A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrödinger equation
A fully discrete and fully explicit low-regularity integrator is constructed for the one-dimensional periodic cubic nonlinear Schrödinger equation. The method can be implemented by using fast Fourier transform with O ( N ln N ) operations at every time level, and is proved to have an L 2 -norm error...
Gespeichert in:
| Veröffentlicht in: | Numerische Mathematik Jg. 149; H. 1; S. 151 - 183 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0029-599X, 0945-3245 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A fully discrete and fully explicit low-regularity integrator is constructed for the one-dimensional periodic cubic nonlinear Schrödinger equation. The method can be implemented by using fast Fourier transform with
O
(
N
ln
N
)
operations at every time level, and is proved to have an
L
2
-norm error bound of
O
(
τ
ln
(
1
/
τ
)
+
N
-
1
)
for
H
1
initial data, without requiring any CFL condition, where
τ
and
N
denote the temporal stepsize and the degree of freedoms in the spatial discretisation, respectively. |
|---|---|
| AbstractList | A fully discrete and fully explicit low-regularity integrator is constructed for the one-dimensional periodic cubic nonlinear Schrödinger equation. The method can be implemented by using fast Fourier transform with
O
(
N
ln
N
)
operations at every time level, and is proved to have an
L
2
-norm error bound of
O
(
τ
ln
(
1
/
τ
)
+
N
-
1
)
for
H
1
initial data, without requiring any CFL condition, where
τ
and
N
denote the temporal stepsize and the degree of freedoms in the spatial discretisation, respectively. A fully discrete and fully explicit low-regularity integrator is constructed for the one-dimensional periodic cubic nonlinear Schrödinger equation. The method can be implemented by using fast Fourier transform with O(NlnN) operations at every time level, and is proved to have an L2-norm error bound of O(τln(1/τ)+N-1) for H1 initial data, without requiring any CFL condition, where τ and N denote the temporal stepsize and the degree of freedoms in the spatial discretisation, respectively. |
| Author | Li, Buyang Wu, Yifei |
| Author_xml | – sequence: 1 givenname: Buyang surname: Li fullname: Li, Buyang email: buyang.li@polyu.edu.hk, libuyang@gmail.com organization: Department of Applied Mathematics, The Hong Kong Polytechnic University – sequence: 2 givenname: Yifei surname: Wu fullname: Wu, Yifei organization: Center for Applied Mathematics, Tianjin University |
| BookMark | eNp9kM1KAzEUhYNUsK2-gKuA62h-JjPNstRfKLhQwV3IZO60KeNMm2SQvpgv4IuZtoLgooucJHC-ew9nhAZt1wJCl4xeM0qLm0ApZ4wkIZRxnhNxgoZUZZIInslBelOuiFTq_QyNQlhRyoo8Y0NUTXHdN80WVy5YDxFw030SD4u-Md7FLXZthIU3sfO4TicuAbNbvAbvuspZbPsyaUrTuBaMxy926b-_KtcuwGPY9Ca6rj1Hp7VpAlz83mP0dn_3Onsk8-eHp9l0TqxgKhJbgaWcs5qVqqipUdZADqBUlk2sNCyrAKiQZSGyQlS5SX8lazphIpN5JUsxRleHuWvfbXoIUa-63rdppeay4DJPg2hyTQ4u67sQPNTaurjPGb1xjWZU7zrVh051Er3vVIuE8n_o2rsP47fHIXGAQjLvevlLdYT6AQa1jSM |
| CitedBy_id | crossref_primary_10_1093_imanum_drad017 crossref_primary_10_1016_j_jcp_2023_112680 crossref_primary_10_1360_SSM_2023_0157 crossref_primary_10_1090_mcom_3751 crossref_primary_10_1142_S0218202525500381 crossref_primary_10_1007_s10915_022_01786_y crossref_primary_10_1093_imanum_drac081 crossref_primary_10_1093_imanum_drad093 crossref_primary_10_1016_j_jcp_2023_111925 crossref_primary_10_1007_s10915_023_02201_w crossref_primary_10_1137_22M1530501 crossref_primary_10_1002_num_23017 crossref_primary_10_1137_23M1619617 crossref_primary_10_1137_24M1708723 crossref_primary_10_1016_j_jde_2024_11_018 crossref_primary_10_1137_21M1437007 crossref_primary_10_1093_imanum_drac075 crossref_primary_10_1137_21M1408166 crossref_primary_10_1007_s10208_024_09665_8 crossref_primary_10_1016_j_cam_2024_116313 crossref_primary_10_1016_j_cnsns_2023_107286 crossref_primary_10_1016_j_apnum_2022_08_016 crossref_primary_10_1137_24M1635879 crossref_primary_10_1360_SSM_2024_0266 crossref_primary_10_1007_s10208_025_09702_0 crossref_primary_10_1007_s10915_024_02467_8 |
| Cites_doi | 10.1007/s10208-017-9352-1 10.1201/9781420063646 10.1093/imanum/drz030 10.1007/s10915-013-9799-4 10.1002/cpa.3160410704 10.1017/S0962492910000048 10.1007/BF01896020 10.1007/s00211-016-0859-1 10.1090/S0025-5718-08-02101-7 10.1090/S0025-5718-1984-0744922-X 10.1137/18M1198375 10.1007/s10208-020-09468-7 10.1137/S0036142900381497 10.1016/j.jde.2011.01.028 10.4171/rmi/1049 10.1016/j.jmaa.2016.05.014 10.1093/imanum/drab054 10.1090/mcom/3557 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00211-021-01226-3 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 0945-3245 |
| EndPage | 183 |
| ExternalDocumentID | 10_1007_s00211_021_01226_3 |
| GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 41~ 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM LO0 M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF0 PKN PT4 PT5 QOK QOS R4E R89 R9I REI RHV RIG RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XJT YLTOR YNT YQT Z45 Z5O Z7R Z7X Z83 Z86 Z88 Z8M Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ABUFD ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c319t-cdec0221f1b97f0a9cae6ee99448c5a14dee035b73473d6a4de95f0813456d5b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686989200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-599X |
| IngestDate | Mon Oct 06 16:24:46 EDT 2025 Sat Nov 29 01:36:01 EST 2025 Tue Nov 18 22:21:02 EST 2025 Fri Feb 21 02:48:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | 65M15 Low regularity Numerical solution First-order convergence Fast Fourier transform 35Q55 Nonlinear Schrödinger equation 65M12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-cdec0221f1b97f0a9cae6ee99448c5a14dee035b73473d6a4de95f0813456d5b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2572564480 |
| PQPubID | 2043616 |
| PageCount | 33 |
| ParticipantIDs | proquest_journals_2572564480 crossref_citationtrail_10_1007_s00211_021_01226_3 crossref_primary_10_1007_s00211_021_01226_3 springer_journals_10_1007_s00211_021_01226_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Numerische Mathematik |
| PublicationTitleAbbrev | Numer. Math |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Hochbruck, Ostermann (CR7) 2010; 19 CR18 Ostermann, Schratz (CR16) 2018; 18 CR15 Ostermann, Su (CR17) 2020 Cazenave (CR4) 2003 Besse, Bidégaray, Descombes (CR1) 2002; 40 Li (CR12) 2019; 35 Eilinghoff, Schnaubelt, Schratz (CR6) 2016; 442 Bourgain (CR2) 1993; 3 Chu (CR5) 2008 Kato, Ponce (CR11) 1988; 41 Sanz-Serna (CR19) 1984; 43 Knöller, Ostermann, Schratz (CR10) 2019; 57 CR25 CR24 CR23 Ostermann, Rousset, Schratz (CR14) 2020 CR22 Bourgain, Li (CR3) 2014; 27 Hofmanováa, Schratz (CR8) 2017; 136 CR20 Wang (CR21) 2014; 60 Lubich (CR13) 2008; 77 Ignat (CR9) 2011; 250 J Bourgain (1226_CR2) 1993; 3 1226_CR24 JM Sanz-Serna (1226_CR19) 1984; 43 1226_CR23 1226_CR22 Ch Lubich (1226_CR13) 2008; 77 A Ostermann (1226_CR17) 2020 1226_CR25 1226_CR20 D Li (1226_CR12) 2019; 35 E Chu (1226_CR5) 2008 T Kato (1226_CR11) 1988; 41 M Hofmanováa (1226_CR8) 2017; 136 T Cazenave (1226_CR4) 2003 A Ostermann (1226_CR14) 2020 M Knöller (1226_CR10) 2019; 57 M Hochbruck (1226_CR7) 2010; 19 1226_CR15 J Bourgain (1226_CR3) 2014; 27 A Ostermann (1226_CR16) 2018; 18 C Besse (1226_CR1) 2002; 40 J Eilinghoff (1226_CR6) 2016; 442 LI Ignat (1226_CR9) 2011; 250 1226_CR18 J Wang (1226_CR21) 2014; 60 |
| References_xml | – ident: CR22 – ident: CR18 – volume: 18 start-page: 731 year: 2018 end-page: 755 ident: CR16 article-title: Low regularity exponential-type integrators for semilinear Schrödinger equations publication-title: Found. Comput. Math. doi: 10.1007/s10208-017-9352-1 – year: 2008 ident: CR5 publication-title: Discrete and Continuous Fourier Transforms Analysis, Applications and Fast Algorithms doi: 10.1201/9781420063646 – year: 2020 ident: CR17 article-title: A Lawson-type exponential integrator for the Korteweg–de Vries equation publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drz030 – volume: 60 start-page: 390 year: 2014 end-page: 407 ident: CR21 article-title: A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation publication-title: J. Sci. Comput. doi: 10.1007/s10915-013-9799-4 – ident: CR25 – ident: CR23 – volume: 41 start-page: 891 year: 1988 end-page: 907 ident: CR11 article-title: Commutator estimates and the Euler and Navier–Stokes equations publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160410704 – year: 2003 ident: CR4 publication-title: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics – volume: 19 start-page: 209 year: 2010 end-page: 286 ident: CR7 article-title: Exponential integrators publication-title: Acta Numer. doi: 10.1017/S0962492910000048 – ident: CR15 – volume: 3 start-page: 107 year: 1993 end-page: 156 ident: CR2 article-title: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations publication-title: Geom. Funct. Anal. doi: 10.1007/BF01896020 – volume: 136 start-page: 1117 year: 2017 end-page: 1137 ident: CR8 article-title: An exponential-type integrator for the KdV equation publication-title: Numer. Math. doi: 10.1007/s00211-016-0859-1 – volume: 77 start-page: 2141 year: 2008 end-page: 2153 ident: CR13 article-title: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations publication-title: Math. Comput. doi: 10.1090/S0025-5718-08-02101-7 – volume: 43 start-page: 21 year: 1984 end-page: 27 ident: CR19 article-title: Methods for the numerical solution of the nonlinear Schrödinger equation publication-title: Math. Comput. doi: 10.1090/S0025-5718-1984-0744922-X – volume: 27 start-page: 1037 year: 2014 end-page: 1072 ident: CR3 article-title: On an endpoint Kato-Ponce inequality publication-title: Differ. Integral Equ. – volume: 57 start-page: 1967 year: 2019 end-page: 1986 ident: CR10 article-title: A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data publication-title: SIAM J. Numer. Anal. doi: 10.1137/18M1198375 – year: 2020 ident: CR14 article-title: Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity publication-title: Found. Comput. Math. doi: 10.1007/s10208-020-09468-7 – volume: 40 start-page: 26 year: 2002 end-page: 40 ident: CR1 article-title: Order estimates in time of splitting methods for the nonlinear Schrödinger equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142900381497 – volume: 250 start-page: 3022 year: 2011 end-page: 3046 ident: CR9 article-title: A splitting method for the nonlinear Schrödinger equation publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2011.01.028 – volume: 35 start-page: 23 year: 2019 end-page: 100 ident: CR12 article-title: On Kato-Ponce and fractional Leibniz publication-title: Rev. Mat. Iberoam. doi: 10.4171/rmi/1049 – ident: CR24 – volume: 442 start-page: 740 year: 2016 end-page: 760 ident: CR6 article-title: Fractional error estimates of splitting schemes for the nonlinear Schrödinger equation publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2016.05.014 – ident: CR20 – ident: 1226_CR22 – ident: 1226_CR24 – ident: 1226_CR18 – volume: 27 start-page: 1037 year: 2014 ident: 1226_CR3 publication-title: Differ. Integral Equ. – volume: 77 start-page: 2141 year: 2008 ident: 1226_CR13 publication-title: Math. Comput. doi: 10.1090/S0025-5718-08-02101-7 – volume: 442 start-page: 740 year: 2016 ident: 1226_CR6 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2016.05.014 – year: 2020 ident: 1226_CR14 publication-title: Found. Comput. Math. doi: 10.1007/s10208-020-09468-7 – volume: 43 start-page: 21 year: 1984 ident: 1226_CR19 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1984-0744922-X – volume: 18 start-page: 731 year: 2018 ident: 1226_CR16 publication-title: Found. Comput. Math. doi: 10.1007/s10208-017-9352-1 – volume: 60 start-page: 390 year: 2014 ident: 1226_CR21 publication-title: J. Sci. Comput. doi: 10.1007/s10915-013-9799-4 – volume: 57 start-page: 1967 year: 2019 ident: 1226_CR10 publication-title: SIAM J. Numer. Anal. doi: 10.1137/18M1198375 – volume: 250 start-page: 3022 year: 2011 ident: 1226_CR9 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2011.01.028 – volume: 3 start-page: 107 year: 1993 ident: 1226_CR2 publication-title: Geom. Funct. Anal. doi: 10.1007/BF01896020 – year: 2020 ident: 1226_CR17 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drz030 – ident: 1226_CR23 doi: 10.1093/imanum/drab054 – ident: 1226_CR25 – ident: 1226_CR15 – volume: 40 start-page: 26 year: 2002 ident: 1226_CR1 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142900381497 – ident: 1226_CR20 doi: 10.1090/mcom/3557 – volume-title: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics year: 2003 ident: 1226_CR4 – volume-title: Discrete and Continuous Fourier Transforms Analysis, Applications and Fast Algorithms year: 2008 ident: 1226_CR5 doi: 10.1201/9781420063646 – volume: 136 start-page: 1117 year: 2017 ident: 1226_CR8 publication-title: Numer. Math. doi: 10.1007/s00211-016-0859-1 – volume: 35 start-page: 23 year: 2019 ident: 1226_CR12 publication-title: Rev. Mat. Iberoam. doi: 10.4171/rmi/1049 – volume: 41 start-page: 891 year: 1988 ident: 1226_CR11 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160410704 – volume: 19 start-page: 209 year: 2010 ident: 1226_CR7 publication-title: Acta Numer. doi: 10.1017/S0962492910000048 |
| SSID | ssj0017641 |
| Score | 2.499495 |
| Snippet | A fully discrete and fully explicit low-regularity integrator is constructed for the one-dimensional periodic cubic nonlinear Schrödinger equation. The method... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 151 |
| SubjectTerms | Fast Fourier transformations Fourier transforms Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Regularity Schrodinger equation Simulation Theoretical |
| Title | A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrödinger equation |
| URI | https://link.springer.com/article/10.1007/s00211-021-01226-3 https://www.proquest.com/docview/2572564480 |
| Volume | 149 |
| WOSCitedRecordID | wos000686989200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 0945-3245 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017641 issn: 0029-599X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64HfTgLo4bOXjTQNMtk-OgDh50EDfmVrIVBXG0HRX_mH_AP-ZLpu2gqKCXQNtszfa-JO99D2CX5VwmgWnTVCtLY2kUVZwbGsVG8zSNDfPK49cnvNdr9_virDIKK2tt9_pK0q_UjbGbE0e49Q3d9hdBA40mYRrFXds5bDi_uG7uDngas1qxIxGiX5nKfJ_HZ3E0xphfrkW9tOku_K-eizBfoUvSGQ2HJZiw98uwUHtuINVEXoa504attVwB0yHuFP6VOBPdAlE0uRu80MJ7qXe-7UjNKTEoCGJcgkkJOySOI3lgbjXRTwrD-xHphnTF3BTvb8ZXmtjHEZn4Klx1jy4PjmnlfYFqnJZDqo3VKOBZzpTgeSCFlja1Vgjc0OlEsthYG0SJ4lHMI5NKfBZJjggjQkxmEhWtwRSWbNeB4BtpuVBtZ1VnjFAhV9LkqbNzDVXIWsDqTsh0RU3uPGTcZQ2psm_UDIPMN2oWtWCvSfMwIub4NfZW3bdZNUnLDFcrBHz4O0EL9uu-HH_-ObeNv0XfhNnQDwenmbYFU8PiyW7DjH4e3pbFjh-8H0j-6QQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFH5oFdSDu1jXHLxpoJktzbG4oFiLuNHbkG1QEKvTqvjH_AP-MV_SmRFFBb0EZibbZHtfkve-B7DFMi7jhmnSRCtLI2kUVZwbGkZG8ySJDPPK41dt3uk0u11xWhiF9Utt9_JK0q_UlbGbE0e49Q3c9hdBAw1HYSxCieUY88_Or6q7A55ErFTsiIXoFqYy3-fxWRx9YMwv16Je2hzM_K-eszBdoEvSGg6HORixd_MwU3puIMVEnoepk4qttb8ApkXcKfwLcSa6OaJoctt7prn3Uu9825GSU6KXE8S4BJMStkccR3LP3GiiHxWGd0PSDemKuc7fXo2vNLEPQzLxRbg82L_YPaSF9wWqcVoOqDZWo4BnGVOCZw0ptLSJtULghk7HkkXG2kYYKx5GPDSJxGcRZ4gwQsRkJlbhEtSwZLsMBN9Iy4VqOqs6Y4QKuJImS5yda6ACVgdWdkKqC2py5yHjNq1IlX2jphikvlHTsA7bVZr7ITHHr7HXyr5Ni0naT3G1QsCHv9Oow07Zlx-ff85t5W_RN2Hi8OKknbaPOserMBn4oeG01NagNsgf7TqM66fBTT_f8AP5HT0m6-g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZTxsxEB5RqCp4KJSCCA3FD30Di3gvx4-INAKRRkgcytvK14pIURI2CVX_GH-gf6xj75EWQaWqL5Z218f62vlmPfMNwBeWcRm3TJsmWlkaSaOo4tzQMDKaJ0lkmDcev-vxfr89GIir37z4vbV7dSRZ-DQ4lqbx_GRqspPa8c2JJlSDA6cKI4Cg4RtYi5whvdPXr-_qcwSeRKwy8oiFGJRuMy_X8adoWuLNZ0ekXvJ0N___nbfgfYk6yWmxTD7Aih1vw2YV0YGUG3wbNr7VLK6zj2BOifs7_4M4190c0TUZTb7T3EevdzHvSMU1MckJYl-CRQnrEMedPDFDTfRCYTouyDika-Y-__lkfAeIfShIxnfgtvv15uycllEZqMbtOqfaWI2Cn2VMCZ61pNDSJtYKgYqejiWLjLWtMFY8jHhoEonXIs4QeYSI1Uyswl1YxZbtHhC8Iy0Xqu287YwRKuBKmixx_q-BClgDWDUhqS4py13kjFFaky37QU0xSf2gpmEDjuoy04Kw46-5m9U8p-XmnaX4FUMgiN1pNeC4mtfl49dr2_-37Ifw7qrTTXsX_ctPsB74leGM15qwOs8X9gDe6sf5cJZ_9mv6F96D9Mw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fully+discrete+low-regularity+integrator+for+the+1D+periodic+cubic+nonlinear+Schr%C3%B6dinger+equation&rft.jtitle=Numerische+Mathematik&rft.au=Li%2C+Buyang&rft.au=Wu%2C+Yifei&rft.date=2021-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=149&rft.issue=1&rft.spage=151&rft.epage=183&rft_id=info:doi/10.1007%2Fs00211-021-01226-3&rft.externalDocID=10_1007_s00211_021_01226_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon |