Multi-guide particle swarm optimization for multi-objective optimization: empirical and stability analysis
This article presents a new particle swarm optimization (PSO)-based multi-objective optimization algorithm, named multi-guide particle swarm optimization (MGPSO). The MGPSO is a multi-swarm approach, where each subswarm optimizes one of the objectives. An archive guide is added to the velocity updat...
Saved in:
| Published in: | Swarm intelligence Vol. 13; no. 3-4; pp. 245 - 276 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.12.2019
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1935-3812, 1935-3820 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This article presents a new particle swarm optimization (PSO)-based multi-objective optimization algorithm, named multi-guide particle swarm optimization (MGPSO). The MGPSO is a multi-swarm approach, where each subswarm optimizes one of the objectives. An archive guide is added to the velocity update equation to facilitate convergence to a Pareto front of non-dominated solutions. An extensive empirical and stability analysis of the MGPSO is conducted. The empirical analysis focuses on the exploration behavior of the MGPSO and compares the performance of the MGPSO with that of state-of-the-art multi-objective PSO and evolutionary algorithms. The results show that the MGPSO is highly competitive on a number of benchmark functions. The paper provides a theoretical stability analysis which focuses on the sufficient and necessary conditions for order-1 and order-2 stability of the MGPSO. The paper extends existing work on MGPSO stability analysis by deriving new stability criteria for differing values of the acceleration coefficients used in the velocity update equation. |
|---|---|
| AbstractList | This article presents a new particle swarm optimization (PSO)-based multi-objective optimization algorithm, named multi-guide particle swarm optimization (MGPSO). The MGPSO is a multi-swarm approach, where each subswarm optimizes one of the objectives. An archive guide is added to the velocity update equation to facilitate convergence to a Pareto front of non-dominated solutions. An extensive empirical and stability analysis of the MGPSO is conducted. The empirical analysis focuses on the exploration behavior of the MGPSO and compares the performance of the MGPSO with that of state-of-the-art multi-objective PSO and evolutionary algorithms. The results show that the MGPSO is highly competitive on a number of benchmark functions. The paper provides a theoretical stability analysis which focuses on the sufficient and necessary conditions for order-1 and order-2 stability of the MGPSO. The paper extends existing work on MGPSO stability analysis by deriving new stability criteria for differing values of the acceleration coefficients used in the velocity update equation. |
| Author | Engelbrecht, Andries P. Cleghorn, Christopher W. Scheepers, Christiaan |
| Author_xml | – sequence: 1 givenname: Christiaan surname: Scheepers fullname: Scheepers, Christiaan – sequence: 2 givenname: Andries P. orcidid: 0000-0002-0242-3539 surname: Engelbrecht fullname: Engelbrecht, Andries P. email: engel@sun.ac.za organization: Department of Industrial Engineering, and Computer Science Division, University of Stellenbosch – sequence: 3 givenname: Christopher W. surname: Cleghorn fullname: Cleghorn, Christopher W. organization: Department of Computer Science, School for Information Technology, University of Pretoria |
| BookMark | eNp9kMlOwzAURS1UJNrCD7CyxDrgoakTdqhikorYwNqyHbtylMTBdkDl63EbBIJFV2_QPW-4MzDpXKcBOMfoEiPErgLGjOAM4TJDCLOUHYEpLmme0YKgyU-OyQmYhVAjlJeU0imon4Ym2mwz2ErDXvhoVaNh-BC-ha6PtrWfIlrXQeM8bPdaJ2uton3XfwTXULe99VaJBoqugiEKaRsbt6kSzTbYcAqOjWiCPvuOc_B6d_uyesjWz_ePq5t1piguY6YUlYt8iUq1QIzJktGiyskCU4MVYaldUSkNNktJCmakJMRUlSaGlQQpzAydg4txbu_d26BD5LUbfDoicEJYzhBO05OKjCrlXQheG9572wq_5Rjxnad89JQnT_neU76Din-QsnH_fvTCNodROqIh7ek22v9edYD6Ajdnj7A |
| CitedBy_id | crossref_primary_10_1080_00207543_2022_2122619 crossref_primary_10_1016_j_asoc_2022_108938 crossref_primary_10_1016_j_swevo_2021_100943 crossref_primary_10_1007_s11721_022_00210_3 crossref_primary_10_1016_j_swevo_2022_101196 crossref_primary_10_1016_j_swevo_2023_101262 crossref_primary_10_1109_TEVC_2024_3417978 crossref_primary_10_1016_j_asoc_2021_107814 crossref_primary_10_1016_j_ejor_2022_06_009 crossref_primary_10_1016_j_swevo_2024_101742 crossref_primary_10_3390_a16020062 crossref_primary_10_3390_math11132980 |
| Cites_doi | 10.1162/106365600568202 10.1109/TEVC.2007.892759 10.1007/3-540-61723-X_1022 10.1109/4235.996017 10.1007/s11721-015-0109-7 10.1007/s11721-017-0141-x 10.1023/A:1016568309421 10.1162/106365600568167 10.1109/TEVC.2005.861417 10.1109/4235.797969 10.1016/j.swevo.2013.08.004 10.1109/TEVC.2015.2508101 10.1109/TEVC.2002.804322 10.1109/CEC.2017.7969361 10.1109/SIS.2013.6615173 10.1109/CEC.2016.7743828 10.1109/MCDM.2009.4938830 10.1016/j.swevo.2018.03.012 10.1109/CEC.2013.6557744 10.1109/IJCNN.2008.4634035 10.1145/2739482.2768462 10.1109/CEC.2016.7744013 10.1109/SSCI.2016.7850265 10.1007/978-3-540-31880-4 10.1007/978-3-540-24694-7 10.1109/CEC.2016.7744014 10.1007/978-3-642-37140-0 10.1109/CEC.2004.1330858 10.1007/978-3-030-00533-7_16 10.1145/508791.508907 10.1109/ICNN.1995.488968 10.1109/CEC.2009.4982973 10.1109/CEC.2009.4983089 10.1007/3-540-45356-3 10.1007/BFb0056872 10.1201/9781439896129 10.1109/SSCI.2016.7850264 10.1109/CEC.2015.7256888 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Swarm Intelligence is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Swarm Intelligence is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION 8FE 8FH AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s11721-019-00171-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1935-3820 |
| EndPage | 276 |
| ExternalDocumentID | 10_1007_s11721_019_00171_0 |
| GroupedDBID | -5B -5G -BR -D3 -DT -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXD IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV KZ1 LLZTM M4Y M7P MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FH AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-cc3b45609c4077b9738d52413f1c2709cd3bbf1f6b287fbb22fdde2f7920c17f3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000495817800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1935-3812 |
| IngestDate | Tue Nov 04 23:03:14 EST 2025 Tue Nov 18 21:18:58 EST 2025 Sat Nov 29 01:34:26 EST 2025 Fri Feb 21 02:33:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3-4 |
| Keywords | Attainment surface Order-2 stability Multi-objective optimization Stability analysis Multi-guide particle swarm optimization Particle swarm optimization Order-1 stability |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-cc3b45609c4077b9738d52413f1c2709cd3bbf1f6b287fbb22fdde2f7920c17f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0242-3539 |
| PQID | 2275701560 |
| PQPubID | 2044102 |
| PageCount | 32 |
| ParticipantIDs | proquest_journals_2275701560 crossref_primary_10_1007_s11721_019_00171_0 crossref_citationtrail_10_1007_s11721_019_00171_0 springer_journals_10_1007_s11721_019_00171_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20191200 2019-12-00 20191201 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 20191200 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Swarm intelligence |
| PublicationTitleAbbrev | Swarm Intell |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Bonyadi, Michalewicz (CR1) 2016; 20 Fonseca, Fleming (CR14) 1995; 1141 Zitzler, Deb, Thiele (CR46) 2000; 8 CR39 CR38 CR37 CR36 CR35 CR33 CR32 CR31 CR30 CR2 CR4 CR3 CR6 CR8 Zitzler, Thiele (CR49) 1999; 4 CR9 CR48 CR47 Deb, Pratap, Agarwal, Meyarivan (CR13) 2002; 6 CR44 CR43 CR42 CR41 Knowles, Corne (CR25) 2000; 8 CR40 Huband, Hingston, Barone, While (CR23) 2006; 10 Parsopoulos, Vrahatis (CR34) 2002; 1 Cleghorn, Engelbrecht (CR7) 2018; 12 CR18 CR17 Deb (CR11) 2001 CR15 CR10 Helbig, Engelbrecht (CR21) 2014; 14 Cleghorn, Engelbrecht (CR5) 2015; 9 CR29 CR28 CR27 CR26 Zhang, Li (CR45) 2007; 11 CR24 CR22 CR20 Purshouse, Fleming, Fonseca, Greco, Shaw (CR19) 2013 Schoenauer, Deb, Rudolph, Yao, Lutton, Merelo, Schwefel (CR12) 2000 Gibbons, Chakraborti (CR16) 2010 171_CR38 171_CR39 (171_CR12) 2000 171_CR30 171_CR31 KE Parsopoulos (171_CR34) 2002; 1 171_CR32 171_CR33 171_CR35 171_CR36 MR Bonyadi (171_CR1) 2016; 20 171_CR37 K Deb (171_CR11) 2001 171_CR40 E Zitzler (171_CR46) 2000; 8 JD Gibbons (171_CR16) 2010 Q Zhang (171_CR45) 2007; 11 171_CR41 171_CR42 171_CR43 K Deb (171_CR13) 2002; 6 171_CR44 171_CR47 171_CR48 M Helbig (171_CR21) 2014; 14 S Huband (171_CR23) 2006; 10 (171_CR19) 2013 E Zitzler (171_CR49) 1999; 4 171_CR17 171_CR18 JD Knowles (171_CR25) 2000; 8 171_CR10 171_CR15 CW Cleghorn (171_CR5) 2015; 9 CW Cleghorn (171_CR7) 2018; 12 CM Fonseca (171_CR14) 1995; 1141 171_CR27 171_CR28 171_CR29 171_CR2 171_CR20 171_CR22 171_CR24 171_CR26 171_CR6 171_CR3 171_CR4 171_CR9 171_CR8 |
| References_xml | – volume: 8 start-page: 173 issue: 2 year: 2000 end-page: 195 ident: CR46 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evolutionary Computation doi: 10.1162/106365600568202 – ident: CR22 – ident: CR4 – ident: CR39 – volume: 11 start-page: 712 issue: 6 year: 2007 end-page: 731 ident: CR45 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2007.892759 – ident: CR35 – ident: CR29 – ident: CR8 – volume: 1141 start-page: 584 year: 1995 end-page: 593 ident: CR14 article-title: On the performance assessment and comparison of stochastic multiobjective optimisers publication-title: Parallel Problem Solving from Nature—PPSN IV doi: 10.1007/3-540-61723-X_1022 – ident: CR42 – volume: 6 start-page: 182 issue: 2 year: 2002 end-page: 197 ident: CR13 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – ident: CR15 – volume: 9 start-page: 177 issue: 2–3 year: 2015 end-page: 203 ident: CR5 article-title: Particle swarm variants: Standardized convergence analysis publication-title: Swarm Intelligence doi: 10.1007/s11721-015-0109-7 – volume: 12 start-page: 1 issue: 1 year: 2018 end-page: 22 ident: CR7 article-title: Particle swarm stability: A theoretical extension using the non-stagnate distribution assumption publication-title: Swarm Intelligence doi: 10.1007/s11721-017-0141-x – ident: CR9 – ident: CR32 – ident: CR36 – ident: CR26 – volume: 1 start-page: 235 issue: 2 year: 2002 end-page: 306 ident: CR34 article-title: Recent approaches to global optimization problems through particle swarm optimization publication-title: Natural Computing doi: 10.1023/A:1016568309421 – ident: CR18 – ident: CR43 – year: 2000 ident: CR12 publication-title: Parallel Problem Solving from Nature PPSN VI – ident: CR47 – volume: 8 start-page: 149 issue: 2 year: 2000 end-page: 172 ident: CR25 article-title: Approximating the nondominated front using the Pareto archived evolution strategy publication-title: Evolutionary Computation doi: 10.1162/106365600568167 – ident: CR2 – ident: CR37 – ident: CR30 – volume: 10 start-page: 477 issue: 5 year: 2006 end-page: 506 ident: CR23 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.861417 – ident: CR10 – ident: CR33 – volume: 4 start-page: 257 issue: 3 year: 1999 end-page: 271 ident: CR49 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.797969 – year: 2013 ident: CR19 publication-title: Evolutionary Multi-Criterion Optimization – ident: CR6 – volume: 14 start-page: 31 year: 2014 end-page: 47 ident: CR21 article-title: Population-based metaheuristics for continuous boundary-constrained dynamic multi-objective optimisation problems publication-title: Swarm and Evolutionary Computing doi: 10.1016/j.swevo.2013.08.004 – ident: CR40 – ident: CR27 – ident: CR44 – ident: CR48 – volume: 20 start-page: 814 issue: 5 year: 2016 end-page: 819 ident: CR1 article-title: Stability analysis of the particle swarm optimization without stagnation assumption publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2015.2508101 – ident: CR3 – ident: CR38 – ident: CR17 – ident: CR31 – year: 2001 ident: CR11 publication-title: Multi-objective optimization using evolutionary algorithms doi: 10.1109/TEVC.2002.804322 – year: 2010 ident: CR16 publication-title: Nonparametric statistical inference – ident: CR28 – ident: CR41 – ident: CR24 – ident: CR20 – ident: 171_CR40 doi: 10.1109/CEC.2017.7969361 – ident: 171_CR26 doi: 10.1109/SIS.2013.6615173 – volume: 1 start-page: 235 issue: 2 year: 2002 ident: 171_CR34 publication-title: Natural Computing doi: 10.1023/A:1016568309421 – ident: 171_CR6 doi: 10.1109/CEC.2016.7743828 – ident: 171_CR28 doi: 10.1109/MCDM.2009.4938830 – ident: 171_CR44 doi: 10.1016/j.swevo.2018.03.012 – ident: 171_CR20 doi: 10.1109/CEC.2013.6557744 – volume-title: Multi-objective optimization using evolutionary algorithms year: 2001 ident: 171_CR11 doi: 10.1109/TEVC.2002.804322 – ident: 171_CR31 doi: 10.1109/IJCNN.2008.4634035 – ident: 171_CR29 doi: 10.1145/2739482.2768462 – ident: 171_CR38 doi: 10.1109/CEC.2016.7744013 – ident: 171_CR35 – ident: 171_CR2 doi: 10.1109/SSCI.2016.7850265 – ident: 171_CR22 doi: 10.1007/978-3-540-31880-4 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 171_CR13 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – ident: 171_CR41 – ident: 171_CR9 doi: 10.1007/978-3-540-24694-7 – volume: 8 start-page: 149 issue: 2 year: 2000 ident: 171_CR25 publication-title: Evolutionary Computation doi: 10.1162/106365600568167 – ident: 171_CR30 doi: 10.1109/IJCNN.2008.4634035 – ident: 171_CR27 doi: 10.1109/SIS.2013.6615173 – ident: 171_CR43 doi: 10.1007/978-3-540-31880-4 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 171_CR45 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2007.892759 – ident: 171_CR17 – ident: 171_CR39 doi: 10.1109/CEC.2016.7744014 – volume-title: Evolutionary Multi-Criterion Optimization year: 2013 ident: 171_CR19 doi: 10.1007/978-3-642-37140-0 – ident: 171_CR32 doi: 10.1109/CEC.2004.1330858 – volume: 4 start-page: 257 issue: 3 year: 1999 ident: 171_CR49 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.797969 – ident: 171_CR8 doi: 10.1007/978-3-030-00533-7_16 – ident: 171_CR33 doi: 10.1145/508791.508907 – ident: 171_CR42 – ident: 171_CR24 doi: 10.1109/ICNN.1995.488968 – ident: 171_CR10 – ident: 171_CR15 doi: 10.1109/CEC.2009.4982973 – volume: 9 start-page: 177 issue: 2–3 year: 2015 ident: 171_CR5 publication-title: Swarm Intelligence doi: 10.1007/s11721-015-0109-7 – volume: 1141 start-page: 584 year: 1995 ident: 171_CR14 publication-title: Parallel Problem Solving from Nature—PPSN IV doi: 10.1007/3-540-61723-X_1022 – ident: 171_CR18 doi: 10.1109/CEC.2009.4983089 – volume: 12 start-page: 1 issue: 1 year: 2018 ident: 171_CR7 publication-title: Swarm Intelligence doi: 10.1007/s11721-017-0141-x – volume-title: Parallel Problem Solving from Nature PPSN VI year: 2000 ident: 171_CR12 doi: 10.1007/3-540-45356-3 – volume: 8 start-page: 173 issue: 2 year: 2000 ident: 171_CR46 publication-title: Evolutionary Computation doi: 10.1162/106365600568202 – ident: 171_CR47 – ident: 171_CR3 – volume: 10 start-page: 477 issue: 5 year: 2006 ident: 171_CR23 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.861417 – ident: 171_CR36 – ident: 171_CR48 doi: 10.1007/BFb0056872 – volume-title: Nonparametric statistical inference year: 2010 ident: 171_CR16 doi: 10.1201/9781439896129 – ident: 171_CR37 doi: 10.1109/SSCI.2016.7850264 – volume: 14 start-page: 31 year: 2014 ident: 171_CR21 publication-title: Swarm and Evolutionary Computing doi: 10.1016/j.swevo.2013.08.004 – volume: 20 start-page: 814 issue: 5 year: 2016 ident: 171_CR1 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2015.2508101 – ident: 171_CR4 doi: 10.1109/CEC.2015.7256888 |
| SSID | ssj0059333 |
| Score | 2.2715156 |
| Snippet | This article presents a new particle swarm optimization (PSO)-based multi-objective optimization algorithm, named multi-guide particle swarm optimization... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 245 |
| SubjectTerms | Algorithms Artificial Intelligence Communications Engineering Computer Communication Networks Computer Science Computer Systems Organization and Communication Networks Exploration Exploratory behavior Mathematical and Computational Engineering Networks Optimization Velocity |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8Mw9CHqwYvzE6dTcvCmgTX9SOpNxOFpiF_sVpo0kQ3XjXVT_Pe-pqllooIe276E8r4f7wvglBmjAukJlLSM0XKlMU3DwKeBMobHJhPKSLtsgvf7YjCIb11TWFFXu9cpSaupm2a3MlrB0DemdsgLxUB9Dc2dKBc23N0_1fo3xBDdr3LJIUV7xFyrzPd3LJujxsf8kha11qbX-t9_bsGm8y7JZcUO27Ci8x1o1ZsbiBPkXRjZvlv6vBhmmkwd95DiLZ2NyQSVyNh1ZxJ0aYmtOaQTOap04xLABdHj6dCOGSFpnhH0NW217Ts-VdNO9uCxd_1wdUPd1gWqUBznVClfolfVjRXGelzG3BdZWGbfjKcYx9eZL6XxTCQx2DJSMmZQRTKkLOsqjxt_H1bzSa4PgHi-irjUnglEikZQiTjQ6KCJKEbu0Cpqg1cjP1FuJHm5GeMlaYYpl8hMEJmJRWbSbcPZ55lpNZDjV-hOTdPECWeRMMZDblvI23Be07D5_PNth38DP4INVrKBLX7pwOp8ttDHsK5e58NidmKZ9gPwN-cQ priority: 102 providerName: Springer Nature |
| Title | Multi-guide particle swarm optimization for multi-objective optimization: empirical and stability analysis |
| URI | https://link.springer.com/article/10.1007/s11721-019-00171-0 https://www.proquest.com/docview/2275701560 |
| Volume | 13 |
| WOSCitedRecordID | wos000495817800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1935-3820 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0059333 issn: 1935-3812 databaseCode: M7P dateStart: 20191201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1935-3820 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0059333 issn: 1935-3812 databaseCode: BENPR dateStart: 20191201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1935-3820 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059333 issn: 1935-3812 databaseCode: RSV dateStart: 20070601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LT8IwGP-i4MGL-Iwokh68aSPrNrp5MWogngjBR7gttFsNRBgy0Pjf-7XrJJjIxcuSbV2z5Pc9-70AzplS0hNOgJwWM6pHGtOB77nUk0rxUMWBVMIMm-CdTtDvh1174JbZtMpCJhpBHadSn5FfMcZ9bup-b6bvVE-N0tFVO0JjE8q6SwIzqXvdQhL76Ky7eVTZp6iZmC2ayUvntO-DjnRITcsY2lhVTEtr81eA1OidduW_f7wLO9biJLc5iezBRjLZh0oxzYFY5j6AkanFpa-LYZyQqaUokn0OZmOSomAZ24pNgmYuMXmINBWjXF6uLLgmyXg6NK1HyGASE7Q_TQbuF97lHVAO4bnderp_oHYSA5XIonMqpSvQ0mqEEv0_LkLuBrGvI3LKkYzj49gVQjmqKdABU0IwplBsMkSbNaTDlXsEpUk6SY6BOK5scpE4ygsGqBhlEHoJGm1BM0SKSWSzCk4BQyRtm3I9LeMtWjZY1tBFCF1koIsaVbj4-WaaN-lYu7pW4BVZhs2iJVhVuCwQX77-e7eT9budwjbTRGYSYGpQms8WyRlsyY_5MJvVoXzX6nR7dUO2eO09vnwDqg_z3Q |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQYILO6KsPsAJLBonqRMkhBCLqFoqDkXiFmrHRq3oQhcqfopvZOwkVEWiNw4ckzhWEr-ZeRPPAnDItJaecAKUtJhR09KY1n3PpZ7Umoc6DqQWttkEr1aDp6fwYQY-s1wYE1aZ6USrqOOONP_ITxnjPrd5vxfdN2q6Rpnd1ayFRgKLsvoYocvWPy9d4_oeMXZ7U7u6o2lXASoRbgMqpSuQNRRCib4MFyF3g9g3u0vakYzj6dgVQju6KNCZ0EIwplEFMHxyVpAO1y7OOwtzSCMYt6GCD5nm90PXtq5HTuRTtIQsTdJJUvWMr4WOe0htiRpamDSEY3b7Y0PW2rnb5f_2hVZgKWXU5DIRgVWYUe01WM66VZBUea1D0-Ya05dhI1akm0oM6Y_qvRbpoOJspRmpBGk8sXGWtCOaiT2YGHBGVKvbsKVVSL0dE-TXNsL4A4-SCi8b8Pgnb7wJuXanrbaAOK4scqEc7QV1NPwyCD2FpDQohigRShbz4GTLHsm0DLvpBvIajQtIG6hECJXIQiUq5OH4-55uUoRk6ujdDB9RqpD60RgceTjJEDa-_Pts29NnO4CFu9p9JaqUquUdWGQG4DbYZxdyg95Q7cG8fB80-r19KyoEnv8aeV_ncU5m |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRXxxXnE6NQ--adiaXtL6JupQlDHwwt5Ckzay4bqydYr_3pO0tU5UEB_bJqHk3DnnOwehI6qUdITlg6RFlOiRxiR0HZs4UikWqMiXSphhE6zb9fv9oPcJxW-q3cuUZI5p0F2akqyVRqpVAd905AJhcEBMwxcCQfuiowvpdbx-91jqYhfCdTvPK7sEbBMtYDPfnzFvmip_80uK1FieTv3__7yGVguvE5_lbLKOFuJkA9XLiQ64EPBNNDR4XPI0G0QxTguuwtPXcDLCY1AuowK1icHVxaYWkYzFMNeZcwtOcTxKB6b9CA6TCIMPaqpw3-Ap74KyhR46l_fnV6SYxkAkiGlGpLQFeFvtQEIMyETAbD9ydVZOWZIyeB3ZQihLeQKCMCUEpQpUJwWK07a0mLK3US0ZJ_EOwpYtPSZiSzl-CMZR-oETg-PmewFwTSy9BrJKQnBZtCrXEzOeedVkWV8mh8vk5jJ5u4GOP_akeaOOX1c3S_ryQminnFLmMgMtb6CTkp7V559P2_3b8kO03Lvo8Nvr7s0eWqGaI0x9TBPVssks3kdL8iUbTCcHhpffASd88tg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-guide+particle+swarm+optimization+for+multi-objective+optimization%3A+empirical+and+stability+analysis&rft.jtitle=Swarm+intelligence&rft.au=Scheepers%2C+Christiaan&rft.au=Engelbrecht%2C+Andries+P.&rft.au=Cleghorn%2C+Christopher+W.&rft.date=2019-12-01&rft.issn=1935-3812&rft.eissn=1935-3820&rft.volume=13&rft.issue=3-4&rft.spage=245&rft.epage=276&rft_id=info:doi/10.1007%2Fs11721-019-00171-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11721_019_00171_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-3812&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-3812&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-3812&client=summon |