An Artificial Neural Network Model for Timescale Atomic Clock Ensemble Algorithm
Atomic clocks work on a standard frequency generated by the electron transitions in the atoms of the core material. A timescale is a reference frequency and phase measure generated by a set of atomic clocks. An ensemble algorithm combines the participating atomic clocks to form a “perfect” clock. Th...
Uloženo v:
| Vydáno v: | MĀPAN : journal of Metrology Society of India Ročník 35; číslo 4; s. 547 - 554 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New Delhi
Springer India
01.12.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 0970-3950, 0974-9853 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Atomic clocks work on a standard frequency generated by the electron transitions in the atoms of the core material. A timescale is a reference frequency and phase measure generated by a set of atomic clocks. An ensemble algorithm combines the participating atomic clocks to form a “perfect” clock. The perfect clock is very stable and precise in terms of frequency and phase. There are many methods that exist to develop an ensemble for a timescale such as Kalman filter-based algorithms, inverse Allan variance-based algorithms, etc. A neural network-based realization of the ensemble algorithm for a timescale is discussed in this paper. The artificial neural network (ANN) model dynamically adapts the weights of the clocks to accommodate the behavioural changes in the clocks. This paper uses different types of M-sample deviations like overlapping Allan deviation and overlapping Hadamard deviation as the inputs to the model. |
|---|---|
| AbstractList | Atomic clocks work on a standard frequency generated by the electron transitions in the atoms of the core material. A timescale is a reference frequency and phase measure generated by a set of atomic clocks. An ensemble algorithm combines the participating atomic clocks to form a “perfect” clock. The perfect clock is very stable and precise in terms of frequency and phase. There are many methods that exist to develop an ensemble for a timescale such as Kalman filter-based algorithms, inverse Allan variance-based algorithms, etc. A neural network-based realization of the ensemble algorithm for a timescale is discussed in this paper. The artificial neural network (ANN) model dynamically adapts the weights of the clocks to accommodate the behavioural changes in the clocks. This paper uses different types of M-sample deviations like overlapping Allan deviation and overlapping Hadamard deviation as the inputs to the model. |
| Author | Krishnamoorthy, Subhalakshmi Subramanya Ganesh, T. Sruthikeerthi Nandita, R. Maharana, Shikha Rajathilagam, B. |
| Author_xml | – sequence: 1 givenname: R. orcidid: 0000-0002-9233-5507 surname: Sruthikeerthi Nandita fullname: Sruthikeerthi Nandita, R. email: sruthikeerthi1311@gmail.com organization: Navigation Systems Area, ISRO Telemetry Tracking and Command Network (ISTRAC), ISRO – sequence: 2 givenname: Shikha surname: Maharana fullname: Maharana, Shikha organization: Navigation Systems Area, ISRO Telemetry Tracking and Command Network (ISTRAC), ISRO – sequence: 3 givenname: B. surname: Rajathilagam fullname: Rajathilagam, B. organization: Navigation Systems Area, ISRO Telemetry Tracking and Command Network (ISTRAC), ISRO – sequence: 4 givenname: T. surname: Subramanya Ganesh fullname: Subramanya Ganesh, T. organization: Navigation Systems Area, ISRO Telemetry Tracking and Command Network (ISTRAC), ISRO – sequence: 5 givenname: Subhalakshmi surname: Krishnamoorthy fullname: Krishnamoorthy, Subhalakshmi organization: Navigation Systems Area, ISRO Telemetry Tracking and Command Network (ISTRAC), ISRO |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7CKxDowju0kXlZVeUjlsShry3Hs4jaJi-0K8fekDRISi65mNLpnZnQmaNS5TiN0jeEWAxR3AWc5LVLIIAWgmKZwhsbAC5rykpHRsYeUcAYXaBLCBiAvgfMxept1ycxHa6yyskle9N4fS_xyfps8u1o3iXE-WdlWByUbncyia61K5o1T22TRBd1Wh2mzdt7Gj_YSnRvZBH31W6fo_X6xmj-my9eHp_lsmSqCeUyVYpJWNZaZMaTShWKKVLikTPGKFoqUlTKUyDpntYSywtzklYSCU1lIbHJGpuhm2Lvz7nOvQxQbt_ddf1JklJOSZYySPlUOKeVdCF4boWyU0bouemkbgUEc_InBn-j9iaM_AT2a_UN33rbSf5-GyACFPtyttf_76gT1A56ihLc |
| CitedBy_id | crossref_primary_10_1007_s12647_020_00421_1 crossref_primary_10_1016_j_procs_2023_01_152 |
| Cites_doi | 10.1109/eftf.2014.7331564 10.1007/s12647-016-0197-x 10.1002/j.2334-5837.2019.00701.x 10.1134/S2075108716010028 |
| ContentType | Journal Article |
| Copyright | Metrology Society of India 2020 Metrology Society of India 2020. |
| Copyright_xml | – notice: Metrology Society of India 2020 – notice: Metrology Society of India 2020. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s12647-020-00414-0 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 0974-9853 |
| EndPage | 554 |
| ExternalDocumentID | 10_1007_s12647_020_00414_0 |
| GroupedDBID | -EM 06D 0R~ 203 29M 29~ 2KG 2VQ 30V 4.4 406 408 40D 5VS 67Z 8TC 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD AYJHY BGNMA CAG COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXC IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9T PT4 R9I RIG RLLFE ROL RSV S1Z S27 S3B SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABRTQ AFDZB AFOHR AHPBZ ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c319t-cc5a4bd1a2ff3be7c5c3b1845c9b47c38bcf43ad65da08b19f6ba0794a7a1f653 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000597725300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0970-3950 |
| IngestDate | Thu Sep 25 00:50:34 EDT 2025 Sat Nov 29 04:40:07 EST 2025 Tue Nov 18 21:45:39 EST 2025 Fri Feb 21 02:49:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Atomic Clocks Frequency stability analysis Indian regional navigation satellite system (IRNSS) Allan deviation Artificial neural networks IRNSS Network Timing Centre (IRNWT) Navigation with Indian Constellation (NavIC) Hadamard deviation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-cc5a4bd1a2ff3be7c5c3b1845c9b47c38bcf43ad65da08b19f6ba0794a7a1f653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9233-5507 |
| PQID | 2493852543 |
| PQPubID | 2044123 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2493852543 crossref_citationtrail_10_1007_s12647_020_00414_0 crossref_primary_10_1007_s12647_020_00414_0 springer_journals_10_1007_s12647_020_00414_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New Delhi |
| PublicationPlace_xml | – name: New Delhi – name: Dordrecht |
| PublicationSubtitle | Journal of Metrology Society of India |
| PublicationTitle | MĀPAN : journal of Metrology Society of India |
| PublicationTitleAbbrev | MAPAN |
| PublicationYear | 2020 |
| Publisher | Springer India Springer Nature B.V |
| Publisher_xml | – name: Springer India – name: Springer Nature B.V |
| References | P. Sherman, “Allan Variance” Iowa State University. http://home.engineering.iastate.edu/~shermanp/AERE432/lectures/Rate%20Gyros/Allan%20variance.pdf. MaharanaSBhardwajanAGaneshTRamakrishnaBTimescale Ensemble Performance Enhancement Through Use of Artificial Neural NetworkINCOSE Int. Symp.20192947848810.1002/j.2334-5837.2019.00701.x S. Podogova, K. Mishagin, Frequency Combining System for Atomic Clock Ensembles. (2014) https://doi.org/10.1109/eftf.2014.7331564. W. Riley, and D.A. Howe, NIST Handbook of Frequency Stability Analysis. NIST Special Publication, 1065. 20899 (2008). BhardwajanAMaharanaSGaneshTA Comparative Study of Methods of Clock Ensemble DevelopmentMAPAN201710.1007/s12647-016-0197-x J. Nelson, “What is an Atomic Clock?” nasa.gov. http://www.nasa.gov/feature/jpl/what-is-an-atomic-clock. Ahn, In Soo, “State modeling of clock noises and its application” (1986). Retrospective Theses and Dissertations. 8053. https://lib.dr.iastate.edu/rtd/8053. W.J. Riley, “3-corn Hat” wriley.com. http://www.wriley.com/3-CornHat.htm. Accessed 7 March 2020. C. A. Greenhall, Likelihood and Least-squares Approach to M-Cornered Hat. PORC 1987 PTTI Meeting 9 (1987). D.W. Allan, Historicity, Strengths, and Weaknesses of Allan Variances and their General Applications. Gyroscopy Navig. (2016). 414_CR1 414_CR2 414_CR10 414_CR5 414_CR6 A Bhardwajan (414_CR7) 2017 414_CR4 414_CR9 414_CR8 S Maharana (414_CR3) 2019; 29 |
| References_xml | – reference: Ahn, In Soo, “State modeling of clock noises and its application” (1986). Retrospective Theses and Dissertations. 8053. https://lib.dr.iastate.edu/rtd/8053. – reference: W. Riley, and D.A. Howe, NIST Handbook of Frequency Stability Analysis. NIST Special Publication, 1065. 20899 (2008). – reference: C. A. Greenhall, Likelihood and Least-squares Approach to M-Cornered Hat. PORC 1987 PTTI Meeting 9 (1987). – reference: P. Sherman, “Allan Variance” Iowa State University. http://home.engineering.iastate.edu/~shermanp/AERE432/lectures/Rate%20Gyros/Allan%20variance.pdf. – reference: D.W. Allan, Historicity, Strengths, and Weaknesses of Allan Variances and their General Applications. Gyroscopy Navig. (2016). – reference: BhardwajanAMaharanaSGaneshTA Comparative Study of Methods of Clock Ensemble DevelopmentMAPAN201710.1007/s12647-016-0197-x – reference: S. Podogova, K. Mishagin, Frequency Combining System for Atomic Clock Ensembles. (2014) https://doi.org/10.1109/eftf.2014.7331564. – reference: J. Nelson, “What is an Atomic Clock?” nasa.gov. http://www.nasa.gov/feature/jpl/what-is-an-atomic-clock. – reference: MaharanaSBhardwajanAGaneshTRamakrishnaBTimescale Ensemble Performance Enhancement Through Use of Artificial Neural NetworkINCOSE Int. Symp.20192947848810.1002/j.2334-5837.2019.00701.x – reference: W.J. Riley, “3-corn Hat” wriley.com. http://www.wriley.com/3-CornHat.htm. Accessed 7 March 2020. – ident: 414_CR10 doi: 10.1109/eftf.2014.7331564 – year: 2017 ident: 414_CR7 publication-title: MAPAN doi: 10.1007/s12647-016-0197-x – ident: 414_CR9 – ident: 414_CR2 – volume: 29 start-page: 478 year: 2019 ident: 414_CR3 publication-title: INCOSE Int. Symp. doi: 10.1002/j.2334-5837.2019.00701.x – ident: 414_CR5 doi: 10.1134/S2075108716010028 – ident: 414_CR8 – ident: 414_CR1 – ident: 414_CR6 – ident: 414_CR4 |
| SSID | ssj0068099 |
| Score | 2.1783018 |
| Snippet | Atomic clocks work on a standard frequency generated by the electron transitions in the atoms of the core material. A timescale is a reference frequency and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 547 |
| SubjectTerms | Algorithms Artificial neural networks Atomic clocks Clocks & watches Deviation Electron transitions Kalman filters Mathematical and Computational Physics Mathematical Methods in Physics Measurement Science and Instrumentation Neural networks Numerical and Computational Physics Original Paper Physics Physics and Astronomy Simulation Theoretical Time |
| Title | An Artificial Neural Network Model for Timescale Atomic Clock Ensemble Algorithm |
| URI | https://link.springer.com/article/10.1007/s12647-020-00414-0 https://www.proquest.com/docview/2493852543 |
| Volume | 35 |
| WOSCitedRecordID | wos000597725300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 0974-9853 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068099 issn: 0970-3950 databaseCode: RSV dateStart: 20090301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yFXzxW5xOyYNvGmjXpmkex9jwQcbwY-ytJGmiw62Ttfr3e0lbi6KCPhWaNJS73Bd39zuELjwjAqE0I6mMDQlTXxEuI0NYCr6y6FLVdRnTyQ0bjeLplI-rprC8rnavU5JOUzfNbmC7GbHhjgWJCgkE6utg7mIrjrd3k1r_RrHHS4Q9BhqGU69qlfn-jM_mqPExv6RFnbUZ7vzvP3fRduVd4l55HfbQms720aar8lT5ARr3MrdWokZgC8zhHq4SHNuxaHMMTix2fSHAPI17he1axn0wec94kOV6Ie3b-eNyNSueFofoYTi471-TaqQCUSBrBVGKilCmvugaE0jNFFWBhCCPKi5DpoJYKhMGIo1oKrxY-txEUnggs4IJ30Q0OEKtbJnpY4RNKMFZiiAYZ6AINJNCcsENCyyIF_WjNvJryiaqwhu3Yy_mSYOUbCmVAKUSR6nEa6PLj29eSrSNX3d3aoYlleTlCYSTQUxti38bXdUMapZ_Pu3kb9tP0VbX8thVtnRQq1i96jO0od6KWb46dzfyHZVS2L8 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yFX3xW5xOzYNvGmjXpmkex9iYOMfQOfZWkjTR4dbJWv37TdLWoqigT4UmDeUu98Xd_Q6AC0cxjwlJUMxDhfzYFYjyQCESa1-ZNbFo2ozpuE8Gg3AyocOiKSwtq93LlKTV1FWzm7bdBJlwx4BE-UgH6qu-tlimkO_uflzq3yB0aI6wR7SGodgpWmW-P-OzOap8zC9pUWttutv_-88dsFV4l7CVX4ddsCKTPbBuqzxFug-GrcSu5agR0ABz2IetBIdmLNoMaicW2r4QzTwJW5npWoZtbfKeYSdJ5Zybt7PHxXKaPc0PwEO3M2r3UDFSAQktaxkSAjOfxy5rKuVxSQQWHtdBHhaU-0R4IRfK91gc4Jg5IXepCjhztMwywlwVYO8Q1JJFIo8AVD7XzlKgg3GiFYEknHHKqCKeAfHCblAHbknZSBR442bsxSyqkJINpSJNqchSKnLq4PLjm5ccbePX3Y2SYVEheWmkw0kvxKbFvw6uSgZVyz-fdvy37edgoze67Uf968HNCdhsGn7bKpcGqGXLV3kK1sRbNk2XZ_Z2vgPHhduj |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_iF774LU6n5sE3DetXmvZxzA3FMQbq2FtI0kSHWzfW6t9vkrZORQXxqdCkodwluTvufr8D4NxRzGdCEpTwSKEgcQWKeagQSbSvzDwsPJsxHXRJrxcNh3H_A4rfVrtXKckC02BYmtK8MUtUYwF803acIBP6GMKoAOmgfSUwTYNMvH43qO7iMHLigm2P6Nsmxk4Jm_l-jc-maeFvfkmRWsvT2fr_P2-DzdLrhM1im-yAJZnugjVb_SmyPdBvpnasYJOAhrDDPmyFODTt0sZQO7fQ4kW0UiVs5gbNDFvaFD7DdprJCTdvx4_T-Sh_muyDh077vnWNylYLSOgzmCMhMAt44jJPKZ9LIrDwuQ7-sIh5QIQfcaECnyUhTpgTcTdWIWeOPsuMMFeF2D8Ay-k0lYcAqoBrJyrUQTrRF4QknPGYxYr4htwLu2ENuJWUqSh5yE07jDFdMCgbSVEtKWolRZ0auHj_ZlawcPw6u14pj5YnMqM6zPQjbKD_NXBZKWsx_PNqR3-bfgbW-1cd2r3p3R6DDc-o2xa_1MFyPn-RJ2BVvOajbH5qN-ob8J3khw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Artificial+Neural+Network+Model+for+Timescale+Atomic+Clock+Ensemble+Algorithm&rft.jtitle=M%C4%80PAN+%3A+journal+of+Metrology+Society+of+India&rft.au=Sruthikeerthi+Nandita%2C+R.&rft.au=Maharana%2C+Shikha&rft.au=Rajathilagam%2C+B.&rft.au=Subramanya+Ganesh%2C+T.&rft.date=2020-12-01&rft.pub=Springer+India&rft.issn=0970-3950&rft.eissn=0974-9853&rft.volume=35&rft.issue=4&rft.spage=547&rft.epage=554&rft_id=info:doi/10.1007%2Fs12647-020-00414-0&rft.externalDocID=10_1007_s12647_020_00414_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0970-3950&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0970-3950&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0970-3950&client=summon |