A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrödinger equation

A fully discrete and fully explicit low-regularity integrator is constructed for the one-dimensional periodic cubic nonlinear Schrödinger equation. The method can be implemented by using fast Fourier transform with O ( N ln N ) operations at every time level, and is proved to have an L 2 -norm error...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik Jg. 149; H. 1; S. 151 - 183
Hauptverfasser: Li, Buyang, Wu, Yifei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Schlagworte:
ISSN:0029-599X, 0945-3245
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fully discrete and fully explicit low-regularity integrator is constructed for the one-dimensional periodic cubic nonlinear Schrödinger equation. The method can be implemented by using fast Fourier transform with O ( N ln N ) operations at every time level, and is proved to have an L 2 -norm error bound of O ( τ ln ( 1 / τ ) + N - 1 ) for H 1 initial data, without requiring any CFL condition, where τ and N denote the temporal stepsize and the degree of freedoms in the spatial discretisation, respectively.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-021-01226-3