A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrödinger equation

A fully discrete and fully explicit low-regularity integrator is constructed for the one-dimensional periodic cubic nonlinear Schrödinger equation. The method can be implemented by using fast Fourier transform with O ( N ln N ) operations at every time level, and is proved to have an L 2 -norm error...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik Jg. 149; H. 1; S. 151 - 183
Hauptverfasser: Li, Buyang, Wu, Yifei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Schlagworte:
ISSN:0029-599X, 0945-3245
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A fully discrete and fully explicit low-regularity integrator is constructed for the one-dimensional periodic cubic nonlinear Schrödinger equation. The method can be implemented by using fast Fourier transform with O ( N ln N ) operations at every time level, and is proved to have an L 2 -norm error bound of O ( τ ln ( 1 / τ ) + N - 1 ) for H 1 initial data, without requiring any CFL condition, where τ and N denote the temporal stepsize and the degree of freedoms in the spatial discretisation, respectively.
AbstractList A fully discrete and fully explicit low-regularity integrator is constructed for the one-dimensional periodic cubic nonlinear Schrödinger equation. The method can be implemented by using fast Fourier transform with O ( N ln N ) operations at every time level, and is proved to have an L 2 -norm error bound of O ( τ ln ( 1 / τ ) + N - 1 ) for H 1 initial data, without requiring any CFL condition, where τ and N denote the temporal stepsize and the degree of freedoms in the spatial discretisation, respectively.
A fully discrete and fully explicit low-regularity integrator is constructed for the one-dimensional periodic cubic nonlinear Schrödinger equation. The method can be implemented by using fast Fourier transform with O(NlnN) operations at every time level, and is proved to have an L2-norm error bound of O(τln(1/τ)+N-1) for H1 initial data, without requiring any CFL condition, where τ and N denote the temporal stepsize and the degree of freedoms in the spatial discretisation, respectively.
Author Li, Buyang
Wu, Yifei
Author_xml – sequence: 1
  givenname: Buyang
  surname: Li
  fullname: Li, Buyang
  email: buyang.li@polyu.edu.hk, libuyang@gmail.com
  organization: Department of Applied Mathematics, The Hong Kong Polytechnic University
– sequence: 2
  givenname: Yifei
  surname: Wu
  fullname: Wu, Yifei
  organization: Center for Applied Mathematics, Tianjin University
BookMark eNp9kM1KAzEUhYNUsK2-gKuA62h-JjPNstRfKLhQwV3IZO60KeNMm2SQvpgv4IuZtoLgooucJHC-ew9nhAZt1wJCl4xeM0qLm0ApZ4wkIZRxnhNxgoZUZZIInslBelOuiFTq_QyNQlhRyoo8Y0NUTXHdN80WVy5YDxFw030SD4u-Md7FLXZthIU3sfO4TicuAbNbvAbvuspZbPsyaUrTuBaMxy926b-_KtcuwGPY9Ca6rj1Hp7VpAlz83mP0dn_3Onsk8-eHp9l0TqxgKhJbgaWcs5qVqqipUdZADqBUlk2sNCyrAKiQZSGyQlS5SX8lazphIpN5JUsxRleHuWvfbXoIUa-63rdppeay4DJPg2hyTQ4u67sQPNTaurjPGb1xjWZU7zrVh051Er3vVIuE8n_o2rsP47fHIXGAQjLvevlLdYT6AQa1jSM
CitedBy_id crossref_primary_10_1093_imanum_drad017
crossref_primary_10_1016_j_jcp_2023_112680
crossref_primary_10_1360_SSM_2023_0157
crossref_primary_10_1090_mcom_3751
crossref_primary_10_1142_S0218202525500381
crossref_primary_10_1007_s10915_022_01786_y
crossref_primary_10_1093_imanum_drac081
crossref_primary_10_1093_imanum_drad093
crossref_primary_10_1016_j_jcp_2023_111925
crossref_primary_10_1007_s10915_023_02201_w
crossref_primary_10_1137_22M1530501
crossref_primary_10_1002_num_23017
crossref_primary_10_1137_23M1619617
crossref_primary_10_1137_24M1708723
crossref_primary_10_1016_j_jde_2024_11_018
crossref_primary_10_1137_21M1437007
crossref_primary_10_1093_imanum_drac075
crossref_primary_10_1137_21M1408166
crossref_primary_10_1007_s10208_024_09665_8
crossref_primary_10_1016_j_cam_2024_116313
crossref_primary_10_1016_j_cnsns_2023_107286
crossref_primary_10_1016_j_apnum_2022_08_016
crossref_primary_10_1137_24M1635879
crossref_primary_10_1360_SSM_2024_0266
crossref_primary_10_1007_s10208_025_09702_0
crossref_primary_10_1007_s10915_024_02467_8
Cites_doi 10.1007/s10208-017-9352-1
10.1201/9781420063646
10.1093/imanum/drz030
10.1007/s10915-013-9799-4
10.1002/cpa.3160410704
10.1017/S0962492910000048
10.1007/BF01896020
10.1007/s00211-016-0859-1
10.1090/S0025-5718-08-02101-7
10.1090/S0025-5718-1984-0744922-X
10.1137/18M1198375
10.1007/s10208-020-09468-7
10.1137/S0036142900381497
10.1016/j.jde.2011.01.028
10.4171/rmi/1049
10.1016/j.jmaa.2016.05.014
10.1093/imanum/drab054
10.1090/mcom/3557
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s00211-021-01226-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 0945-3245
EndPage 183
ExternalDocumentID 10_1007_s00211_021_01226_3
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XJT
YLTOR
YNT
YQT
Z45
Z5O
Z7R
Z7X
Z83
Z86
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c319t-cdec0221f1b97f0a9cae6ee99448c5a14dee035b73473d6a4de95f0813456d5b3
IEDL.DBID RSV
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686989200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-599X
IngestDate Mon Oct 06 16:24:46 EDT 2025
Sat Nov 29 01:36:01 EST 2025
Tue Nov 18 22:21:02 EST 2025
Fri Feb 21 02:48:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 65M15
Low regularity
Numerical solution
First-order convergence
Fast Fourier transform
35Q55
Nonlinear Schrödinger equation
65M12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-cdec0221f1b97f0a9cae6ee99448c5a14dee035b73473d6a4de95f0813456d5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2572564480
PQPubID 2043616
PageCount 33
ParticipantIDs proquest_journals_2572564480
crossref_citationtrail_10_1007_s00211_021_01226_3
crossref_primary_10_1007_s00211_021_01226_3
springer_journals_10_1007_s00211_021_01226_3
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Numerische Mathematik
PublicationTitleAbbrev Numer. Math
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Hochbruck, Ostermann (CR7) 2010; 19
CR18
Ostermann, Schratz (CR16) 2018; 18
CR15
Ostermann, Su (CR17) 2020
Cazenave (CR4) 2003
Besse, Bidégaray, Descombes (CR1) 2002; 40
Li (CR12) 2019; 35
Eilinghoff, Schnaubelt, Schratz (CR6) 2016; 442
Bourgain (CR2) 1993; 3
Chu (CR5) 2008
Kato, Ponce (CR11) 1988; 41
Sanz-Serna (CR19) 1984; 43
Knöller, Ostermann, Schratz (CR10) 2019; 57
CR25
CR24
CR23
Ostermann, Rousset, Schratz (CR14) 2020
CR22
Bourgain, Li (CR3) 2014; 27
Hofmanováa, Schratz (CR8) 2017; 136
CR20
Wang (CR21) 2014; 60
Lubich (CR13) 2008; 77
Ignat (CR9) 2011; 250
J Bourgain (1226_CR2) 1993; 3
1226_CR24
JM Sanz-Serna (1226_CR19) 1984; 43
1226_CR23
1226_CR22
Ch Lubich (1226_CR13) 2008; 77
A Ostermann (1226_CR17) 2020
1226_CR25
1226_CR20
D Li (1226_CR12) 2019; 35
E Chu (1226_CR5) 2008
T Kato (1226_CR11) 1988; 41
M Hofmanováa (1226_CR8) 2017; 136
T Cazenave (1226_CR4) 2003
A Ostermann (1226_CR14) 2020
M Knöller (1226_CR10) 2019; 57
M Hochbruck (1226_CR7) 2010; 19
1226_CR15
J Bourgain (1226_CR3) 2014; 27
A Ostermann (1226_CR16) 2018; 18
C Besse (1226_CR1) 2002; 40
J Eilinghoff (1226_CR6) 2016; 442
LI Ignat (1226_CR9) 2011; 250
1226_CR18
J Wang (1226_CR21) 2014; 60
References_xml – ident: CR22
– ident: CR18
– volume: 18
  start-page: 731
  year: 2018
  end-page: 755
  ident: CR16
  article-title: Low regularity exponential-type integrators for semilinear Schrödinger equations
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-017-9352-1
– year: 2008
  ident: CR5
  publication-title: Discrete and Continuous Fourier Transforms Analysis, Applications and Fast Algorithms
  doi: 10.1201/9781420063646
– year: 2020
  ident: CR17
  article-title: A Lawson-type exponential integrator for the Korteweg–de Vries equation
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drz030
– volume: 60
  start-page: 390
  year: 2014
  end-page: 407
  ident: CR21
  article-title: A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-013-9799-4
– ident: CR25
– ident: CR23
– volume: 41
  start-page: 891
  year: 1988
  end-page: 907
  ident: CR11
  article-title: Commutator estimates and the Euler and Navier–Stokes equations
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160410704
– year: 2003
  ident: CR4
  publication-title: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics
– volume: 19
  start-page: 209
  year: 2010
  end-page: 286
  ident: CR7
  article-title: Exponential integrators
  publication-title: Acta Numer.
  doi: 10.1017/S0962492910000048
– ident: CR15
– volume: 3
  start-page: 107
  year: 1993
  end-page: 156
  ident: CR2
  article-title: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/BF01896020
– volume: 136
  start-page: 1117
  year: 2017
  end-page: 1137
  ident: CR8
  article-title: An exponential-type integrator for the KdV equation
  publication-title: Numer. Math.
  doi: 10.1007/s00211-016-0859-1
– volume: 77
  start-page: 2141
  year: 2008
  end-page: 2153
  ident: CR13
  article-title: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-08-02101-7
– volume: 43
  start-page: 21
  year: 1984
  end-page: 27
  ident: CR19
  article-title: Methods for the numerical solution of the nonlinear Schrödinger equation
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1984-0744922-X
– volume: 27
  start-page: 1037
  year: 2014
  end-page: 1072
  ident: CR3
  article-title: On an endpoint Kato-Ponce inequality
  publication-title: Differ. Integral Equ.
– volume: 57
  start-page: 1967
  year: 2019
  end-page: 1986
  ident: CR10
  article-title: A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/18M1198375
– year: 2020
  ident: CR14
  article-title: Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-020-09468-7
– volume: 40
  start-page: 26
  year: 2002
  end-page: 40
  ident: CR1
  article-title: Order estimates in time of splitting methods for the nonlinear Schrödinger equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142900381497
– volume: 250
  start-page: 3022
  year: 2011
  end-page: 3046
  ident: CR9
  article-title: A splitting method for the nonlinear Schrödinger equation
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2011.01.028
– volume: 35
  start-page: 23
  year: 2019
  end-page: 100
  ident: CR12
  article-title: On Kato-Ponce and fractional Leibniz
  publication-title: Rev. Mat. Iberoam.
  doi: 10.4171/rmi/1049
– ident: CR24
– volume: 442
  start-page: 740
  year: 2016
  end-page: 760
  ident: CR6
  article-title: Fractional error estimates of splitting schemes for the nonlinear Schrödinger equation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2016.05.014
– ident: CR20
– ident: 1226_CR22
– ident: 1226_CR24
– ident: 1226_CR18
– volume: 27
  start-page: 1037
  year: 2014
  ident: 1226_CR3
  publication-title: Differ. Integral Equ.
– volume: 77
  start-page: 2141
  year: 2008
  ident: 1226_CR13
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-08-02101-7
– volume: 442
  start-page: 740
  year: 2016
  ident: 1226_CR6
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2016.05.014
– year: 2020
  ident: 1226_CR14
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-020-09468-7
– volume: 43
  start-page: 21
  year: 1984
  ident: 1226_CR19
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1984-0744922-X
– volume: 18
  start-page: 731
  year: 2018
  ident: 1226_CR16
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-017-9352-1
– volume: 60
  start-page: 390
  year: 2014
  ident: 1226_CR21
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-013-9799-4
– volume: 57
  start-page: 1967
  year: 2019
  ident: 1226_CR10
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/18M1198375
– volume: 250
  start-page: 3022
  year: 2011
  ident: 1226_CR9
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2011.01.028
– volume: 3
  start-page: 107
  year: 1993
  ident: 1226_CR2
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/BF01896020
– year: 2020
  ident: 1226_CR17
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drz030
– ident: 1226_CR23
  doi: 10.1093/imanum/drab054
– ident: 1226_CR25
– ident: 1226_CR15
– volume: 40
  start-page: 26
  year: 2002
  ident: 1226_CR1
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142900381497
– ident: 1226_CR20
  doi: 10.1090/mcom/3557
– volume-title: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics
  year: 2003
  ident: 1226_CR4
– volume-title: Discrete and Continuous Fourier Transforms Analysis, Applications and Fast Algorithms
  year: 2008
  ident: 1226_CR5
  doi: 10.1201/9781420063646
– volume: 136
  start-page: 1117
  year: 2017
  ident: 1226_CR8
  publication-title: Numer. Math.
  doi: 10.1007/s00211-016-0859-1
– volume: 35
  start-page: 23
  year: 2019
  ident: 1226_CR12
  publication-title: Rev. Mat. Iberoam.
  doi: 10.4171/rmi/1049
– volume: 41
  start-page: 891
  year: 1988
  ident: 1226_CR11
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160410704
– volume: 19
  start-page: 209
  year: 2010
  ident: 1226_CR7
  publication-title: Acta Numer.
  doi: 10.1017/S0962492910000048
SSID ssj0017641
Score 2.499495
Snippet A fully discrete and fully explicit low-regularity integrator is constructed for the one-dimensional periodic cubic nonlinear Schrödinger equation. The method...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 151
SubjectTerms Fast Fourier transformations
Fourier transforms
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Regularity
Schrodinger equation
Simulation
Theoretical
Title A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrödinger equation
URI https://link.springer.com/article/10.1007/s00211-021-01226-3
https://www.proquest.com/docview/2572564480
Volume 149
WOSCitedRecordID wos000686989200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0945-3245
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017641
  issn: 0029-599X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64HfTgLo4bOXjTQNMtk-OgDh50EDfmVrIVBXG0HRX_mH_AP-ZLpu2gqKCXQNtszfa-JO99D2CX5VwmgWnTVCtLY2kUVZwbGsVG8zSNDfPK49cnvNdr9_virDIKK2tt9_pK0q_UjbGbE0e49Q3d9hdBA40mYRrFXds5bDi_uG7uDngas1qxIxGiX5nKfJ_HZ3E0xphfrkW9tOku_K-eizBfoUvSGQ2HJZiw98uwUHtuINVEXoa504attVwB0yHuFP6VOBPdAlE0uRu80MJ7qXe-7UjNKTEoCGJcgkkJOySOI3lgbjXRTwrD-xHphnTF3BTvb8ZXmtjHEZn4Klx1jy4PjmnlfYFqnJZDqo3VKOBZzpTgeSCFlja1Vgjc0OlEsthYG0SJ4lHMI5NKfBZJjggjQkxmEhWtwRSWbNeB4BtpuVBtZ1VnjFAhV9LkqbNzDVXIWsDqTsh0RU3uPGTcZQ2psm_UDIPMN2oWtWCvSfMwIub4NfZW3bdZNUnLDFcrBHz4O0EL9uu-HH_-ObeNv0XfhNnQDwenmbYFU8PiyW7DjH4e3pbFjh-8H0j-6QQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFH5oFdSDu1jXHLxpoJktzbG4oFiLuNHbkG1QEKvTqvjH_AP-MV_SmRFFBb0EZibbZHtfkve-B7DFMi7jhmnSRCtLI2kUVZwbGkZG8ySJDPPK41dt3uk0u11xWhiF9Utt9_JK0q_UlbGbE0e49Q3c9hdBAw1HYSxCieUY88_Or6q7A55ErFTsiIXoFqYy3-fxWRx9YMwv16Je2hzM_K-eszBdoEvSGg6HORixd_MwU3puIMVEnoepk4qttb8ApkXcKfwLcSa6OaJoctt7prn3Uu9825GSU6KXE8S4BJMStkccR3LP3GiiHxWGd0PSDemKuc7fXo2vNLEPQzLxRbg82L_YPaSF9wWqcVoOqDZWo4BnGVOCZw0ptLSJtULghk7HkkXG2kYYKx5GPDSJxGcRZ4gwQsRkJlbhEtSwZLsMBN9Iy4VqOqs6Y4QKuJImS5yda6ACVgdWdkKqC2py5yHjNq1IlX2jphikvlHTsA7bVZr7ITHHr7HXyr5Ni0naT3G1QsCHv9Oow07Zlx-ff85t5W_RN2Hi8OKknbaPOserMBn4oeG01NagNsgf7TqM66fBTT_f8AP5HT0m6-g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZTxsxEB5RqCp4KJSCCA3FD30Di3gvx4-INAKRRkgcytvK14pIURI2CVX_GH-gf6xj75EWQaWqL5Z218f62vlmPfMNwBeWcRm3TJsmWlkaSaOo4tzQMDKaJ0lkmDcev-vxfr89GIir37z4vbV7dSRZ-DQ4lqbx_GRqspPa8c2JJlSDA6cKI4Cg4RtYi5whvdPXr-_qcwSeRKwy8oiFGJRuMy_X8adoWuLNZ0ekXvJ0N___nbfgfYk6yWmxTD7Aih1vw2YV0YGUG3wbNr7VLK6zj2BOifs7_4M4190c0TUZTb7T3EevdzHvSMU1MckJYl-CRQnrEMedPDFDTfRCYTouyDika-Y-__lkfAeIfShIxnfgtvv15uycllEZqMbtOqfaWI2Cn2VMCZ61pNDSJtYKgYqejiWLjLWtMFY8jHhoEonXIs4QeYSI1Uyswl1YxZbtHhC8Iy0Xqu287YwRKuBKmixx_q-BClgDWDUhqS4py13kjFFaky37QU0xSf2gpmEDjuoy04Kw46-5m9U8p-XmnaX4FUMgiN1pNeC4mtfl49dr2_-37Ifw7qrTTXsX_ctPsB74leGM15qwOs8X9gDe6sf5cJZ_9mv6F96D9Mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fully+discrete+low-regularity+integrator+for+the+1D+periodic+cubic+nonlinear+Schr%C3%B6dinger+equation&rft.jtitle=Numerische+Mathematik&rft.au=Li%2C+Buyang&rft.au=Wu%2C+Yifei&rft.date=2021-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=149&rft.issue=1&rft.spage=151&rft.epage=183&rft_id=info:doi/10.1007%2Fs00211-021-01226-3&rft.externalDocID=10_1007_s00211_021_01226_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon