Feature selection using cloud-based parallel genetic algorithm for intrusion detection data classification
With the exponential growth of the amount of data being generated, stored and processed on a daily basis in the machine learning, data analytics and decision-making systems, the data preprocessing established itself as the key factor for building reliable high-performance machine learning models. On...
Uloženo v:
| Vydáno v: | Neural computing & applications Ročník 33; číslo 18; s. 11861 - 11873 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.09.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the exponential growth of the amount of data being generated, stored and processed on a daily basis in the machine learning, data analytics and decision-making systems, the data preprocessing established itself as the key factor for building reliable high-performance machine learning models. One of the roles in preprocessing is variable reduction using feature selection methods; however, the processing time needed for these methods is a major drawback. This study aims at mitigating this problem by migrating the algorithm to a MapReduce implementation suitable for parallelization on a high number of commodity hardware units. The genetic algorithm-based methods were put in the focus of this study. Hadoop, an open-source MapReduce library, was used as a framework for implementing parallel genetic algorithms within our research. The representative machine learning methods, SVM (support vector machine), ANN (artificial neural network), RT (random tree), logistic regression and Naive Bayes, were embedded into implementation for feature selection. The feature selection methods were applied to four NSL-KDD data sets, and the number of features is reduced from cca 40 to cca 10 data sets with the accuracy of 90.45%. These results have both significant practical and theoretical impact. On the one hand, the genetic algorithm has been parallelized in the MapReduce manner, which has been considered unachievable in a strict sense. Furthermore, the genetic algorithm allows randomness-enhanced feature selection and its parallelization reduces overall data preprocessing and allows larger population count which in turn leads to better feature selection. On the practical side, it has been shown that this implementation outperforms the existing feature selection methods. |
|---|---|
| AbstractList | With the exponential growth of the amount of data being generated, stored and processed on a daily basis in the machine learning, data analytics and decision-making systems, the data preprocessing established itself as the key factor for building reliable high-performance machine learning models. One of the roles in preprocessing is variable reduction using feature selection methods; however, the processing time needed for these methods is a major drawback. This study aims at mitigating this problem by migrating the algorithm to a MapReduce implementation suitable for parallelization on a high number of commodity hardware units. The genetic algorithm-based methods were put in the focus of this study. Hadoop, an open-source MapReduce library, was used as a framework for implementing parallel genetic algorithms within our research. The representative machine learning methods, SVM (support vector machine), ANN (artificial neural network), RT (random tree), logistic regression and Naive Bayes, were embedded into implementation for feature selection. The feature selection methods were applied to four NSL-KDD data sets, and the number of features is reduced from cca 40 to cca 10 data sets with the accuracy of 90.45%. These results have both significant practical and theoretical impact. On the one hand, the genetic algorithm has been parallelized in the MapReduce manner, which has been considered unachievable in a strict sense. Furthermore, the genetic algorithm allows randomness-enhanced feature selection and its parallelization reduces overall data preprocessing and allows larger population count which in turn leads to better feature selection. On the practical side, it has been shown that this implementation outperforms the existing feature selection methods. |
| Author | Mehanović, Dželila Jukić, Samed Kečo, Dino Miljković, Adnan Kevrić, Jasmin Mašetić, Zerina |
| Author_xml | – sequence: 1 givenname: Dželila orcidid: 0000-0001-7731-0478 surname: Mehanović fullname: Mehanović, Dželila email: dzelila.mehanovic@ibu.edu.ba organization: Faculty of Engineering and Natural Sciences, International Burch University – sequence: 2 givenname: Dino surname: Kečo fullname: Kečo, Dino organization: Faculty of Engineering and Natural Sciences, International Burch University – sequence: 3 givenname: Jasmin surname: Kevrić fullname: Kevrić, Jasmin organization: Faculty of Engineering and Natural Sciences, International Burch University – sequence: 4 givenname: Samed surname: Jukić fullname: Jukić, Samed organization: Faculty of Engineering and Natural Sciences, International Burch University – sequence: 5 givenname: Adnan surname: Miljković fullname: Miljković, Adnan organization: Faculty of Engineering and Natural Sciences, International Burch University – sequence: 6 givenname: Zerina surname: Mašetić fullname: Mašetić, Zerina organization: Faculty of Engineering and Natural Sciences, International Burch University |
| BookMark | eNp9kE9PAyEQxYmpiW31C3jaxPMqLMv-OZrGqkkTL3omLAwrDWUrsAe_vazbxMRDDxPCML83vLdCCzc4QOiW4HuCcf0QMGYFyfFUrKlJzi7QkpSU5jTdF2iJ2zI9VSW9QqsQ9hjjsmrYEu23IOLoIQtgQUYzuGwMxvWZtMOo8k4EUNlReGEt2KwHB9HITNh-8CZ-HjI9-My46BOUUAXxJKJEFElDhGC0kWLqXaNLLWyAm9O5Rh_bp_fNS757e37dPO5ySUkbcwllx0DWjaoxVKwlQmlR0qoAjRluZa1rYIXGGhqikmtGJBEdLbsaWqmA0jW6m3WPfvgaIUS-H0bv0kpesIqy5Lso0lQxT0k_hOBB86M3B-G_OcF8ypTPmXI81ZQpZwlq_kHSxF9z0Qtjz6N0RkPa43rwf786Q_0AP2-P9g |
| CitedBy_id | crossref_primary_10_1007_s10343_024_01044_1 crossref_primary_10_1016_j_eswa_2024_124215 crossref_primary_10_1002_cpe_8088 crossref_primary_10_1007_s10586_024_04385_8 crossref_primary_10_1007_s11416_025_00566_0 crossref_primary_10_1007_s11276_023_03571_7 crossref_primary_10_1016_j_cose_2024_103773 crossref_primary_10_1016_j_future_2023_09_035 crossref_primary_10_1155_2022_9663052 crossref_primary_10_1007_s41870_023_01192_z crossref_primary_10_1016_j_compag_2024_109377 crossref_primary_10_1007_s00521_023_08983_2 crossref_primary_10_1038_s41598_024_81147_x crossref_primary_10_3390_electronics12112427 crossref_primary_10_1007_s00521_022_07402_2 crossref_primary_10_1038_s41598_023_44437_4 crossref_primary_10_3390_electronics12051260 |
| Cites_doi | 10.6028/nist.sp.800-94 10.1080/19942060.2018.1452296 10.21533/scjournal.v1i2.61 10.1007/s00521-016-2418-1 10.1109/access.2020.2972627 10.1145/1327452.1327492 10.1016/j.aquaeng.2020.102053 10.1016/j.neucom.2020.08.063 10.1007/978-981-32-9343-4_16 10.1016/j.eswa.2017.04.017 10.1016/j.engappai.2012.05.023 10.1016/j.asoc.2009.06.019 10.1109/access.2019.2951750 10.1002/sec.403 10.1016/j.ymssp.2020.107353 10.1007/s00521-016-2780-z 10.1145/382912.382923 10.1016/j.jfranklin.2020.04.024 10.1007/978-3-642-20505-7_26 10.1016/j.future.2006.10.008 10.1109/icsmc.2011.6083684 10.1109/cisda.2009.5356528 10.1109/icdar.1995.598994 10.1109/spdp.1994.346184 10.1109/isda.2009.181 10.7551/mitpress/3927.001.0001 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-021-05871-5 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 11873 |
| ExternalDocumentID | 10_1007_s00521_021_05871_5 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-ce4b5ec78d70e6591adfa4362ef0509c7f7e52f0fe81d05251c1ab34b7e9cde33 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000629917800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Tue Nov 04 23:29:31 EST 2025 Sat Nov 29 02:59:20 EST 2025 Tue Nov 18 22:07:01 EST 2025 Fri Feb 21 02:48:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | Parallel genetic algorithm Feature selection Machine learning Intrusion detection systems |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-ce4b5ec78d70e6591adfa4362ef0509c7f7e52f0fe81d05251c1ab34b7e9cde33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7731-0478 |
| PQID | 2563568522 |
| PQPubID | 2043988 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2563568522 crossref_primary_10_1007_s00521_021_05871_5 crossref_citationtrail_10_1007_s00521_021_05871_5 springer_journals_10_1007_s00521_021_05871_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20210900 2021-09-00 20210901 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 9 year: 2021 text: 20210900 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2021 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Wu, Chau (CR33) 2013; 26 Su, Sun, Zhu, Wang, Li (CR39) 2020; 8 Lim, Ong, Jin, Sendhoff, Lee (CR12) 2007; 23 Chen, Zhang, Stojanovic, Zhang, Zhang (CR6) 2020; 417 Keco, Subasi (CR36) 2012 Banan, Nasiri, Taheri-Garavand (CR35) 2020; 89 CR19 Kevric, Jukic, Subasi (CR16) 2017; 28 CR18 CR17 CR37 CR14 Tao, Wang, Chen, Stojanovic, Yang (CR8) 2020; 357 Shamshirband, Rabczuk, Chau (CR32) 2019; 7 Scarfone, Mell (CR10) 2007 CR11 CR31 Mohammadi, Raahemi, Akbari, Nassersharif (CR30) 2012; 5 McHugh (CR29) 2000; 3 Kečo, Subasi, Kevric (CR13) 2018; 30 Cheng, Chen, Stojanovic, He (CR7) 2021; 151 CR2 CR3 Mahfouz, Venugopal, Shiva (CR38) 2020 Jiang, Chin, Wang, Qu, Tsui (CR4) 2017; 82 CR5 Stallings (CR15) 2014 CR28 CR26 CR25 CR24 CR23 Wu, Banzhaf (CR27) 2010; 10 CR22 CR21 CR20 Salama, Eid, Ramadan, Darwish, Hassanien (CR1) 2011 Dean, Ghemawat (CR9) 2008; 51 Ardabili, Najafi, Shamshirband, Bidgoli, Deo, Chau (CR34) 2018; 12 5871_CR19 5871_CR18 P Cheng (5871_CR7) 2021; 151 D Kečo (5871_CR13) 2018; 30 5871_CR11 J Kevric (5871_CR16) 2017; 28 5871_CR17 5871_CR37 5871_CR14 5871_CR5 D Keco (5871_CR36) 2012 H Tao (5871_CR8) 2020; 357 J Dean (5871_CR9) 2008; 51 S Shamshirband (5871_CR32) 2019; 7 CL Wu (5871_CR33) 2013; 26 5871_CR31 5871_CR2 MA Salama (5871_CR1) 2011 5871_CR3 SX Wu (5871_CR27) 2010; 10 M Mohammadi (5871_CR30) 2012; 5 KA Scarfone (5871_CR10) 2007 5871_CR24 5871_CR23 A Banan (5871_CR35) 2020; 89 5871_CR22 5871_CR21 5871_CR28 J McHugh (5871_CR29) 2000; 3 5871_CR26 5871_CR25 AM Mahfouz (5871_CR38) 2020 5871_CR20 SF Ardabili (5871_CR34) 2018; 12 Z Chen (5871_CR6) 2020; 417 W Stallings (5871_CR15) 2014 D Lim (5871_CR12) 2007; 23 S Jiang (5871_CR4) 2017; 82 T Su (5871_CR39) 2020; 8 |
| References_xml | – ident: CR22 – ident: CR18 – year: 2007 ident: CR10 publication-title: Guide to Intrusion detection and prevention systems (IDPS) doi: 10.6028/nist.sp.800-94 – volume: 12 start-page: 438 issue: 1 year: 2018 end-page: 458 ident: CR34 article-title: Computational intelligence approach for modeling hydrogen production: a review publication-title: Eng Appl Comput Fluid Mech doi: 10.1080/19942060.2018.1452296 – year: 2012 ident: CR36 article-title: Parallelization of genetic algorithms using Hadoop Map/Reduce publication-title: Southeast Eur J Soft Comput doi: 10.21533/scjournal.v1i2.61 – volume: 28 start-page: 1051 issue: S1 year: 2017 end-page: 1058 ident: CR16 article-title: An effective combining classifier approach using tree algorithms for network intrusion detection publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2418-1 – volume: 8 start-page: 29575 year: 2020 end-page: 29585 ident: CR39 article-title: BAT: deep learning methods on network intrusion detection using NSL-KDD dataset publication-title: IEEE Access doi: 10.1109/access.2020.2972627 – ident: CR14 – ident: CR2 – volume: 51 start-page: 107 issue: 1 year: 2008 end-page: 113 ident: CR9 article-title: MapReduce: simplified data processing on large clusters publication-title: Commun ACM doi: 10.1145/1327452.1327492 – ident: CR37 – volume: 89 start-page: 102053 year: 2020 ident: CR35 article-title: Deep learning-based appearance features extraction for automated carp species identification publication-title: Aquac Eng doi: 10.1016/j.aquaeng.2020.102053 – volume: 417 start-page: 322 year: 2020 end-page: 332 ident: CR6 article-title: Event-based fuzzy control for T-S fuzzy networked systems with various data missing publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.08.063 – year: 2020 ident: CR38 article-title: Comparative analysis of ML classifiers for network intrusion detection publication-title: Adv Intell Syst Comput doi: 10.1007/978-981-32-9343-4_16 – volume: 82 start-page: 216 year: 2017 end-page: 230 ident: CR4 article-title: Modified genetic algorithm-based feature selection combined with pre-trained deep neural network for demand forecasting in outpatient department publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.017 – ident: CR25 – ident: CR23 – ident: CR21 – ident: CR19 – year: 2014 ident: CR15 publication-title: Cryptography and network security: principles and practice, international edition: principles and practice – volume: 26 start-page: 997 issue: 3 year: 2013 end-page: 1007 ident: CR33 article-title: Prediction of rainfall time series using modular soft computingmethods publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2012.05.023 – ident: CR3 – ident: CR17 – volume: 10 start-page: 1 issue: 1 year: 2010 end-page: 35 ident: CR27 article-title: The use of computational intelligence in intrusion detection systems: a review publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.06.019 – volume: 7 start-page: 164650 year: 2019 end-page: 164666 ident: CR32 article-title: A survey of deep learning techniques: application in wind and solar energy resources publication-title: IEEE Access doi: 10.1109/access.2019.2951750 – ident: CR31 – ident: CR11 – volume: 5 start-page: 1296 issue: 12 year: 2012 end-page: 1311 ident: CR30 article-title: New class-dependent feature transformation for intrusion detection systems publication-title: Secur Commun Netw doi: 10.1002/sec.403 – volume: 151 start-page: 107353 year: 2021 ident: CR7 article-title: Asynchronous fault detection filtering for piecewise homogenous Markov jump linear systems via a dual hidden Markov model publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2020.107353 – volume: 30 start-page: 1601 issue: 5 year: 2018 end-page: 1610 ident: CR13 article-title: Cloud computing-based parallel genetic algorithm for gene selection in cancer classification publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2780-z – volume: 3 start-page: 262 issue: 4 year: 2000 end-page: 294 ident: CR29 article-title: Testing intrusion detection systems publication-title: ACM Trans Inf Syst Secur (TISSEC) doi: 10.1145/382912.382923 – volume: 357 start-page: 7286 issue: 11 year: 2020 end-page: 7307 ident: CR8 article-title: An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2020.04.024 – ident: CR5 – year: 2011 ident: CR1 article-title: Hybrid intelligent intrusion detection scheme publication-title: Adv Intell Soft Comput doi: 10.1007/978-3-642-20505-7_26 – volume: 23 start-page: 658 issue: 4 year: 2007 end-page: 670 ident: CR12 article-title: Efficient hierarchical parallel genetic algorithms using grid computing publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2006.10.008 – ident: CR28 – ident: CR26 – ident: CR24 – ident: CR20 – volume: 12 start-page: 438 issue: 1 year: 2018 ident: 5871_CR34 publication-title: Eng Appl Comput Fluid Mech doi: 10.1080/19942060.2018.1452296 – ident: 5871_CR19 – volume: 51 start-page: 107 issue: 1 year: 2008 ident: 5871_CR9 publication-title: Commun ACM doi: 10.1145/1327452.1327492 – ident: 5871_CR23 – ident: 5871_CR37 doi: 10.1109/icsmc.2011.6083684 – volume: 357 start-page: 7286 issue: 11 year: 2020 ident: 5871_CR8 publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2020.04.024 – ident: 5871_CR25 – ident: 5871_CR17 doi: 10.1109/cisda.2009.5356528 – ident: 5871_CR21 – ident: 5871_CR2 – volume: 417 start-page: 322 year: 2020 ident: 5871_CR6 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.08.063 – volume-title: Guide to Intrusion detection and prevention systems (IDPS) year: 2007 ident: 5871_CR10 doi: 10.6028/nist.sp.800-94 – volume: 23 start-page: 658 issue: 4 year: 2007 ident: 5871_CR12 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2006.10.008 – volume: 8 start-page: 29575 year: 2020 ident: 5871_CR39 publication-title: IEEE Access doi: 10.1109/access.2020.2972627 – ident: 5871_CR28 – ident: 5871_CR26 doi: 10.1109/icdar.1995.598994 – year: 2011 ident: 5871_CR1 publication-title: Adv Intell Soft Comput doi: 10.1007/978-3-642-20505-7_26 – ident: 5871_CR14 – ident: 5871_CR18 – ident: 5871_CR11 doi: 10.1109/spdp.1994.346184 – volume: 28 start-page: 1051 issue: S1 year: 2017 ident: 5871_CR16 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2418-1 – volume-title: Cryptography and network security: principles and practice, international edition: principles and practice year: 2014 ident: 5871_CR15 – volume: 5 start-page: 1296 issue: 12 year: 2012 ident: 5871_CR30 publication-title: Secur Commun Netw doi: 10.1002/sec.403 – ident: 5871_CR31 doi: 10.1109/isda.2009.181 – volume: 151 start-page: 107353 year: 2021 ident: 5871_CR7 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2020.107353 – ident: 5871_CR24 – volume: 7 start-page: 164650 year: 2019 ident: 5871_CR32 publication-title: IEEE Access doi: 10.1109/access.2019.2951750 – ident: 5871_CR3 – volume: 26 start-page: 997 issue: 3 year: 2013 ident: 5871_CR33 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2012.05.023 – ident: 5871_CR22 – ident: 5871_CR20 – volume: 82 start-page: 216 year: 2017 ident: 5871_CR4 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.017 – volume: 3 start-page: 262 issue: 4 year: 2000 ident: 5871_CR29 publication-title: ACM Trans Inf Syst Secur (TISSEC) doi: 10.1145/382912.382923 – volume: 10 start-page: 1 issue: 1 year: 2010 ident: 5871_CR27 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.06.019 – ident: 5871_CR5 doi: 10.7551/mitpress/3927.001.0001 – year: 2020 ident: 5871_CR38 publication-title: Adv Intell Syst Comput doi: 10.1007/978-981-32-9343-4_16 – volume: 30 start-page: 1601 issue: 5 year: 2018 ident: 5871_CR13 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2780-z – volume: 89 start-page: 102053 year: 2020 ident: 5871_CR35 publication-title: Aquac Eng doi: 10.1016/j.aquaeng.2020.102053 – year: 2012 ident: 5871_CR36 publication-title: Southeast Eur J Soft Comput doi: 10.21533/scjournal.v1i2.61 |
| SSID | ssj0004685 |
| Score | 2.3731601 |
| Snippet | With the exponential growth of the amount of data being generated, stored and processed on a daily basis in the machine learning, data analytics and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11861 |
| SubjectTerms | Artificial Intelligence Artificial neural networks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Datasets Decision analysis Decision making Decision trees Feature selection Genetic algorithms Image Processing and Computer Vision Learning theory Machine learning Original Article Parallel processing Preprocessing Probability and Statistics in Computer Science Support vector machines |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQkAc2sEiaOI8JIUTFgKoOIFUskR_nUhTa0ge_H5_rtIAEC0OWJHYifWff2b77PkLOk0jyWINFgKsWiw1Iluc6Y6nWSSijNDPSses_pJ1O1uvlXb_hNvVpldWc6CZqPVK4R35lXXPEk8yGC9fjd4aqUXi66iU01skGsiSgdEOXP3-pi3SSnHYFg9k9ceSLZlzpHO6H2rt4cbtoYPy7Y1pFmz8OSJ3fadf_-8c7ZNtHnPRmYSK7ZA2Ge6ReqTlQP7j3yStGg_MJ0KmTxrF4UUyK71NVjuaaobvTFJnCyxJKau0Oyx-pKPv2m7OXN2qjXzoYYg0HNtUw851gDqrtwwbpmJXkDOGAPLXvHm_vmVdiYMoO0RlTEEsOKs10GkDC81BoI2Lr-8Agf4xKTQq8ZQIDNvxFZbxQhUJGsUwhVxqi6JDUhqMhHBEa5CIQUpgMefNlHOdSRCrJtUkAQw_RIGEFQ6E8TTmqZZTFkmDZQVcEeCF0BW-Qi2Wb8YKk48-3mxVehR-w02IFVoNcVoivHv_e2_HfvZ2QrZYzMsxKa5KaRQFOyab6mA2mkzNnrp_Q7fHq priority: 102 providerName: ProQuest |
| Title | Feature selection using cloud-based parallel genetic algorithm for intrusion detection data classification |
| URI | https://link.springer.com/article/10.1007/s00521-021-05871-5 https://www.proquest.com/docview/2563568522 |
| Volume | 33 |
| WOSCitedRecordID | wos000629917800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLaAceDCGzEeUw7coFJf6eMIiIkDmqbxEOJS5eHAUNnQNvj9xKHdAAESHHJqYlWxXX9p7M8AB0kkeazRaoCr0IsNSi_PdealWieBjNLMSMeuf5F2Otntbd6tisLGdbZ7fSXpvtTTYjf6g2mPvjS4hfken4eGDXcZNWzoXd58qIZ0jTjtuYVyeuKoKpX5XsbncDTDmF-uRV20aa_87z1XYblCl-z43RzWYA4H67BSd25glSNvwCMhv5cRsrFrg2N1wygB_p6pcviiPQptmhEreFliyayNUakjE-X9cNSfPDwxi3RZf0D1GrRU46QSQvmmVoYF5JSB5JS-Cdfts6vTc6_quuAp644TT2EsOao006mPCc8DoY2IbZxDQ1wxKjUp8tD4Bi3UpS54gQqEjGKZYq40RtEWLAyGA9wG5ufCF1KYjDjyZRznUkQqybVJkGCGaEJQb36hKkpy6oxRFlMyZbeZhU-DNrPgTTicrnl-J-T4dfZerdOics5xYVFexK2RhGETjmodzh7_LG3nb9N3YSl0ZkAZaXuwYLWC-7CoXif98agFjZOzTrfXgvkuv2s5E34D_QPqUA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4QJNGLCGpcRe2DnLDjPLrncTDGKATCsuGACfEy9qMaMeMusovGP-VvtKp3hkUTuXHw0JeZ6Up6-uuq6u6q-gBeFLnVyiPNgHaZVAGtrGtfydL7IrV5WQUbq-sPy9GoOj6uD5fgV58Lw2GVvU6MitpPHJ-RvyLTnOuiInfhzdk3yaxRfLvaU2jMYbGPP3_Qlm36eu89ze9mlu1sH73blR2rgHQEt5l0qKxGV1a-TLDQdWp8MIr0OAauheLKUKLOQhKQXDlmeUtdamyubIm188gHoKTybymVJbyKDvXHK3mYkQKUdkwcTaTyLkknpurx-Ss95aZpkyL1n4Zw4d3-dSEb7dzO6v_2h-7B3c6jFm_nS2ANlnC8Dqs9W4XolNd9-MLe7sU5immk_iE8Cg76PxGunVx4yebcC66E3rbYClpXnN4pTHtCY5x9_irIuxenY85R4a4eZ50QjrElGbQJ4airCPQH8OFGRvwQlseTMT4CkdQmMdaEinkBrFK1Nbkrah8KZNfKDCDtp71xXRl2ZgNpm8sC0hEqTcKNodLoAWxd9jmbFyG59uuNHh9Np5CmzQIcA3jZI2zx-t_SHl8v7Tnc3j06GDbDvdH-E7iTRYBzBN4GLNOM4FNYcd9np9PzZ3GpCPh008j7DYhlUN8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RqCouQEsRy9MHbiUiDzuPIwJWINAKqYC4RX6MYVHIot3A78fjTRZalUpVDz4lHkWeseZz_M03AHtpogQ36DwgdBxwiyooCpMHmTFppJIst8qr619kg0F-e1tcvqvi92z37kpyWtNAKk11c_Bk7MGs8I3-ZrpjMA3hIH8gPsECJyI9ndd_3ryrjPRNOd0Zhvg9PGnLZv5s49fU9IY3f7si9Zmnv_z_37wCSy3qZIfTMPkKc1h_g-WuowNrN_gqPBAifB4jm_j2OM5njIjxd0xXo2cTUMozjNTCqwor5mKPSiCZrO5G42Fz_8gcAmbDmuo4aKrBpjVCPFRnwwF1Yib5YPgO1_2Tq6PToO3GEGi3TZtAI1cCdZabLMRUFJE0VnKX_9CShozObIYitqFFB4GpO16kI6kSrjIstMEkWYP5elTjOrCwkKFU0uakna84L5RMdFoYmyLBD9mDqHNEqVupcuqYUZUzkWW_mGVIgxazFD34MZvzNBXq-OvbW51_y3bTTkqH_hLhAiaOe7Df-fPt8cfWNv7t9V34cnncLy_OBuebsBj7iCDS2hbMOwfhNnzWL81wMt7xsfwKef7zfg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+using+cloud-based+parallel+genetic+algorithm+for+intrusion+detection+data+classification&rft.jtitle=Neural+computing+%26+applications&rft.au=Mehanovi%C4%87%2C+D%C5%BEelila&rft.au=Ke%C4%8Do%2C+Dino&rft.au=Kevri%C4%87%2C+Jasmin&rft.au=Juki%C4%87%2C+Samed&rft.date=2021-09-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=18&rft.spage=11861&rft.epage=11873&rft_id=info:doi/10.1007%2Fs00521-021-05871-5&rft.externalDocID=10_1007_s00521_021_05871_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |