSE43902.2021.00107
10.1145/3491101.3519665
10.1145/2983990.2984041
10.1109/TSE.2021.3087402
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10664-023-10380-1
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Technology Collection

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
ExternalDocumentID 10_1007_s10664_023_10380_1
GrantInformation_xml – fundername: WHJIL
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-ce92d32b35a213004bc9daa08ecd04451323dcfa8ada222d1c5d050fc268fcef3
IEDL.DBID M7S
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001076229600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-3256
IngestDate Tue Dec 02 15:58:16 EST 2025
Tue Nov 18 22:30:01 EST 2025
Sat Nov 29 05:37:47 EST 2025
Fri Feb 21 02:40:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords code security
copilot
software engineering
language models
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ce92d32b35a213004bc9daa08ecd04451323dcfa8ada222d1c5d050fc268fcef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6755-605X
PQID 2867646331
PQPubID 326341
ParticipantIDs proquest_journals_2867646331
crossref_citationtrail_10_1007_s10664_023_10380_1
crossref_primary_10_1007_s10664_023_10380_1
springer_journals_10_1007_s10664_023_10380_1
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Brown, T.B., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,G. Krueger, T. Henighan, R. Child, A. Ramesh, D.M. Ziegler, J. Wu, C. Winter,C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. 2020,July.Language Models are Few-Shot Learners. arXiv:2005.14165 [cs]
Asare, O., M. Nagappan, and N. Asokan. 2022. Is GitHub’s Copilot as Bad as Humans at Introducing Vulnerabilities in Code? _eprint: 2204.04741
Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł Kaiser, and I. Polosukhin 2017.Attention is All You Need.In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, Red Hook, NY, USA,pp.6000–6010. Curran Associates Inc.event-place: Long Beach, California, USA
Tabnine. 2022.Code Faster with AI Completions
Hindle, A., E.T. Barr, Z. Su, M. Gabel, and P. Devanbu 2012.On the Naturalness of Software.In Proceedings of the 34th International Conference on Software Engineering, ICSE ’12, pp.837–847. IEEE Press. event-place: Zurich, Switzerland
Hardmeier, C. 2016, December.A Neural Model for Part-of-Speech Tagging in Historical Texts.In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan, pp.922–931. The COLING 2016 Organizing Committee
Hellendoorn, V.J. and P. Devanbu 2017, August.Are deep neural networks the best choice for modeling source code? In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, Paderborn Germany, pp.763–773. ACM
Xu, F.F., U. Alon, G. Neubig, and V.J. Hellendoorn 2022, June. A systematic evaluation of large language models of code.In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming, San Diego CA USA, pp.1–10. ACM
Dohmke, T. 2022, June.GitHub Copilot is generally available to all developers
Bielik, P., V. Raychev, and M. Vechev 2016.PHOG: probabilistic model for code. In International Conference on Machine Learning, pp. 2933–2942. PMLR
Ziegler, A., E. Kalliamvakou, X.A. Li, A. Rice, D. Rifkin, S. Simister,G. Sittampalam, and E. Aftandilian 2022, June.Productivity assessment of neural code completion.In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming, San Diego CA USA, pp.21–29. ACM
Prenner, J., H. Babii, and R. Robbes 2022, May. Can OpenAI’s Codex Fix Bugs?: An evaluation on QuixBugs.2022 IEEE/ACM International Workshop on Automated Program Repair (APR), Los Alamitos, CA, USA, pp.69–75. IEEE Computer Society
Nijkamp, E., B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong. 2022.CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis.arXiv preprint
Yan, W. and Y. Li. 2022, April.WhyGen: Explaining ML-powered Code Generation by Referring to Training Examples. arXiv:2204.07940
Svyatkovskiy, A., S.K. Deng, S. Fu, and N. Sundaresan 2020, November.IntelliCode compose: code generation using transformer.In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Virtual Event USA, pp.1433–1443. ACM
HochreiterSSchmidhuberJNovember. Long Short-Term MemoryNeural Computation1997981735178010.1162/neco.1997.9.8.1735
Zhang, J., J. Cambronero, S. Gulwani, V. Le, R. Piskac, G. Soares, and G. Verbruggen. 2022.Repairing Bugs in Python Assignments Using Large Language Models
Feng, Z., D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,D. Jiang, and M. Zhou. 2020, September.CodeBERT: A Pre-Trained Model for Programming and Natural Languages.arXiv:2002.08155
Galassi, A., M. Lippi, and P. Torroni. 2021, October. Natural Language Processing.IEEE Transactions on Neural Networks and Learning Systems 32(10): 4291–4308. https://doi.org/10.1109/TNNLS.2020.3019893
Vaithilingam, P., T. Zhang, and E.L. Glassman 2022, April. Expectation vs. Experience: Evaluating the Usability of Code Generation Tools Powered by Large Language Models.In CHI Conference on Human Factors in Computing Systems Extended Abstracts, New Orleans LA USA, pp.1–7. ACM
Le, T.H.M., H. Chen, and M.A. Babar. 2020, June.Deep Learning for Source Code Modeling and Generation:Models, Applications, and Challenges. ACM Comput. Surv. 53(3)https://doi.org/10.1162/neco.10.1145/3383458
Chen, D. and C. Manning 2014, October. A Fast and Accurate Dependency Parser using Neural Networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, pp. 740–750. Association for Computational Linguistics
Chen, M., J. Tworek, H. Jun, Q. Yuan, H.P.d.O. Pinto, J. Kaplan, H. Edwards,Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov,H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov,A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F.P. Such,D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W.H. Guss,A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain,W. Saunders, C. Hesse, A.N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa,A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder,B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba. 2021,July.Evaluating Large Language Models Trained on Code. arXiv:2107.03374 [cs]
Dakhel, A.M., V. Majdinasab, A. Nikanjam, F. Khomh, M.C. Desmarais, Z. Ming,and Jiang. 2022, June. GitHub Copilot AI pair programmer: Asset or Liability? arXiv:2206.15331
Lu, S., D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement,D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano,M. Gong, M. Zhou, N. Duan, N. Sundaresan, S.K. Deng, S. Fu, and S. Liu. 2021,March.CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation. arXiv:2102.04664
ChakrabortySKrishnaRDingYRayBLearning Based Vulnerability Detection: Are We There Yet?IEEE Transactions on Software Engineering20224893280329610.1109/TSE.2021.3087402
GitHub Inc. 2019.CodeQL
Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2019, May. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805
Jiang, N., T. Lutellier, and L. Tan 2021, May. CURE: Code-Aware Neural Machine Translation for Automatic Program Repair. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp.1161–1173.ISSN: 1558-1225
Barke, S., M.B. James, and N. Polikarpova. 2022, August. Grounded Copilot: How Programmers Interact with Code-Generating Models. arXiv:2206.15000
Nguyen, N. and S. Nadi 2022.Empirical Evaluation of GitHub Copilot’s Code Suggestions.In 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), pp.1–5
Synopsys 2022.Source Security and Risk Analysis Report. Technical report, Synopsys Inc
Ciniselli, M., L. Pascarella, and G. Bavota. 2022, April.To What Extent do Deep Learning-based Code Recommenders Generate Predictions by Cloning Code from the Training Set? arXiv:2204.06894
Pearce, H., B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri 2022, May.Asleep at the Keyboard? Assessing the Security of GitHub Copilot Code Contributions. In 2022 IEEE Symposium on Security and Privacy (SP), pp.754–768.ISSN: 2375-1207
Desai, A. and A. Deo. 2022. Introducing Amazon CodeWhisperer, the ML-powered coding companion
Bengio, Y., R. Ducharme, and P. Vincent 2000.A Neural Probabilistic Language Model. In Advances in Neural Information Processing Systems,Volume 13. MIT Press
Yin, P. and G. Neubig. 2017, April. A Syntactic Neural Model for General-Purpose Code Generation.arXiv:1704.01696
GitHub Inc. 2021.GitHub Copilot Your AI pair programmer
Sobania, D., M. Briesch, and F. Rothlauf 2022, July.Choose your programming copilot: a comparison of the program synthesis performance of github copilot and genetic programming.In Proceedings of the Genetic and Evolutionary Computation Conference, Boston Massachusetts, pp.1019–1027. ACM
Fan, J., Y. Li, S. Wang, and T.N. Nguyen 2020, June.A C/C++ Code Vulnerability Dataset with Code Changes and CVE Summaries. In Proceedings of the 17th International Conference on Mining Software Repositories, Seoul Republic of Korea, pp. 508–512.ACM
Pearce, H., B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt 2023, May.Examining Zero-Shot Vulnerability Repair with Large Language Models.In 2023 2023 IEEE Symposium on Security and Privacy(SP) (SP), Los Alamitos, CA, USA, pp.1–18. IEEE Computer Society
Raychev, V., M. Vechev, and E. Yahav 2014, June.Code completion with statistical language models.In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, Edinburgh United Kingdom, pp.419–428. ACM
ZhouJCaoYWangXLiPXuWDeep Recurrent Models with Fast-Forward Connections for Neural Machine TranslationTransactions of the Association for Computational Linguistics2016437138310.1162/tacl_a_00105
Li, Y., D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R Leblond, T. Eccles,J. Keeling, F. Gimeno, A.D. Lago, T. Hubert, P. Choy, C.d.M. d’Autume,I. Babuschkin, X. Chen, P.S. Huang, J. Welbl, S. Gowal, A. Cherepanov,J. Molloy, D.J. Mankowitz, E.S. Robson, P. Kohli, N. de Freitas,K. Kavukcuoglu, and O. Vinyals. 2022.Competition-Level Code Generation with AlphaCode
Yin, J., X. Jiang, Z. Lu, L. Shang, H. Li, and X. Li 2016. Neural Generative Question Answering.In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI’16, pp.2972–2978. AAAI Press.event-place: New York, New York, USA
10380_CR1
10380_CR41
10380_CR40
10380_CR19
S Chakraborty (10380_CR6) 2022; 48
10380_CR18
10380_CR17
10380_CR39
10380_CR9
10380_CR16
10380_CR38
10380_CR8
10380_CR15
10380_CR37
10380_CR7
10380_CR14
10380_CR36
10380_CR13
10380_CR35
10380_CR5
10380_CR12
10380_CR34
10380_CR4
10380_CR11
10380_CR33
10380_CR3
10380_CR10
10380_CR32
J Zhou (10380_CR44) 2016; 4
10380_CR2
10380_CR31
10380_CR30
S Hochreiter (10380_CR22) 1997; 9
10380_CR29
10380_CR28
10380_CR27
10380_CR26
10380_CR25
10380_CR24
10380_CR23
10380_CR45
10380_CR21
10380_CR43
10380_CR20
10380_CR42
References_xml – reference: Bielik, P., V. Raychev, and M. Vechev 2016.PHOG: probabilistic model for code. In International Conference on Machine Learning, pp. 2933–2942. PMLR
– reference: Ziegler, A., E. Kalliamvakou, X.A. Li, A. Rice, D. Rifkin, S. Simister,G. Sittampalam, and E. Aftandilian 2022, June.Productivity assessment of neural code completion.In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming, San Diego CA USA, pp.21–29. ACM
– reference: ChakrabortySKrishnaRDingYRayBLearning Based Vulnerability Detection: Are We There Yet?IEEE Transactions on Software Engineering20224893280329610.1109/TSE.2021.3087402
– reference: Li, Y., D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R Leblond, T. Eccles,J. Keeling, F. Gimeno, A.D. Lago, T. Hubert, P. Choy, C.d.M. d’Autume,I. Babuschkin, X. Chen, P.S. Huang, J. Welbl, S. Gowal, A. Cherepanov,J. Molloy, D.J. Mankowitz, E.S. Robson, P. Kohli, N. de Freitas,K. Kavukcuoglu, and O. Vinyals. 2022.Competition-Level Code Generation with AlphaCode
– reference: Nijkamp, E., B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong. 2022.CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis.arXiv preprint
– reference: Pearce, H., B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt 2023, May.Examining Zero-Shot Vulnerability Repair with Large Language Models.In 2023 2023 IEEE Symposium on Security and Privacy(SP) (SP), Los Alamitos, CA, USA, pp.1–18. IEEE Computer Society
– reference: Vaithilingam, P., T. Zhang, and E.L. Glassman 2022, April. Expectation vs. Experience: Evaluating the Usability of Code Generation Tools Powered by Large Language Models.In CHI Conference on Human Factors in Computing Systems Extended Abstracts, New Orleans LA USA, pp.1–7. ACM
– reference: Ciniselli, M., L. Pascarella, and G. Bavota. 2022, April.To What Extent do Deep Learning-based Code Recommenders Generate Predictions by Cloning Code from the Training Set? arXiv:2204.06894
– reference: Desai, A. and A. Deo. 2022. Introducing Amazon CodeWhisperer, the ML-powered coding companion
– reference: Yin, P. and G. Neubig. 2017, April. A Syntactic Neural Model for General-Purpose Code Generation.arXiv:1704.01696
– reference: Feng, Z., D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,D. Jiang, and M. Zhou. 2020, September.CodeBERT: A Pre-Trained Model for Programming and Natural Languages.arXiv:2002.08155
– reference: Galassi, A., M. Lippi, and P. Torroni. 2021, October. Natural Language Processing.IEEE Transactions on Neural Networks and Learning Systems 32(10): 4291–4308. https://doi.org/10.1109/TNNLS.2020.3019893
– reference: Brown, T.B., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,G. Krueger, T. Henighan, R. Child, A. Ramesh, D.M. Ziegler, J. Wu, C. Winter,C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. 2020,July.Language Models are Few-Shot Learners. arXiv:2005.14165 [cs]
– reference: Svyatkovskiy, A., S.K. Deng, S. Fu, and N. Sundaresan 2020, November.IntelliCode compose: code generation using transformer.In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Virtual Event USA, pp.1433–1443. ACM
– reference: GitHub Inc. 2019.CodeQL
– reference: Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2019, May. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805
– reference: Synopsys 2022.Source Security and Risk Analysis Report. Technical report, Synopsys Inc
– reference: Barke, S., M.B. James, and N. Polikarpova. 2022, August. Grounded Copilot: How Programmers Interact with Code-Generating Models. arXiv:2206.15000
– reference: Sobania, D., M. Briesch, and F. Rothlauf 2022, July.Choose your programming copilot: a comparison of the program synthesis performance of github copilot and genetic programming.In Proceedings of the Genetic and Evolutionary Computation Conference, Boston Massachusetts, pp.1019–1027. ACM
– reference: Yin, J., X. Jiang, Z. Lu, L. Shang, H. Li, and X. Li 2016. Neural Generative Question Answering.In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI’16, pp.2972–2978. AAAI Press.event-place: New York, New York, USA
– reference: Prenner, J., H. Babii, and R. Robbes 2022, May. Can OpenAI’s Codex Fix Bugs?: An evaluation on QuixBugs.2022 IEEE/ACM International Workshop on Automated Program Repair (APR), Los Alamitos, CA, USA, pp.69–75. IEEE Computer Society
– reference: ZhouJCaoYWangXLiPXuWDeep Recurrent Models with Fast-Forward Connections for Neural Machine TranslationTransactions of the Association for Computational Linguistics2016437138310.1162/tacl_a_00105
– reference: Hellendoorn, V.J. and P. Devanbu 2017, August.Are deep neural networks the best choice for modeling source code? In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, Paderborn Germany, pp.763–773. ACM
– reference: Nguyen, N. and S. Nadi 2022.Empirical Evaluation of GitHub Copilot’s Code Suggestions.In 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), pp.1–5
– reference: Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł Kaiser, and I. Polosukhin 2017.Attention is All You Need.In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, Red Hook, NY, USA,pp.6000–6010. Curran Associates Inc.event-place: Long Beach, California, USA
– reference: Lu, S., D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement,D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano,M. Gong, M. Zhou, N. Duan, N. Sundaresan, S.K. Deng, S. Fu, and S. Liu. 2021,March.CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation. arXiv:2102.04664
– reference: Dakhel, A.M., V. Majdinasab, A. Nikanjam, F. Khomh, M.C. Desmarais, Z. Ming,and Jiang. 2022, June. GitHub Copilot AI pair programmer: Asset or Liability? arXiv:2206.15331
– reference: Chen, M., J. Tworek, H. Jun, Q. Yuan, H.P.d.O. Pinto, J. Kaplan, H. Edwards,Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov,H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov,A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F.P. Such,D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W.H. Guss,A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain,W. Saunders, C. Hesse, A.N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa,A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder,B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba. 2021,July.Evaluating Large Language Models Trained on Code. arXiv:2107.03374 [cs]
– reference: Dohmke, T. 2022, June.GitHub Copilot is generally available to all developers
– reference: GitHub Inc. 2021.GitHub Copilot Your AI pair programmer
– reference: Hindle, A., E.T. Barr, Z. Su, M. Gabel, and P. Devanbu 2012.On the Naturalness of Software.In Proceedings of the 34th International Conference on Software Engineering, ICSE ’12, pp.837–847. IEEE Press. event-place: Zurich, Switzerland
– reference: Raychev, V., M. Vechev, and E. Yahav 2014, June.Code completion with statistical language models.In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, Edinburgh United Kingdom, pp.419–428. ACM
– reference: Yan, W. and Y. Li. 2022, April.WhyGen: Explaining ML-powered Code Generation by Referring to Training Examples. arXiv:2204.07940
– reference: Fan, J., Y. Li, S. Wang, and T.N. Nguyen 2020, June.A C/C++ Code Vulnerability Dataset with Code Changes and CVE Summaries. In Proceedings of the 17th International Conference on Mining Software Repositories, Seoul Republic of Korea, pp. 508–512.ACM
– reference: Tabnine. 2022.Code Faster with AI Completions
– reference: Asare, O., M. Nagappan, and N. Asokan. 2022. Is GitHub’s Copilot as Bad as Humans at Introducing Vulnerabilities in Code? _eprint: 2204.04741
– reference: Bengio, Y., R. Ducharme, and P. Vincent 2000.A Neural Probabilistic Language Model. In Advances in Neural Information Processing Systems,Volume 13. MIT Press
– reference: Pearce, H., B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri 2022, May.Asleep at the Keyboard? Assessing the Security of GitHub Copilot Code Contributions. In 2022 IEEE Symposium on Security and Privacy (SP), pp.754–768.ISSN: 2375-1207
– reference: Xu, F.F., U. Alon, G. Neubig, and V.J. Hellendoorn 2022, June. A systematic evaluation of large language models of code.In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming, San Diego CA USA, pp.1–10. ACM
– reference: Chen, D. and C. Manning 2014, October. A Fast and Accurate Dependency Parser using Neural Networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, pp. 740–750. Association for Computational Linguistics
– reference: Jiang, N., T. Lutellier, and L. Tan 2021, May. CURE: Code-Aware Neural Machine Translation for Automatic Program Repair. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp.1161–1173.ISSN: 1558-1225
– reference: Hardmeier, C. 2016, December.A Neural Model for Part-of-Speech Tagging in Historical Texts.In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan, pp.922–931. The COLING 2016 Organizing Committee
– reference: Le, T.H.M., H. Chen, and M.A. Babar. 2020, June.Deep Learning for Source Code Modeling and Generation:Models, Applications, and Challenges. ACM Comput. Surv. 53(3)https://doi.org/10.1162/neco.10.1145/3383458
– reference: Zhang, J., J. Cambronero, S. Gulwani, V. Le, R. Piskac, G. Soares, and G. Verbruggen. 2022.Repairing Bugs in Python Assignments Using Large Language Models
– reference: HochreiterSSchmidhuberJNovember. Long Short-Term MemoryNeural Computation1997981735178010.1162/neco.1997.9.8.1735
– ident: 10380_CR8
– ident: 10380_CR16
  doi: 10.1109/TNNLS.2020.3019893
– ident: 10380_CR18
– ident: 10380_CR43
– volume: 4
  start-page: 371
  year: 2016
  ident: 10380_CR44
  publication-title: Transactions of the Association for Computational Linguistics
  doi: 10.1162/tacl_a_00105
– ident: 10380_CR2
  doi: 10.1145/3586030
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10380_CR22
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10380_CR24
  doi: 10.1162/neco.10.1145/3383458
– ident: 10380_CR26
– ident: 10380_CR40
  doi: 10.1145/3510454.3516866
– ident: 10380_CR28
– ident: 10380_CR7
  doi: 10.3115/v1/D14-1082
– ident: 10380_CR41
  doi: 10.18653/v1/W16-0106
– ident: 10380_CR20
  doi: 10.1145/3106237.3106290
– ident: 10380_CR21
  doi: 10.1109/ICSE.2012.6227135
– ident: 10380_CR1
  doi: 10.1007/s10664-023-10380-1
– ident: 10380_CR36
– ident: 10380_CR11
– ident: 10380_CR13
– ident: 10380_CR5
– ident: 10380_CR9
  doi: 10.1145/3524842.3528440
– ident: 10380_CR15
  doi: 10.18653/v1/2020.findings-emnlp.139
– ident: 10380_CR25
  doi: 10.1126/science.abq1158
– ident: 10380_CR45
  doi: 10.1145/3520312.3534864
– ident: 10380_CR14
  doi: 10.1145/3379597.3387501
– ident: 10380_CR38
– ident: 10380_CR3
– ident: 10380_CR29
  doi: 10.1109/SP46214.2022.9833571
– ident: 10380_CR19
– ident: 10380_CR17
– ident: 10380_CR39
  doi: 10.1145/3520312.3534862
– ident: 10380_CR31
  doi: 10.1145/3524459.3527351
– ident: 10380_CR32
  doi: 10.1145/2594291.2594321
– ident: 10380_CR30
  doi: 10.1109/SP46215.2023.10179324
– ident: 10380_CR10
– ident: 10380_CR12
– ident: 10380_CR42
  doi: 10.18653/v1/P17-1041
– ident: 10380_CR35
– ident: 10380_CR33
  doi: 10.1145/3512290.3528700
– ident: 10380_CR34
  doi: 10.1145/3368089.3417058
– ident: 10380_CR27
  doi: 10.1145/3524842.3528470
– ident: 10380_CR23
  doi: 10.1109/ICSE43902.2021.00107
– ident: 10380_CR37
  doi: 10.1145/3491101.3519665
– ident: 10380_CR4
  doi: 10.1145/2983990.2984041
– volume: 48
  start-page: 3280
  issue: 9
  year: 2022
  ident: 10380_CR6
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2021.3087402
SSID ssj0009745
Score 2.6170175
Snippet Several advances in deep learning have been successfully applied to the software development process. Of recent interest is the use of neural language models...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 129
SubjectTerms Compilers
Computer Science
Datasets
Deep learning
Empirical analysis
Interpreters
Language
Mining Software Repositories (MSR)
Natural language processing
Neural networks
Programming Languages
Software development
Software engineering
Software Engineering/Programming and Operating Systems
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PS8MwFA-iHrw4_-J0Sg7eNNAmbZaeRIZzggzxz9itpC8tDMY21m5nv4Zfz0_iS9Y6FRW0lx6ShvBeXn8veXm_R8hpGADigkENhEqzAIxkCSIZCwQ3mUjQ63fl3nq3zW5X9fvRXZkUlle33auQpPtTf0h2kzJgiDHMknp7DPc8awh3yprj_UNvSbXbdKWJLbkeE4joZarM92N8hqOlj_klLOrQpl373zy3yGbpXdLLxXLYJivpaIfUqsoNtDTkXdK9yen1oOjMktfnl5y2xpPBcFxQndNEG_typftyqgs6sFfZzQxwCnQ-G1qSanefFnfY2EZtSvzFHnlqXz22OqysrMAATa5gkEbcCJ6IUHMbzwoSiIzWnkrBeJayTHBhINNKG40OhPEhNF7oZcClyiDNxD5ZHY1H6QGhSvoGkhQfZbcykVIRoE-jfclBG87rxK8EHENJO26rXwzjJWGyFViMAoudwGK_Ts7ev5ksSDd-7d2o9BaXBpjHXMmmDKQQ2Hxe6WnZ_PNoh3_rfkQ2uFO1PZRpkNViOkuPyTrMi0E-PXEL8w2pudtu
  priority: 102
  providerName: Springer Nature
Title Is GitHub’s Copilot as bad as humans at introducing vulnerabilities in code?
URI https://link.springer.com/article/10.1007/s10664-023-10380-1
https://www.proquest.com/docview/2867646331
Volume 28
WOSCitedRecordID wos001076229600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009745
  issn: 1382-3256
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFL34WrjxLY4vsnCnwTZpM-lKVHyBDIMvxE1Jb1oYGGbGace1v-Hv-SUmMbUo6MYu0kXaEHKS3Jvk5hyAvThCYxe0QSCWikaoBc2MJaMRZ7rgmfH6ndzbw3W705GPj0nXb7iVPqyynhPdRK2HaPfID5kUbREJzsOj0TO1qlH2dNVLaEzDrGVJYC5077Yh3W07kWJLs0e5se3-0oy_OidERI3FopYiPKDhd8PUeJs_Dkid3Tlf_G-Nl2DBe5zk-LOLLMNUPliBxVrNgfjBvQqdq5Jc9KrLSfb--laS0-Go1x9WRJUkU9q-nJxfSVRFeja8XU_QVJi8TPqWuNrF2JpVt8kj9pr80Rrcn5_dnV5Sr7ZA0QzDimKeMM1ZxmPF7BlXlGGilQpkjjqwNGaccY2Fkkor41ToEGMdxEGBTMgC84Kvw8xgOMg3gEgRasxy80i7vEmkTND4OSoUDJVmrAVh3dQpeipyq4jRTxsSZQtPauBJHTxp2IL9r39Gn0Qcf369XWOS-kFZpg0gLTioUW2yfy9t8-_StmCeuY5kN2a2YaYaT_IdmMOXqleOd2H25KzTvdl1XdOk3fjJpDe3Dx9vvelV
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQXyl_F0hZ8gBNYJHbidQ6oqgplV11WSBTUW3DGjhRptbs02SJuvEZfgofiSfB4EyKQ6K0HcsnBjqXYn2fG9vj7AJ6mCXq_YP0IpNrwBK3ihfdkPJHClrLwUX-Qe_s0GU6n-vQ0e78BP7q7MJRW2dnEYKjtAmmP_KXQaqgSJWW8v_zCSTWKTlc7CY01LI7dt69-yVa_Gr_24_tMiKM3J4cj3qoKcPRwazi6TFgpCpkaQWc5SYGZNSbSDm1EdF1SSIul0cYa7zxtjKmN0qhEoXSJrpS-3WtwPSHrH1IFP_Qkv8Mgiky0flz6WKK9pNNe1VMq4d5DcqIkj3j8pyPso9u_DmSDnzva-t966A7cbiNqdrCeAndhw83vwVanVsFa43UfpuOava2a0ar4-f2iZoeLZTVbNMzUrDCWXkGusGamYRWl79sV-g5i56sZEXOHHOLK1b6MEQ3A_gP4eCV_tQ2b88XcPQSmVWyxcP7RtHzLtM7Qx3EmVgKNFWIAcTe0ObZU66T4Mct7kmiCQ-7hkAc45PEAnv_-ZrkmGrm09m6Hgbw1OnXeA2AALzoU9cX_bu3R5a09gZujk3eTfDKeHu_ALRFATJtQu7DZnK3cHtzA86aqzx6H6cDg81Wj6xdxZkSI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBSE2lKcYaMELWIHVxE48zqKqUMvQUavRLABVbIJjO1Kk0czQZIrY8Rv8Cp_TL-FeT9IIJLrrgmyySGIp9vF92NfnALxME4t-weEIpNrwxDrFC_RkPJHClbLAqD_IvX06GU4m-vQ0m27Ar-4sDJVVdjYxGGq3sLRGviu0GqpESRnvlm1ZxPRwtL_8yklBinZaOzmNNUSO_fdvmL7Ve-NDHOtXQozefTg44q3CALcIvYZbnwknRSFTI2hfJyls5oyJtLcuIuouKaSzpdHGGXSkLrapi9KotELp0vpSYrs34OYQc0xK_Kbp557wdxgEkonij0uMK9oDO-2xPaUSjt6SEz15xOM_nWIf6f61ORt83mjrf-6te3C3jbTZ2_XUuA8bfv4AtjoVC9YatYcwGdfsfdUcrYqLHz9rdrBYVrNFw0zNCuPoFmQMa2YaVlFZv1tZ7Cx2vpoRYXeoLa58jc8Y0QPsP4KP1_JXj2Fzvpj7J8C0ip0tPF6a0rpM68xifGdiJaxxQgwg7oY5ty0FOymBzPKePJqgkSM08gCNPB7A68tvlmsCkivf3u7wkLfGqM57MAzgTYeo_vG_W3t6dWsv4DaCKj8ZT46fwR0R8ExrU9uw2Zyt_A7csudNVZ89DzODwZfrBtdvkB5Naw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Is+GitHub%E2%80%99s+Copilot+as+bad+as+humans+at+introducing+vulnerabilities+in+code%3F&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Asare%2C+Owura&rft.au=Nagappan%2C+Meiyappan&rft.au=Asokan%2C+N&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=28&rft.issue=6&rft.spage=129&rft_id=info:doi/10.1007%2Fs10664-023-10380-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon