Multi-guide particle swarm optimization for multi-objective optimization: empirical and stability analysis

This article presents a new particle swarm optimization (PSO)-based multi-objective optimization algorithm, named multi-guide particle swarm optimization (MGPSO). The MGPSO is a multi-swarm approach, where each subswarm optimizes one of the objectives. An archive guide is added to the velocity updat...

Full description

Saved in:
Bibliographic Details
Published in:Swarm intelligence Vol. 13; no. 3-4; pp. 245 - 276
Main Authors: Scheepers, Christiaan, Engelbrecht, Andries P., Cleghorn, Christopher W.
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2019
Springer Nature B.V
Subjects:
ISSN:1935-3812, 1935-3820
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article presents a new particle swarm optimization (PSO)-based multi-objective optimization algorithm, named multi-guide particle swarm optimization (MGPSO). The MGPSO is a multi-swarm approach, where each subswarm optimizes one of the objectives. An archive guide is added to the velocity update equation to facilitate convergence to a Pareto front of non-dominated solutions. An extensive empirical and stability analysis of the MGPSO is conducted. The empirical analysis focuses on the exploration behavior of the MGPSO and compares the performance of the MGPSO with that of state-of-the-art multi-objective PSO and evolutionary algorithms. The results show that the MGPSO is highly competitive on a number of benchmark functions. The paper provides a theoretical stability analysis which focuses on the sufficient and necessary conditions for order-1 and order-2 stability of the MGPSO. The paper extends existing work on MGPSO stability analysis by deriving new stability criteria for differing values of the acceleration coefficients used in the velocity update equation.
AbstractList This article presents a new particle swarm optimization (PSO)-based multi-objective optimization algorithm, named multi-guide particle swarm optimization (MGPSO). The MGPSO is a multi-swarm approach, where each subswarm optimizes one of the objectives. An archive guide is added to the velocity update equation to facilitate convergence to a Pareto front of non-dominated solutions. An extensive empirical and stability analysis of the MGPSO is conducted. The empirical analysis focuses on the exploration behavior of the MGPSO and compares the performance of the MGPSO with that of state-of-the-art multi-objective PSO and evolutionary algorithms. The results show that the MGPSO is highly competitive on a number of benchmark functions. The paper provides a theoretical stability analysis which focuses on the sufficient and necessary conditions for order-1 and order-2 stability of the MGPSO. The paper extends existing work on MGPSO stability analysis by deriving new stability criteria for differing values of the acceleration coefficients used in the velocity update equation.
Author Engelbrecht, Andries P.
Cleghorn, Christopher W.
Scheepers, Christiaan
Author_xml – sequence: 1
  givenname: Christiaan
  surname: Scheepers
  fullname: Scheepers, Christiaan
– sequence: 2
  givenname: Andries P.
  orcidid: 0000-0002-0242-3539
  surname: Engelbrecht
  fullname: Engelbrecht, Andries P.
  email: engel@sun.ac.za
  organization: Department of Industrial Engineering, and Computer Science Division, University of Stellenbosch
– sequence: 3
  givenname: Christopher W.
  surname: Cleghorn
  fullname: Cleghorn, Christopher W.
  organization: Department of Computer Science, School for Information Technology, University of Pretoria
BookMark eNp9kMlOwzAURS1UJNrCD7CyxDrgoakTdqhikorYwNqyHbtylMTBdkDl63EbBIJFV2_QPW-4MzDpXKcBOMfoEiPErgLGjOAM4TJDCLOUHYEpLmme0YKgyU-OyQmYhVAjlJeU0imon4Ym2mwz2ErDXvhoVaNh-BC-ha6PtrWfIlrXQeM8bPdaJ2uton3XfwTXULe99VaJBoqugiEKaRsbt6kSzTbYcAqOjWiCPvuOc_B6d_uyesjWz_ePq5t1piguY6YUlYt8iUq1QIzJktGiyskCU4MVYaldUSkNNktJCmakJMRUlSaGlQQpzAydg4txbu_d26BD5LUbfDoicEJYzhBO05OKjCrlXQheG9572wq_5Rjxnad89JQnT_neU76Din-QsnH_fvTCNodROqIh7ek22v9edYD6Ajdnj7A
CitedBy_id crossref_primary_10_1080_00207543_2022_2122619
crossref_primary_10_1016_j_asoc_2022_108938
crossref_primary_10_1016_j_swevo_2021_100943
crossref_primary_10_1007_s11721_022_00210_3
crossref_primary_10_1016_j_swevo_2022_101196
crossref_primary_10_1016_j_swevo_2023_101262
crossref_primary_10_1109_TEVC_2024_3417978
crossref_primary_10_1016_j_asoc_2021_107814
crossref_primary_10_1016_j_ejor_2022_06_009
crossref_primary_10_1016_j_swevo_2024_101742
crossref_primary_10_3390_a16020062
crossref_primary_10_3390_math11132980
Cites_doi 10.1162/106365600568202
10.1109/TEVC.2007.892759
10.1007/3-540-61723-X_1022
10.1109/4235.996017
10.1007/s11721-015-0109-7
10.1007/s11721-017-0141-x
10.1023/A:1016568309421
10.1162/106365600568167
10.1109/TEVC.2005.861417
10.1109/4235.797969
10.1016/j.swevo.2013.08.004
10.1109/TEVC.2015.2508101
10.1109/TEVC.2002.804322
10.1109/CEC.2017.7969361
10.1109/SIS.2013.6615173
10.1109/CEC.2016.7743828
10.1109/MCDM.2009.4938830
10.1016/j.swevo.2018.03.012
10.1109/CEC.2013.6557744
10.1109/IJCNN.2008.4634035
10.1145/2739482.2768462
10.1109/CEC.2016.7744013
10.1109/SSCI.2016.7850265
10.1007/978-3-540-31880-4
10.1007/978-3-540-24694-7
10.1109/CEC.2016.7744014
10.1007/978-3-642-37140-0
10.1109/CEC.2004.1330858
10.1007/978-3-030-00533-7_16
10.1145/508791.508907
10.1109/ICNN.1995.488968
10.1109/CEC.2009.4982973
10.1109/CEC.2009.4983089
10.1007/3-540-45356-3
10.1007/BFb0056872
10.1201/9781439896129
10.1109/SSCI.2016.7850264
10.1109/CEC.2015.7256888
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Swarm Intelligence is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Swarm Intelligence is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FH
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s11721-019-00171-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1935-3820
EndPage 276
ExternalDocumentID 10_1007_s11721_019_00171_0
GroupedDBID -5B
-5G
-BR
-D3
-DT
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
KZ1
LLZTM
M4Y
M7P
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FH
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-cc3b45609c4077b9738d52413f1c2709cd3bbf1f6b287fbb22fdde2f7920c17f3
IEDL.DBID M7P
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000495817800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1935-3812
IngestDate Tue Nov 04 23:03:14 EST 2025
Tue Nov 18 21:18:58 EST 2025
Sat Nov 29 01:34:26 EST 2025
Fri Feb 21 02:33:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Attainment surface
Order-2 stability
Multi-objective optimization
Stability analysis
Multi-guide particle swarm optimization
Particle swarm optimization
Order-1 stability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-cc3b45609c4077b9738d52413f1c2709cd3bbf1f6b287fbb22fdde2f7920c17f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0242-3539
PQID 2275701560
PQPubID 2044102
PageCount 32
ParticipantIDs proquest_journals_2275701560
crossref_primary_10_1007_s11721_019_00171_0
crossref_citationtrail_10_1007_s11721_019_00171_0
springer_journals_10_1007_s11721_019_00171_0
PublicationCentury 2000
PublicationDate 20191200
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191200
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Swarm intelligence
PublicationTitleAbbrev Swarm Intell
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Bonyadi, Michalewicz (CR1) 2016; 20
Fonseca, Fleming (CR14) 1995; 1141
Zitzler, Deb, Thiele (CR46) 2000; 8
CR39
CR38
CR37
CR36
CR35
CR33
CR32
CR31
CR30
CR2
CR4
CR3
CR6
CR8
Zitzler, Thiele (CR49) 1999; 4
CR9
CR48
CR47
Deb, Pratap, Agarwal, Meyarivan (CR13) 2002; 6
CR44
CR43
CR42
CR41
Knowles, Corne (CR25) 2000; 8
CR40
Huband, Hingston, Barone, While (CR23) 2006; 10
Parsopoulos, Vrahatis (CR34) 2002; 1
Cleghorn, Engelbrecht (CR7) 2018; 12
CR18
CR17
Deb (CR11) 2001
CR15
CR10
Helbig, Engelbrecht (CR21) 2014; 14
Cleghorn, Engelbrecht (CR5) 2015; 9
CR29
CR28
CR27
CR26
Zhang, Li (CR45) 2007; 11
CR24
CR22
CR20
Purshouse, Fleming, Fonseca, Greco, Shaw (CR19) 2013
Schoenauer, Deb, Rudolph, Yao, Lutton, Merelo, Schwefel (CR12) 2000
Gibbons, Chakraborti (CR16) 2010
171_CR38
171_CR39
(171_CR12) 2000
171_CR30
171_CR31
KE Parsopoulos (171_CR34) 2002; 1
171_CR32
171_CR33
171_CR35
171_CR36
MR Bonyadi (171_CR1) 2016; 20
171_CR37
K Deb (171_CR11) 2001
171_CR40
E Zitzler (171_CR46) 2000; 8
JD Gibbons (171_CR16) 2010
Q Zhang (171_CR45) 2007; 11
171_CR41
171_CR42
171_CR43
K Deb (171_CR13) 2002; 6
171_CR44
171_CR47
171_CR48
M Helbig (171_CR21) 2014; 14
S Huband (171_CR23) 2006; 10
(171_CR19) 2013
E Zitzler (171_CR49) 1999; 4
171_CR17
171_CR18
JD Knowles (171_CR25) 2000; 8
171_CR10
171_CR15
CW Cleghorn (171_CR5) 2015; 9
CW Cleghorn (171_CR7) 2018; 12
CM Fonseca (171_CR14) 1995; 1141
171_CR27
171_CR28
171_CR29
171_CR2
171_CR20
171_CR22
171_CR24
171_CR26
171_CR6
171_CR3
171_CR4
171_CR9
171_CR8
References_xml – volume: 8
  start-page: 173
  issue: 2
  year: 2000
  end-page: 195
  ident: CR46
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568202
– ident: CR22
– ident: CR4
– ident: CR39
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  end-page: 731
  ident: CR45
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– ident: CR35
– ident: CR29
– ident: CR8
– volume: 1141
  start-page: 584
  year: 1995
  end-page: 593
  ident: CR14
  article-title: On the performance assessment and comparison of stochastic multiobjective optimisers
  publication-title: Parallel Problem Solving from Nature—PPSN IV
  doi: 10.1007/3-540-61723-X_1022
– ident: CR42
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  end-page: 197
  ident: CR13
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– ident: CR15
– volume: 9
  start-page: 177
  issue: 2–3
  year: 2015
  end-page: 203
  ident: CR5
  article-title: Particle swarm variants: Standardized convergence analysis
  publication-title: Swarm Intelligence
  doi: 10.1007/s11721-015-0109-7
– volume: 12
  start-page: 1
  issue: 1
  year: 2018
  end-page: 22
  ident: CR7
  article-title: Particle swarm stability: A theoretical extension using the non-stagnate distribution assumption
  publication-title: Swarm Intelligence
  doi: 10.1007/s11721-017-0141-x
– ident: CR9
– ident: CR32
– ident: CR36
– ident: CR26
– volume: 1
  start-page: 235
  issue: 2
  year: 2002
  end-page: 306
  ident: CR34
  article-title: Recent approaches to global optimization problems through particle swarm optimization
  publication-title: Natural Computing
  doi: 10.1023/A:1016568309421
– ident: CR18
– ident: CR43
– year: 2000
  ident: CR12
  publication-title: Parallel Problem Solving from Nature PPSN VI
– ident: CR47
– volume: 8
  start-page: 149
  issue: 2
  year: 2000
  end-page: 172
  ident: CR25
  article-title: Approximating the nondominated front using the Pareto archived evolution strategy
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568167
– ident: CR2
– ident: CR37
– ident: CR30
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  end-page: 506
  ident: CR23
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.861417
– ident: CR10
– ident: CR33
– volume: 4
  start-page: 257
  issue: 3
  year: 1999
  end-page: 271
  ident: CR49
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– year: 2013
  ident: CR19
  publication-title: Evolutionary Multi-Criterion Optimization
– ident: CR6
– volume: 14
  start-page: 31
  year: 2014
  end-page: 47
  ident: CR21
  article-title: Population-based metaheuristics for continuous boundary-constrained dynamic multi-objective optimisation problems
  publication-title: Swarm and Evolutionary Computing
  doi: 10.1016/j.swevo.2013.08.004
– ident: CR40
– ident: CR27
– ident: CR44
– ident: CR48
– volume: 20
  start-page: 814
  issue: 5
  year: 2016
  end-page: 819
  ident: CR1
  article-title: Stability analysis of the particle swarm optimization without stagnation assumption
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2508101
– ident: CR3
– ident: CR38
– ident: CR17
– ident: CR31
– year: 2001
  ident: CR11
  publication-title: Multi-objective optimization using evolutionary algorithms
  doi: 10.1109/TEVC.2002.804322
– year: 2010
  ident: CR16
  publication-title: Nonparametric statistical inference
– ident: CR28
– ident: CR41
– ident: CR24
– ident: CR20
– ident: 171_CR40
  doi: 10.1109/CEC.2017.7969361
– ident: 171_CR26
  doi: 10.1109/SIS.2013.6615173
– volume: 1
  start-page: 235
  issue: 2
  year: 2002
  ident: 171_CR34
  publication-title: Natural Computing
  doi: 10.1023/A:1016568309421
– ident: 171_CR6
  doi: 10.1109/CEC.2016.7743828
– ident: 171_CR28
  doi: 10.1109/MCDM.2009.4938830
– ident: 171_CR44
  doi: 10.1016/j.swevo.2018.03.012
– ident: 171_CR20
  doi: 10.1109/CEC.2013.6557744
– volume-title: Multi-objective optimization using evolutionary algorithms
  year: 2001
  ident: 171_CR11
  doi: 10.1109/TEVC.2002.804322
– ident: 171_CR31
  doi: 10.1109/IJCNN.2008.4634035
– ident: 171_CR29
  doi: 10.1145/2739482.2768462
– ident: 171_CR38
  doi: 10.1109/CEC.2016.7744013
– ident: 171_CR35
– ident: 171_CR2
  doi: 10.1109/SSCI.2016.7850265
– ident: 171_CR22
  doi: 10.1007/978-3-540-31880-4
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 171_CR13
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– ident: 171_CR41
– ident: 171_CR9
  doi: 10.1007/978-3-540-24694-7
– volume: 8
  start-page: 149
  issue: 2
  year: 2000
  ident: 171_CR25
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568167
– ident: 171_CR30
  doi: 10.1109/IJCNN.2008.4634035
– ident: 171_CR27
  doi: 10.1109/SIS.2013.6615173
– ident: 171_CR43
  doi: 10.1007/978-3-540-31880-4
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 171_CR45
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– ident: 171_CR17
– ident: 171_CR39
  doi: 10.1109/CEC.2016.7744014
– volume-title: Evolutionary Multi-Criterion Optimization
  year: 2013
  ident: 171_CR19
  doi: 10.1007/978-3-642-37140-0
– ident: 171_CR32
  doi: 10.1109/CEC.2004.1330858
– volume: 4
  start-page: 257
  issue: 3
  year: 1999
  ident: 171_CR49
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– ident: 171_CR8
  doi: 10.1007/978-3-030-00533-7_16
– ident: 171_CR33
  doi: 10.1145/508791.508907
– ident: 171_CR42
– ident: 171_CR24
  doi: 10.1109/ICNN.1995.488968
– ident: 171_CR10
– ident: 171_CR15
  doi: 10.1109/CEC.2009.4982973
– volume: 9
  start-page: 177
  issue: 2–3
  year: 2015
  ident: 171_CR5
  publication-title: Swarm Intelligence
  doi: 10.1007/s11721-015-0109-7
– volume: 1141
  start-page: 584
  year: 1995
  ident: 171_CR14
  publication-title: Parallel Problem Solving from Nature—PPSN IV
  doi: 10.1007/3-540-61723-X_1022
– ident: 171_CR18
  doi: 10.1109/CEC.2009.4983089
– volume: 12
  start-page: 1
  issue: 1
  year: 2018
  ident: 171_CR7
  publication-title: Swarm Intelligence
  doi: 10.1007/s11721-017-0141-x
– volume-title: Parallel Problem Solving from Nature PPSN VI
  year: 2000
  ident: 171_CR12
  doi: 10.1007/3-540-45356-3
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 171_CR46
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568202
– ident: 171_CR47
– ident: 171_CR3
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 171_CR23
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.861417
– ident: 171_CR36
– ident: 171_CR48
  doi: 10.1007/BFb0056872
– volume-title: Nonparametric statistical inference
  year: 2010
  ident: 171_CR16
  doi: 10.1201/9781439896129
– ident: 171_CR37
  doi: 10.1109/SSCI.2016.7850264
– volume: 14
  start-page: 31
  year: 2014
  ident: 171_CR21
  publication-title: Swarm and Evolutionary Computing
  doi: 10.1016/j.swevo.2013.08.004
– volume: 20
  start-page: 814
  issue: 5
  year: 2016
  ident: 171_CR1
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2508101
– ident: 171_CR4
  doi: 10.1109/CEC.2015.7256888
SSID ssj0059333
Score 2.2715156
Snippet This article presents a new particle swarm optimization (PSO)-based multi-objective optimization algorithm, named multi-guide particle swarm optimization...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 245
SubjectTerms Algorithms
Artificial Intelligence
Communications Engineering
Computer Communication Networks
Computer Science
Computer Systems Organization and Communication Networks
Exploration
Exploratory behavior
Mathematical and Computational Engineering
Networks
Optimization
Velocity
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8Mw9CHqwYvzE6dTcvCmgTX9SOpNxOFpiF_sVpo0kQ3XjXVT_Pe-pqllooIe276E8r4f7wvglBmjAukJlLSM0XKlMU3DwKeBMobHJhPKSLtsgvf7YjCIb11TWFFXu9cpSaupm2a3MlrB0DemdsgLxUB9Dc2dKBc23N0_1fo3xBDdr3LJIUV7xFyrzPd3LJujxsf8kha11qbX-t9_bsGm8y7JZcUO27Ci8x1o1ZsbiBPkXRjZvlv6vBhmmkwd95DiLZ2NyQSVyNh1ZxJ0aYmtOaQTOap04xLABdHj6dCOGSFpnhH0NW217Ts-VdNO9uCxd_1wdUPd1gWqUBznVClfolfVjRXGelzG3BdZWGbfjKcYx9eZL6XxTCQx2DJSMmZQRTKkLOsqjxt_H1bzSa4PgHi-irjUnglEikZQiTjQ6KCJKEbu0Cpqg1cjP1FuJHm5GeMlaYYpl8hMEJmJRWbSbcPZ55lpNZDjV-hOTdPECWeRMMZDblvI23Be07D5_PNth38DP4INVrKBLX7pwOp8ttDHsK5e58NidmKZ9gPwN-cQ
  priority: 102
  providerName: Springer Nature
Title Multi-guide particle swarm optimization for multi-objective optimization: empirical and stability analysis
URI https://link.springer.com/article/10.1007/s11721-019-00171-0
https://www.proquest.com/docview/2275701560
Volume 13
WOSCitedRecordID wos000495817800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1935-3820
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0059333
  issn: 1935-3812
  databaseCode: M7P
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1935-3820
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0059333
  issn: 1935-3812
  databaseCode: BENPR
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1935-3820
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059333
  issn: 1935-3812
  databaseCode: RSV
  dateStart: 20070601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LT8IwGP-i4MGL-Iwokh68aSPrNrp5MWogngjBR7gttFsNRBgy0Pjf-7XrJJjIxcuSbV2z5Pc9-70AzplS0hNOgJwWM6pHGtOB77nUk0rxUMWBVMIMm-CdTtDvh1174JbZtMpCJhpBHadSn5FfMcZ9bup-b6bvVE-N0tFVO0JjE8q6SwIzqXvdQhL76Ky7eVTZp6iZmC2ayUvntO-DjnRITcsY2lhVTEtr81eA1OidduW_f7wLO9biJLc5iezBRjLZh0oxzYFY5j6AkanFpa-LYZyQqaUokn0OZmOSomAZ24pNgmYuMXmINBWjXF6uLLgmyXg6NK1HyGASE7Q_TQbuF97lHVAO4bnderp_oHYSA5XIonMqpSvQ0mqEEv0_LkLuBrGvI3LKkYzj49gVQjmqKdABU0IwplBsMkSbNaTDlXsEpUk6SY6BOK5scpE4ygsGqBhlEHoJGm1BM0SKSWSzCk4BQyRtm3I9LeMtWjZY1tBFCF1koIsaVbj4-WaaN-lYu7pW4BVZhs2iJVhVuCwQX77-e7eT9budwjbTRGYSYGpQms8WyRlsyY_5MJvVoXzX6nR7dUO2eO09vnwDqg_z3Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQYILO6KsPsAJLBonqRMkhBCLqFoqDkXiFmrHRq3oQhcqfopvZOwkVEWiNw4ckzhWEr-ZeRPPAnDItJaecAKUtJhR09KY1n3PpZ7Umoc6DqQWttkEr1aDp6fwYQY-s1wYE1aZ6USrqOOONP_ITxnjPrd5vxfdN2q6Rpnd1ayFRgKLsvoYocvWPy9d4_oeMXZ7U7u6o2lXASoRbgMqpSuQNRRCib4MFyF3g9g3u0vakYzj6dgVQju6KNCZ0EIwplEFMHxyVpAO1y7OOwtzSCMYt6GCD5nm90PXtq5HTuRTtIQsTdJJUvWMr4WOe0htiRpamDSEY3b7Y0PW2rnb5f_2hVZgKWXU5DIRgVWYUe01WM66VZBUea1D0-Ya05dhI1akm0oM6Y_qvRbpoOJspRmpBGk8sXGWtCOaiT2YGHBGVKvbsKVVSL0dE-TXNsL4A4-SCi8b8Pgnb7wJuXanrbaAOK4scqEc7QV1NPwyCD2FpDQohigRShbz4GTLHsm0DLvpBvIajQtIG6hECJXIQiUq5OH4-55uUoRk6ujdDB9RqpD60RgceTjJEDa-_Pts29NnO4CFu9p9JaqUquUdWGQG4DbYZxdyg95Q7cG8fB80-r19KyoEnv8aeV_ncU5m
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRXxxXnE6NQ--adiaXtL6JupQlDHwwt5Ckzay4bqydYr_3pO0tU5UEB_bJqHk3DnnOwehI6qUdITlg6RFlOiRxiR0HZs4UikWqMiXSphhE6zb9fv9oPcJxW-q3cuUZI5p0F2akqyVRqpVAd905AJhcEBMwxcCQfuiowvpdbx-91jqYhfCdTvPK7sEbBMtYDPfnzFvmip_80uK1FieTv3__7yGVguvE5_lbLKOFuJkA9XLiQ64EPBNNDR4XPI0G0QxTguuwtPXcDLCY1AuowK1icHVxaYWkYzFMNeZcwtOcTxKB6b9CA6TCIMPaqpw3-Ap74KyhR46l_fnV6SYxkAkiGlGpLQFeFvtQEIMyETAbD9ydVZOWZIyeB3ZQihLeQKCMCUEpQpUJwWK07a0mLK3US0ZJ_EOwpYtPSZiSzl-CMZR-oETg-PmewFwTSy9BrJKQnBZtCrXEzOeedVkWV8mh8vk5jJ5u4GOP_akeaOOX1c3S_ryQminnFLmMgMtb6CTkp7V559P2_3b8kO03Lvo8Nvr7s0eWqGaI0x9TBPVssks3kdL8iUbTCcHhpffASd88tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-guide+particle+swarm+optimization+for+multi-objective+optimization%3A+empirical+and+stability+analysis&rft.jtitle=Swarm+intelligence&rft.au=Scheepers%2C+Christiaan&rft.au=Engelbrecht%2C+Andries+P.&rft.au=Cleghorn%2C+Christopher+W.&rft.date=2019-12-01&rft.issn=1935-3812&rft.eissn=1935-3820&rft.volume=13&rft.issue=3-4&rft.spage=245&rft.epage=276&rft_id=info:doi/10.1007%2Fs11721-019-00171-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11721_019_00171_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-3812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-3812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-3812&client=summon