An Artificial Neural Network Model for Timescale Atomic Clock Ensemble Algorithm

Atomic clocks work on a standard frequency generated by the electron transitions in the atoms of the core material. A timescale is a reference frequency and phase measure generated by a set of atomic clocks. An ensemble algorithm combines the participating atomic clocks to form a “perfect” clock. Th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:MĀPAN : journal of Metrology Society of India Ročník 35; číslo 4; s. 547 - 554
Hlavní autoři: Sruthikeerthi Nandita, R., Maharana, Shikha, Rajathilagam, B., Subramanya Ganesh, T., Krishnamoorthy, Subhalakshmi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New Delhi Springer India 01.12.2020
Springer Nature B.V
Témata:
ISSN:0970-3950, 0974-9853
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Atomic clocks work on a standard frequency generated by the electron transitions in the atoms of the core material. A timescale is a reference frequency and phase measure generated by a set of atomic clocks. An ensemble algorithm combines the participating atomic clocks to form a “perfect” clock. The perfect clock is very stable and precise in terms of frequency and phase. There are many methods that exist to develop an ensemble for a timescale such as Kalman filter-based algorithms, inverse Allan variance-based algorithms, etc. A neural network-based realization of the ensemble algorithm for a timescale is discussed in this paper. The artificial neural network (ANN) model dynamically adapts the weights of the clocks to accommodate the behavioural changes in the clocks. This paper uses different types of M-sample deviations like overlapping Allan deviation and overlapping Hadamard deviation as the inputs to the model.
AbstractList Atomic clocks work on a standard frequency generated by the electron transitions in the atoms of the core material. A timescale is a reference frequency and phase measure generated by a set of atomic clocks. An ensemble algorithm combines the participating atomic clocks to form a “perfect” clock. The perfect clock is very stable and precise in terms of frequency and phase. There are many methods that exist to develop an ensemble for a timescale such as Kalman filter-based algorithms, inverse Allan variance-based algorithms, etc. A neural network-based realization of the ensemble algorithm for a timescale is discussed in this paper. The artificial neural network (ANN) model dynamically adapts the weights of the clocks to accommodate the behavioural changes in the clocks. This paper uses different types of M-sample deviations like overlapping Allan deviation and overlapping Hadamard deviation as the inputs to the model.
Author Krishnamoorthy, Subhalakshmi
Subramanya Ganesh, T.
Sruthikeerthi Nandita, R.
Maharana, Shikha
Rajathilagam, B.
Author_xml – sequence: 1
  givenname: R.
  orcidid: 0000-0002-9233-5507
  surname: Sruthikeerthi Nandita
  fullname: Sruthikeerthi Nandita, R.
  email: sruthikeerthi1311@gmail.com
  organization: Navigation Systems Area, ISRO Telemetry Tracking and Command Network (ISTRAC), ISRO
– sequence: 2
  givenname: Shikha
  surname: Maharana
  fullname: Maharana, Shikha
  organization: Navigation Systems Area, ISRO Telemetry Tracking and Command Network (ISTRAC), ISRO
– sequence: 3
  givenname: B.
  surname: Rajathilagam
  fullname: Rajathilagam, B.
  organization: Navigation Systems Area, ISRO Telemetry Tracking and Command Network (ISTRAC), ISRO
– sequence: 4
  givenname: T.
  surname: Subramanya Ganesh
  fullname: Subramanya Ganesh, T.
  organization: Navigation Systems Area, ISRO Telemetry Tracking and Command Network (ISTRAC), ISRO
– sequence: 5
  givenname: Subhalakshmi
  surname: Krishnamoorthy
  fullname: Krishnamoorthy, Subhalakshmi
  organization: Navigation Systems Area, ISRO Telemetry Tracking and Command Network (ISTRAC), ISRO
BookMark eNp9kMtOwzAQRS1UJNrCD7CKxDowju0kXlZVeUjlsShry3Hs4jaJi-0K8fekDRISi65mNLpnZnQmaNS5TiN0jeEWAxR3AWc5LVLIIAWgmKZwhsbAC5rykpHRsYeUcAYXaBLCBiAvgfMxept1ycxHa6yyskle9N4fS_xyfps8u1o3iXE-WdlWByUbncyia61K5o1T22TRBd1Wh2mzdt7Gj_YSnRvZBH31W6fo_X6xmj-my9eHp_lsmSqCeUyVYpJWNZaZMaTShWKKVLikTPGKFoqUlTKUyDpntYSywtzklYSCU1lIbHJGpuhm2Lvz7nOvQxQbt_ddf1JklJOSZYySPlUOKeVdCF4boWyU0bouemkbgUEc_InBn-j9iaM_AT2a_UN33rbSf5-GyACFPtyttf_76gT1A56ihLc
CitedBy_id crossref_primary_10_1007_s12647_020_00421_1
crossref_primary_10_1016_j_procs_2023_01_152
Cites_doi 10.1109/eftf.2014.7331564
10.1007/s12647-016-0197-x
10.1002/j.2334-5837.2019.00701.x
10.1134/S2075108716010028
ContentType Journal Article
Copyright Metrology Society of India 2020
Metrology Society of India 2020.
Copyright_xml – notice: Metrology Society of India 2020
– notice: Metrology Society of India 2020.
DBID AAYXX
CITATION
DOI 10.1007/s12647-020-00414-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 0974-9853
EndPage 554
ExternalDocumentID 10_1007_s12647_020_00414_0
GroupedDBID -EM
06D
0R~
203
29M
29~
2KG
2VQ
30V
4.4
406
408
40D
5VS
67Z
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
AYJHY
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PT4
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
AFDZB
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c319t-cc5a4bd1a2ff3be7c5c3b1845c9b47c38bcf43ad65da08b19f6ba0794a7a1f653
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000597725300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0970-3950
IngestDate Thu Sep 25 00:50:34 EDT 2025
Sat Nov 29 04:40:07 EST 2025
Tue Nov 18 21:45:39 EST 2025
Fri Feb 21 02:49:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Atomic Clocks
Frequency stability analysis
Indian regional navigation satellite system (IRNSS)
Allan deviation
Artificial neural networks
IRNSS Network Timing Centre (IRNWT)
Navigation with Indian Constellation (NavIC)
Hadamard deviation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-cc5a4bd1a2ff3be7c5c3b1845c9b47c38bcf43ad65da08b19f6ba0794a7a1f653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9233-5507
PQID 2493852543
PQPubID 2044123
PageCount 8
ParticipantIDs proquest_journals_2493852543
crossref_citationtrail_10_1007_s12647_020_00414_0
crossref_primary_10_1007_s12647_020_00414_0
springer_journals_10_1007_s12647_020_00414_0
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationSubtitle Journal of Metrology Society of India
PublicationTitle MĀPAN : journal of Metrology Society of India
PublicationTitleAbbrev MAPAN
PublicationYear 2020
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References P. Sherman, “Allan Variance” Iowa State University. http://home.engineering.iastate.edu/~shermanp/AERE432/lectures/Rate%20Gyros/Allan%20variance.pdf.
MaharanaSBhardwajanAGaneshTRamakrishnaBTimescale Ensemble Performance Enhancement Through Use of Artificial Neural NetworkINCOSE Int. Symp.20192947848810.1002/j.2334-5837.2019.00701.x
S. Podogova, K. Mishagin, Frequency Combining System for Atomic Clock Ensembles. (2014) https://doi.org/10.1109/eftf.2014.7331564.
W. Riley, and D.A. Howe, NIST Handbook of Frequency Stability Analysis. NIST Special Publication, 1065. 20899 (2008).
BhardwajanAMaharanaSGaneshTA Comparative Study of Methods of Clock Ensemble DevelopmentMAPAN201710.1007/s12647-016-0197-x
J. Nelson, “What is an Atomic Clock?” nasa.gov. http://www.nasa.gov/feature/jpl/what-is-an-atomic-clock.
Ahn, In Soo, “State modeling of clock noises and its application” (1986). Retrospective Theses and Dissertations. 8053. https://lib.dr.iastate.edu/rtd/8053.
W.J. Riley, “3-corn Hat” wriley.com. http://www.wriley.com/3-CornHat.htm. Accessed 7 March 2020.
C. A. Greenhall, Likelihood and Least-squares Approach to M-Cornered Hat. PORC 1987 PTTI Meeting 9 (1987).
D.W. Allan, Historicity, Strengths, and Weaknesses of Allan Variances and their General Applications. Gyroscopy Navig. (2016).
414_CR1
414_CR2
414_CR10
414_CR5
414_CR6
A Bhardwajan (414_CR7) 2017
414_CR4
414_CR9
414_CR8
S Maharana (414_CR3) 2019; 29
References_xml – reference: Ahn, In Soo, “State modeling of clock noises and its application” (1986). Retrospective Theses and Dissertations. 8053. https://lib.dr.iastate.edu/rtd/8053.
– reference: W. Riley, and D.A. Howe, NIST Handbook of Frequency Stability Analysis. NIST Special Publication, 1065. 20899 (2008).
– reference: C. A. Greenhall, Likelihood and Least-squares Approach to M-Cornered Hat. PORC 1987 PTTI Meeting 9 (1987).
– reference: P. Sherman, “Allan Variance” Iowa State University. http://home.engineering.iastate.edu/~shermanp/AERE432/lectures/Rate%20Gyros/Allan%20variance.pdf.
– reference: D.W. Allan, Historicity, Strengths, and Weaknesses of Allan Variances and their General Applications. Gyroscopy Navig. (2016).
– reference: BhardwajanAMaharanaSGaneshTA Comparative Study of Methods of Clock Ensemble DevelopmentMAPAN201710.1007/s12647-016-0197-x
– reference: S. Podogova, K. Mishagin, Frequency Combining System for Atomic Clock Ensembles. (2014) https://doi.org/10.1109/eftf.2014.7331564.
– reference: J. Nelson, “What is an Atomic Clock?” nasa.gov. http://www.nasa.gov/feature/jpl/what-is-an-atomic-clock.
– reference: MaharanaSBhardwajanAGaneshTRamakrishnaBTimescale Ensemble Performance Enhancement Through Use of Artificial Neural NetworkINCOSE Int. Symp.20192947848810.1002/j.2334-5837.2019.00701.x
– reference: W.J. Riley, “3-corn Hat” wriley.com. http://www.wriley.com/3-CornHat.htm. Accessed 7 March 2020.
– ident: 414_CR10
  doi: 10.1109/eftf.2014.7331564
– year: 2017
  ident: 414_CR7
  publication-title: MAPAN
  doi: 10.1007/s12647-016-0197-x
– ident: 414_CR9
– ident: 414_CR2
– volume: 29
  start-page: 478
  year: 2019
  ident: 414_CR3
  publication-title: INCOSE Int. Symp.
  doi: 10.1002/j.2334-5837.2019.00701.x
– ident: 414_CR5
  doi: 10.1134/S2075108716010028
– ident: 414_CR8
– ident: 414_CR1
– ident: 414_CR6
– ident: 414_CR4
SSID ssj0068099
Score 2.1783018
Snippet Atomic clocks work on a standard frequency generated by the electron transitions in the atoms of the core material. A timescale is a reference frequency and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 547
SubjectTerms Algorithms
Artificial neural networks
Atomic clocks
Clocks & watches
Deviation
Electron transitions
Kalman filters
Mathematical and Computational Physics
Mathematical Methods in Physics
Measurement Science and Instrumentation
Neural networks
Numerical and Computational Physics
Original Paper
Physics
Physics and Astronomy
Simulation
Theoretical
Time
Title An Artificial Neural Network Model for Timescale Atomic Clock Ensemble Algorithm
URI https://link.springer.com/article/10.1007/s12647-020-00414-0
https://www.proquest.com/docview/2493852543
Volume 35
WOSCitedRecordID wos000597725300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0974-9853
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068099
  issn: 0970-3950
  databaseCode: RSV
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yFXzxW5xOyYNvGmjXpmkex9jwQcbwY-ytJGmiw62Ttfr3e0lbi6KCPhWaNJS73Bd39zuELjwjAqE0I6mMDQlTXxEuI0NYCr6y6FLVdRnTyQ0bjeLplI-rprC8rnavU5JOUzfNbmC7GbHhjgWJCgkE6utg7mIrjrd3k1r_RrHHS4Q9BhqGU69qlfn-jM_mqPExv6RFnbUZ7vzvP3fRduVd4l55HfbQms720aar8lT5ARr3MrdWokZgC8zhHq4SHNuxaHMMTix2fSHAPI17he1axn0wec94kOV6Ie3b-eNyNSueFofoYTi471-TaqQCUSBrBVGKilCmvugaE0jNFFWBhCCPKi5DpoJYKhMGIo1oKrxY-txEUnggs4IJ30Q0OEKtbJnpY4RNKMFZiiAYZ6AINJNCcsENCyyIF_WjNvJryiaqwhu3Yy_mSYOUbCmVAKUSR6nEa6PLj29eSrSNX3d3aoYlleTlCYSTQUxti38bXdUMapZ_Pu3kb9tP0VbX8thVtnRQq1i96jO0od6KWb46dzfyHZVS2L8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yFX3xW5xOzYNvGmjXpmkex9iYOMfQOfZWkjTR4dbJWv37TdLWoqigT4UmDeUu98Xd_Q6AC0cxjwlJUMxDhfzYFYjyQCESa1-ZNbFo2ozpuE8Gg3AyocOiKSwtq93LlKTV1FWzm7bdBJlwx4BE-UgH6qu-tlimkO_uflzq3yB0aI6wR7SGodgpWmW-P-OzOap8zC9pUWttutv_-88dsFV4l7CVX4ddsCKTPbBuqzxFug-GrcSu5agR0ABz2IetBIdmLNoMaicW2r4QzTwJW5npWoZtbfKeYSdJ5Zybt7PHxXKaPc0PwEO3M2r3UDFSAQktaxkSAjOfxy5rKuVxSQQWHtdBHhaU-0R4IRfK91gc4Jg5IXepCjhztMwywlwVYO8Q1JJFIo8AVD7XzlKgg3GiFYEknHHKqCKeAfHCblAHbknZSBR442bsxSyqkJINpSJNqchSKnLq4PLjm5ccbePX3Y2SYVEheWmkw0kvxKbFvw6uSgZVyz-fdvy37edgoze67Uf968HNCdhsGn7bKpcGqGXLV3kK1sRbNk2XZ_Z2vgPHhduj
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_iF774LU6n5sE3DetXmvZxzA3FMQbq2FtI0kSHWzfW6t9vkrZORQXxqdCkodwluTvufr8D4NxRzGdCEpTwSKEgcQWKeagQSbSvzDwsPJsxHXRJrxcNh3H_A4rfVrtXKckC02BYmtK8MUtUYwF803acIBP6GMKoAOmgfSUwTYNMvH43qO7iMHLigm2P6Nsmxk4Jm_l-jc-maeFvfkmRWsvT2fr_P2-DzdLrhM1im-yAJZnugjVb_SmyPdBvpnasYJOAhrDDPmyFODTt0sZQO7fQ4kW0UiVs5gbNDFvaFD7DdprJCTdvx4_T-Sh_muyDh077vnWNylYLSOgzmCMhMAt44jJPKZ9LIrDwuQ7-sIh5QIQfcaECnyUhTpgTcTdWIWeOPsuMMFeF2D8Ay-k0lYcAqoBrJyrUQTrRF4QknPGYxYr4htwLu2ENuJWUqSh5yE07jDFdMCgbSVEtKWolRZ0auHj_ZlawcPw6u14pj5YnMqM6zPQjbKD_NXBZKWsx_PNqR3-bfgbW-1cd2r3p3R6DDc-o2xa_1MFyPn-RJ2BVvOajbH5qN-ob8J3khw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Artificial+Neural+Network+Model+for+Timescale+Atomic+Clock+Ensemble+Algorithm&rft.jtitle=M%C4%80PAN+%3A+journal+of+Metrology+Society+of+India&rft.au=Sruthikeerthi+Nandita%2C+R.&rft.au=Maharana%2C+Shikha&rft.au=Rajathilagam%2C+B.&rft.au=Subramanya+Ganesh%2C+T.&rft.date=2020-12-01&rft.pub=Springer+India&rft.issn=0970-3950&rft.eissn=0974-9853&rft.volume=35&rft.issue=4&rft.spage=547&rft.epage=554&rft_id=info:doi/10.1007%2Fs12647-020-00414-0&rft.externalDocID=10_1007_s12647_020_00414_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0970-3950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0970-3950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0970-3950&client=summon