A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrödinger equation

A fully discrete and fully explicit low-regularity integrator is constructed for the one-dimensional periodic cubic nonlinear Schrödinger equation. The method can be implemented by using fast Fourier transform with O ( N ln N ) operations at every time level, and is proved to have an L 2 -norm error...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerische Mathematik Ročník 149; číslo 1; s. 151 - 183
Hlavní autoři: Li, Buyang, Wu, Yifei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Témata:
ISSN:0029-599X, 0945-3245
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A fully discrete and fully explicit low-regularity integrator is constructed for the one-dimensional periodic cubic nonlinear Schrödinger equation. The method can be implemented by using fast Fourier transform with O ( N ln N ) operations at every time level, and is proved to have an L 2 -norm error bound of O ( τ ln ( 1 / τ ) + N - 1 ) for H 1 initial data, without requiring any CFL condition, where τ and N denote the temporal stepsize and the degree of freedoms in the spatial discretisation, respectively.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-021-01226-3