Second-order a priori and a posteriori error estimations for integral boundary value problems of nonlinear singularly perturbed parameterized form
In this work, we present the a priori and a posteriori error analysis of a hybrid difference scheme for integral boundary value problems of nonlinear singularly perturbed parameterized form. The discretization for the nonlinear parameterized equation constitutes a hybrid difference scheme which is b...
Uložené v:
| Vydané v: | Numerical algorithms Ročník 99; číslo 3; s. 1365 - 1392 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.07.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this work, we present the
a priori
and
a posteriori
error analysis of a hybrid difference scheme for integral boundary value problems of nonlinear singularly perturbed parameterized form. The discretization for the nonlinear parameterized equation constitutes a hybrid difference scheme which is based on a suitable combination of the trapezoidal scheme and the backward difference scheme. Further, we employ the composite trapezoidal scheme for the discretization of the nonlocal boundary condition.
A priori
error estimation is provided for the proposed hybrid scheme, which leads to second-order uniform convergence on various
a priori
defined meshes. Moreover, a detailed
a posteriori
error analysis is carried out for the present hybrid scheme which provides a proper discretization of the error equidistribution at each partition. Numerical results strongly validate the theoretical findings for nonlinear problems with integral boundary conditions. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-024-01918-5 |