An advanced spatio-temporal convolutional recurrent neural network for storm surge predictions

In this research paper, we study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history, leveraging a database of synthetic storm simulations. Traditionally, computational fluid dynamics (CFD) solvers are employed to numerically solv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 35; číslo 26; s. 18971 - 18987
Hlavní autoři: Adeli, Ehsan, Sun, Luning, Wang, Jianxun, Taflanidis, Alexandros A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.09.2023
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this research paper, we study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history, leveraging a database of synthetic storm simulations. Traditionally, computational fluid dynamics (CFD) solvers are employed to numerically solve the storm surge governing equations that correspond to expensive to evaluate partial differential equations (PDE). This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations. This model can serve as a fast and affordable emulator for the expensive CFD solvers creating the original database. The neural network model is trained with the storm track parameters used to drive the CFD solvers, and the output of the model is the time-series evolution of the predicted storm surge across multiple nodes within the spatial domain of interest. Once the model is trained, it can be deployed for further predictions based on new storm track inputs. The developed neural network model is a time-series model, composed of a long short-term memory (LSTM), a variation of recurrent neural network (RNN), further enriched with convolutional neural networks (CNNs). The convolutional neural network is employed to capture the correlation of data spatially (across the aforementioned nodes). Therefore, the temporal and spatial correlations of data are captured by the combination of the mentioned models, representing the ConvLSTM model. As the problem is a sequence to sequence time-series problem, an encoder–decoder ConvLSTM model is designed. Furthermore, the performance of the developed convolutional recurrent neural network model is improved by residual connection networks. Additional techniques are employed in the process of model training to enrich the model performance that the model can learn from the data in a more effective way. The performance of the developed model is compared with the results provided by a Gaussian process (GP) implementation, representing a state-of-the-art alternative for establishing time-series emulation of storm surge predictions. The results show that the proposed convolutional recurrent neural network outperforms the GP implementation for the examined synthetic storm database.
AbstractList In this research paper, we study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history, leveraging a database of synthetic storm simulations. Traditionally, computational fluid dynamics (CFD) solvers are employed to numerically solve the storm surge governing equations that correspond to expensive to evaluate partial differential equations (PDE). This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations. This model can serve as a fast and affordable emulator for the expensive CFD solvers creating the original database. The neural network model is trained with the storm track parameters used to drive the CFD solvers, and the output of the model is the time-series evolution of the predicted storm surge across multiple nodes within the spatial domain of interest. Once the model is trained, it can be deployed for further predictions based on new storm track inputs. The developed neural network model is a time-series model, composed of a long short-term memory (LSTM), a variation of recurrent neural network (RNN), further enriched with convolutional neural networks (CNNs). The convolutional neural network is employed to capture the correlation of data spatially (across the aforementioned nodes). Therefore, the temporal and spatial correlations of data are captured by the combination of the mentioned models, representing the ConvLSTM model. As the problem is a sequence to sequence time-series problem, an encoder–decoder ConvLSTM model is designed. Furthermore, the performance of the developed convolutional recurrent neural network model is improved by residual connection networks. Additional techniques are employed in the process of model training to enrich the model performance that the model can learn from the data in a more effective way. The performance of the developed model is compared with the results provided by a Gaussian process (GP) implementation, representing a state-of-the-art alternative for establishing time-series emulation of storm surge predictions. The results show that the proposed convolutional recurrent neural network outperforms the GP implementation for the examined synthetic storm database.
Author Sun, Luning
Wang, Jianxun
Taflanidis, Alexandros A.
Adeli, Ehsan
Author_xml – sequence: 1
  givenname: Ehsan
  surname: Adeli
  fullname: Adeli, Ehsan
  email: eadeli@nd.edu
  organization: Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame
– sequence: 2
  givenname: Luning
  surname: Sun
  fullname: Sun, Luning
  organization: Computational Mechanics & Scientific AI Lab, Department of Aerospace and Mechanical Engineering, University of Notre Dame
– sequence: 3
  givenname: Jianxun
  surname: Wang
  fullname: Wang, Jianxun
  organization: Computational Mechanics & Scientific AI Lab, Department of Aerospace and Mechanical Engineering, University of Notre Dame
– sequence: 4
  givenname: Alexandros A.
  surname: Taflanidis
  fullname: Taflanidis, Alexandros A.
  organization: Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame
BookMark eNp9kE1r3DAQhkVJoJuPP5CTIWc3oy_LPoaQNoFAL-21QpZHwemu5IzkLf331XYDhR5yGmbe9xlm3jN2ElNExq44fOIA5iYDaMFbELKF3vChFR_YhispWwm6P2EbGFSVOyU_srOcXwBAdb3esB-3sXHT3kWPU5MXV-bUFtwtidy28Snu03ats1g7Qr8SYSxNxPUgRyy_Ev1sQqIml0S7Jq_0jM1COM3-QOULdhrcNuPlWz1n3z_ff7t7aJ--fnm8u31qveRDaf3IJUcvnMEJtOFyDEHpQQXVjQY08iHUmZNjbwAHZXyPepx0UMGAEFU4Z9fHvQul1xVzsS9ppXp1tqLXoMB0squu_ujylHImDNbP5fByLOTmreVgD2naY5q2pmn_pmlFRcV_6ELzztHv9yF5hHI1x2ekf1e9Q_0BnYeLaw
CitedBy_id crossref_primary_10_3390_jmse13091780
crossref_primary_10_1016_j_inffus_2025_103255
crossref_primary_10_1007_s11069_025_07428_4
crossref_primary_10_1088_1748_9326_adfd74
crossref_primary_10_3389_fmars_2024_1364929
crossref_primary_10_1007_s11069_024_06585_2
crossref_primary_10_1016_j_coastaleng_2024_104532
crossref_primary_10_1016_j_ocemod_2025_102588
crossref_primary_10_1109_TVT_2024_3468390
crossref_primary_10_3390_rs17132306
crossref_primary_10_1016_j_coastaleng_2025_104762
crossref_primary_10_1016_j_ress_2024_109994
crossref_primary_10_1016_j_neucom_2024_129086
crossref_primary_10_3390_jmse11091729
Cites_doi 10.1016/j.advengsoft.2007.06.005
10.1002/0471721603.ch31
10.1016/j.apor.2019.101871
10.1016/j.oceaneng.2005.04.012
10.1016/j.engappai.2007.03.002
10.1162/neco.1997.9.8.1735
10.1175/2010MWR3136.1
10.1175/2008JAMC1907.1
10.1016/j.cma.2013.03.012
10.1016/j.coastaleng.2022.104231
10.1016/j.ocemod.2009.12.007
10.1109/JSEN.2020.3007809
10.21236/ADA392582
10.1080/21664250.2020.1868736
10.1080/19427867.2022.209328
10.1007/s43069-021-00071-2
10.1175/2007MWR1946.1
10.1145/1409060.1409106
10.1063/1.2982120
10.1061/9780784402429.053
10.1007/s11069-016-2193-4
10.1109/CVPR.2016.207
10.1175/WAF-D-10-05055.1
10.1109/TITS.2021.3055258
10.1007/s11069-014-1508-6
10.1016/j.ocemod.2014.12.002
10.3389/fbuil.2020.549106
10.1007/s11069-015-2111-1
10.1029/2020JD033266
10.1561/2200000006
10.1016/j.csr.2013.10.007
10.3390/jmse9121322
10.1175/2008MWR2395.1
10.1088/1755-1307/6/33/332021
10.1175/2010MWR3317.1
10.1016/j.jcp.2020.110079
10.1016/j.coastaleng.2021.104024
10.1016/j.asoc.2020.106184
10.23915/distill.00003
10.2112/SI95-235.1
10.1016/j.oceaneng.2009.09.004
10.1080/15732479.2020.1721543
10.9753/icce.v32.currents.21
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00521-023-08719-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 18987
ExternalDocumentID 10_1007_s00521_023_08719_2
GrantInformation_xml – fundername: U.S. Army Corps of Engineers
  funderid: http://dx.doi.org/10.13039/100006752
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-cb131ec2a7ed05713bff4594f46b705e19f13ba3b870e947c8e5bd5f4f7022ba3
IEDL.DBID BENPR
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001011210300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 00:47:57 EST 2025
Tue Nov 18 22:15:19 EST 2025
Sat Nov 29 04:30:39 EST 2025
Fri Feb 21 02:43:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords Advanced neural networks
Recurrent neural networks
Storm surge prediction
Convolutional neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-cb131ec2a7ed05713bff4594f46b705e19f13ba3b870e947c8e5bd5f4f7022ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2850407636
PQPubID 2043988
PageCount 17
ParticipantIDs proquest_journals_2850407636
crossref_citationtrail_10_1007_s00521_023_08719_2
crossref_primary_10_1007_s00521_023_08719_2
springer_journals_10_1007_s00521_023_08719_2
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References IgarashiYTajimaYApplication of recurrent neural network for prediction of the time-varying storm surgeCoast Eng J2021631688210.1080/21664250.2020.1868736
RamosValle AN, Curchitser EN, Bruyere CL, McOwen S (2021) Implementation of an Artificial Neural Network for Storm Surge Forecasting. Journal of Geophysical Research: Atmospheres 126(13)
LeeTNeural network prediction of a storm surgeOcean Eng20063348349410.1016/j.oceaneng.2005.04.012
Traffic Flow Prediction for Urban Road Sections Based on Time Series Analysis and LSTM-BILSTM Method. IEEE Transactions on Intelligent Transportation Systems. Volume 23(6), 5615-5624, 2022
ShanQLiZJiaJTangCFast image/video upsamplingACM Trans Graph (TOG)20082751710.1145/1409060.1409106
ToroGResioDDivokyDNiedorodaAReedCEfficient joint-probability methods for hurricane surge frequency analysisOcean Eng201037112513410.1016/j.oceaneng.2009.09.004
ShiXChenZWangHYeungD-YWongW-KWooW-CConvolutional lstm network: a machine learning approach for precipitation nowcastingAdv Neural Inf Process Syst201528802810
Alemany S, Beltran J, Perez A, Ganzfried S Predicting Hurricane Trajectories using a Recurrent Neural Network. arXiv:1802.02548v3
BergstraJBengioYRandom search for hyper-parameter optimizationJ Mach Learn Res20121328130529137011283.68282
Sutskever I, Vinyals O, Le Q (2014) Sequence to sequence learning with neural networks, arXiv preprint arXiv:1409.3215
Luettich RA, Westerink JJ, Scheffner NW (1992) ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Dredging Research Program Technical Report DRP-92-6, U.S Army Engineers Waterways Experiment Station, Vicksburg, MS
JiaGTaflanidisANadal-CaraballoNMelbyJKennedyASmithJSurrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic stormsNat Hazards20168190993810.1007/s11069-015-2111-1
ChaoWYoungCHsuTLiuWLiuCLong-lead-time prediction of storm surge using artificial neural networks and effective typhoon parameters: revisit and deeper insightWater 202020201292394
HollandGJBelangerJIFritzAA revised model for radial profiles of hurricane windsMon Weather Rev2010138124393440110.1175/2010MWR3317.1
Marks FD (2003) Hurricanes. Handbook of Weather, Climate, and Water: Dynamics, Climate, Physical Meteorology, Weather Systems, and Measurements 641–675
IrishJLResioDTCialoneMAA surge response function approach to coastal hazard assessmentPart 2: Quantification of spatial attributes of response functions. Natural hazards2009511183205
BajoMUmgiesserGStorm surge forecast through a combination of dynamic and neural network modelsOcean Model20103311910.1016/j.ocemod.2009.12.007
Nadal-CaraballoNCCampbellMOGonzalezVMTorresMJMelbyMJTaflanidisAACoastal hazards system: a probabilistic coastal hazard analysis frameworkJ Coastal Res202095sp11211121610.2112/SI95-235.1
van der MaatenLPostmaEvan den HerikHDimensionality reduction: a comparative review2009Tech. rep.Tilburg University
HollandGJA revised hurricane pressure-wind modelMon Weather Rev200813693432344510.1175/2008MWR2395.1
Smith J. M, Sherlock AR, Resio DT (2001) STWAVE: Steady-state spectral wave model user’s manual for STWAVE, Version 3.0. DTIC Document
Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks, in: Advances in neural information processing systems,pages 1097-1105
De Oliveira M, Ebecken F, De Oliveira F, de Azevedo Santos I (2009) Neural network model to predict a storm surge. J Appl Meteorol Climatol 48 (1), 143-155
Hallegatte S, Patmore N, Mestre O, Dumas P, Corfee-Morlot J, Herweijer C, Muir-Wood R (2008) Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen. OECD Environment Working Papers(3), 0_1
WesterinkJLuettichRFeyenJAtkinsonJDawsonCRobertsHPowellMDunionJKubatkoEPourtaheriHA basin- to channel-scale unstructured grid hurricane storm surge model applied to Southern LouisianaMon Weather Rev200813683386410.1175/2007MWR1946.1
KimSPanSMaseHArtificial neural network-based storm surge forecast model: Practical application to Sakai Minato JapanAppl Ocean Res20199110.1016/j.apor.2019.101871
DupondSA thorough review on the current advance of neural network structuresAnnu Rev Control201914200230
Davis JR, Paramygin VA, Forrest D, Sheng YP (2010) Toward the probabilistic simulation of storm surge and inundation in a limited-resource environment. Mon Wea Rev 138(7)
Shi W, Caballero J, Huszar F, Totz J, Aitken A. P, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, In: Proceedings of the IEEE conference on computer vision and pattern recognition, 1874-1883
KypriotiAPAdeliETaflanidisAAWesterinkJJTolmanHLProbabilistic storm surge estimation for landfalling hurricanes: advancements in computational efficiency using quasi-Monte Carlo techniquesJ Marine Sci Eng2021912132210.3390/jmse9121322
BengioYLearning Deep Architectures for AIFound Trends Mach Learn2009211127405538110.1561/22000000061192.68503
KimSMelbyJNadal-CaraballoNCRatcliJA time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modelingNat Hazards201576156558510.1007/s11069-014-1508-6
Namdari A, Durrani T (2021) HATS: A Multilayer Feedforward Perception Model in Neural Networks for Predicting Stock Market Short-term Trends. Operations Research Forum volume 2, Article number: 38
LeeTBack-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, TaiwanEng Appl Artif Intell200821637210.1016/j.engappai.2007.03.002
JiaGTaflanidisAKriging metamodeling for approximation of high-dimensional wave and surge responses in real-time storm/hurricane risk assessmentComput Methods Appl Mech Eng20132612438306986410.1016/j.cma.2013.03.0121286.86018
Resio D, Westerink J (2008) Modeling the physics of storm surges. Physics Today
LeeJ-WIrishJLBensiMTMarcyDCRapid prediction of peak storm surge from tropical cyclone track time series using machine learningCoast Eng202117010.1016/j.coastaleng.2021.104024
Di LibertoTColleBAGeorgasNBlumbergAFTaylorAAVerification of a multimodel storm surge ensemble around New York City and Long Island for the cool seasonWeather Forecast201126692293910.1175/WAF-D-10-05055.1
Taylor AA, Glahn B(2008) Probabilistic guidance for hurricane storm surge. 19th Conference on probability and statistics
Jelesnianski C. P, Chen J, Shaffer W. A (1992) SLOSH: Sea, lake, and overland surges from hurricanes. NOAA Technical Report, NWS 48. US Department of Commerce, National Oceanic and Atmospheric Administration
ChenKKuangCWangLChenKHanXFanJStorm surge prediction based on long short-term memory neural network in the east china seaAppl. Sci. 2022,2022121181
BernierNBThompsonKRDeterministic and ensemble storm surge prediction for Atlantic Canada with lead times of hours to ten daysOcean Model20158611412710.1016/j.ocemod.2014.12.002
Booij N, Holthuijsen LH, Ris RC (1996) The SWAN wave model for shallow water. 25th International Conference on Coastal Engineering, Orlando, FL, 668-676
DasHJungHEbersoleBWamsleyTWhalinRAn efficient storm surge forecasting tool for coastal MississippiCoastal Eng Proceed20111322110.9753/icce.v32.currents.21
HashemiMSpauldingMShawAFarhadiHLewisMAn efficient artificial intelligence model for prediction of tropical storm surgeNat Hazards201682147149110.1007/s11069-016-2193-4
HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735
Kijewski-CorreaTTaflanidisAVardemanCSweetJZhangJSnaikiRWuTSilverZKennedyAGeospatial environments for hurricane risk assessment: applications to situational awareness and resilience planning in New JerseyFront Built Environ2020610.3389/fbuil.2020.549106
LeeTPredictions of typhoon storm surge in Taiwan using artificial neural networksAdv Eng Softw2009401200120610.1016/j.advengsoft.2007.06.0051170.86301
Al Kajbaf A, Bensi M (2020) Application of surrogate models in estimation of storm surge: A comparative assessment. Applied Soft Computing, 106184
Graves A (2013) Generating sequences with recurrent neural networks, arXiv preprint arXiv:1308.0850
Kim R, So C, Jeong M, Lee S, Kim J, Kang J (2019) HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction. arXiv preprint arXiv:1908.07999
ChenXSensing Data Supported Traffic Flow Prediction via Denoising Schemes and ANN: a comparisonIEEE Sens J20202023143171432810.1109/JSEN.2020.3007809
KypriotiAIrwinCTaflanidisANadal-CaraballoNYawnMAucoinLSpatio-temporal storm surge emulation using Gaussian Process techniquesCoast Eng202318010.1016/j.coastaleng.2022.104231
OdenaADumoulinVOlahCDeconvolution and checkerboard artifactsDistill201611010.23915/distill.00003
DresbackKFlemingJBlantonBKaiserCGourleyJTrombleEKolarRHongYCootenSVergaraHFlamigZLanderHKelleherKNemunaitis-MonroeKSkill assessment of a real-time forecast system utilizing a coupled hydrologic and coastal hydrodynamic model during Hurricane IreneCont Shelf Res201371789410.1016/j.csr.2013.10.007
Han G, Sun L, Wang J (2021) PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain. J Comput Phys 428
ContentoAXuHGardoniPProbabilistic formulation for storm surge predictionsStruct Infrastruct Eng202016454756610.1080/15732479.2020.1721543
Xiao G et al. Exploring influence mechanism of bikesharing on the use of public transportation - a case of Shanghai. https://doi.org/10.1080/19427867.2022.209328
8719_CR45
NB Bernier (8719_CR31) 2015; 86
K Chen (8719_CR43) 2022; 12
8719_CR42
T Lee (8719_CR35) 2009; 40
M Hashemi (8719_CR38) 2016; 82
S Dupond (8719_CR48) 2019; 14
J Bergstra (8719_CR58) 2012; 13
GJ Holland (8719_CR25) 2008; 136
NC Nadal-Caraballo (8719_CR18) 2020; 95
T Lee (8719_CR34) 2008; 21
8719_CR13
8719_CR15
S Hochreiter (8719_CR47) 1997; 9
8719_CR16
GJ Holland (8719_CR26) 2010; 138
A Kyprioti (8719_CR46) 2023; 180
A Contento (8719_CR12) 2020; 16
8719_CR50
8719_CR53
8719_CR54
8719_CR11
8719_CR55
X Shi (8719_CR49) 2015; 28
J Westerink (8719_CR3) 2008; 136
H Das (8719_CR41) 2011; 1
8719_CR23
8719_CR24
T Lee (8719_CR33) 2006; 33
8719_CR27
X Chen (8719_CR14) 2020; 20
K Dresback (8719_CR29) 2013; 71
8719_CR21
8719_CR22
S Kim (8719_CR39) 2019; 91
A Odena (8719_CR57) 2016; 1
Y Igarashi (8719_CR44) 2021; 63
T Di Liberto (8719_CR28) 2011; 26
Y Bengio (8719_CR52) 2009; 2
G Toro (8719_CR19) 2010; 37
8719_CR36
8719_CR4
G Jia (8719_CR10) 2016; 81
AP Kyprioti (8719_CR6) 2021; 9
8719_CR5
8719_CR30
G Jia (8719_CR8) 2013; 261
J-W Lee (8719_CR20) 2021; 170
8719_CR2
8719_CR32
8719_CR1
M Bajo (8719_CR37) 2010; 33
W Chao (8719_CR40) 2020; 12
L van der Maaten (8719_CR51) 2009
T Kijewski-Correa (8719_CR17) 2020; 6
S Kim (8719_CR9) 2015; 76
Q Shan (8719_CR56) 2008; 27
JL Irish (8719_CR7) 2009; 51
References_xml – reference: KimSMelbyJNadal-CaraballoNCRatcliJA time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modelingNat Hazards201576156558510.1007/s11069-014-1508-6
– reference: Han G, Sun L, Wang J (2021) PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain. J Comput Phys 428,
– reference: ChaoWYoungCHsuTLiuWLiuCLong-lead-time prediction of storm surge using artificial neural networks and effective typhoon parameters: revisit and deeper insightWater 202020201292394
– reference: ToroGResioDDivokyDNiedorodaAReedCEfficient joint-probability methods for hurricane surge frequency analysisOcean Eng201037112513410.1016/j.oceaneng.2009.09.004
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735
– reference: DasHJungHEbersoleBWamsleyTWhalinRAn efficient storm surge forecasting tool for coastal MississippiCoastal Eng Proceed20111322110.9753/icce.v32.currents.21
– reference: HollandGJA revised hurricane pressure-wind modelMon Weather Rev200813693432344510.1175/2008MWR2395.1
– reference: Namdari A, Durrani T (2021) HATS: A Multilayer Feedforward Perception Model in Neural Networks for Predicting Stock Market Short-term Trends. Operations Research Forum volume 2, Article number: 38,
– reference: Graves A (2013) Generating sequences with recurrent neural networks, arXiv preprint arXiv:1308.0850,
– reference: DresbackKFlemingJBlantonBKaiserCGourleyJTrombleEKolarRHongYCootenSVergaraHFlamigZLanderHKelleherKNemunaitis-MonroeKSkill assessment of a real-time forecast system utilizing a coupled hydrologic and coastal hydrodynamic model during Hurricane IreneCont Shelf Res201371789410.1016/j.csr.2013.10.007
– reference: Resio D, Westerink J (2008) Modeling the physics of storm surges. Physics Today,
– reference: ChenXSensing Data Supported Traffic Flow Prediction via Denoising Schemes and ANN: a comparisonIEEE Sens J20202023143171432810.1109/JSEN.2020.3007809
– reference: BernierNBThompsonKRDeterministic and ensemble storm surge prediction for Atlantic Canada with lead times of hours to ten daysOcean Model20158611412710.1016/j.ocemod.2014.12.002
– reference: HollandGJBelangerJIFritzAA revised model for radial profiles of hurricane windsMon Weather Rev2010138124393440110.1175/2010MWR3317.1
– reference: ShanQLiZJiaJTangCFast image/video upsamplingACM Trans Graph (TOG)20082751710.1145/1409060.1409106
– reference: JiaGTaflanidisAKriging metamodeling for approximation of high-dimensional wave and surge responses in real-time storm/hurricane risk assessmentComput Methods Appl Mech Eng20132612438306986410.1016/j.cma.2013.03.0121286.86018
– reference: Xiao G et al. Exploring influence mechanism of bikesharing on the use of public transportation - a case of Shanghai. https://doi.org/10.1080/19427867.2022.209328
– reference: Nadal-CaraballoNCCampbellMOGonzalezVMTorresMJMelbyMJTaflanidisAACoastal hazards system: a probabilistic coastal hazard analysis frameworkJ Coastal Res202095sp11211121610.2112/SI95-235.1
– reference: LeeTBack-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, TaiwanEng Appl Artif Intell200821637210.1016/j.engappai.2007.03.002
– reference: van der MaatenLPostmaEvan den HerikHDimensionality reduction: a comparative review2009Tech. rep.Tilburg University
– reference: KimSPanSMaseHArtificial neural network-based storm surge forecast model: Practical application to Sakai Minato JapanAppl Ocean Res20199110.1016/j.apor.2019.101871
– reference: Shi W, Caballero J, Huszar F, Totz J, Aitken A. P, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, In: Proceedings of the IEEE conference on computer vision and pattern recognition, 1874-1883,
– reference: LeeTNeural network prediction of a storm surgeOcean Eng20063348349410.1016/j.oceaneng.2005.04.012
– reference: Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks, in: Advances in neural information processing systems,pages 1097-1105,
– reference: Kijewski-CorreaTTaflanidisAVardemanCSweetJZhangJSnaikiRWuTSilverZKennedyAGeospatial environments for hurricane risk assessment: applications to situational awareness and resilience planning in New JerseyFront Built Environ2020610.3389/fbuil.2020.549106
– reference: Luettich RA, Westerink JJ, Scheffner NW (1992) ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Dredging Research Program Technical Report DRP-92-6, U.S Army Engineers Waterways Experiment Station, Vicksburg, MS,
– reference: IgarashiYTajimaYApplication of recurrent neural network for prediction of the time-varying storm surgeCoast Eng J2021631688210.1080/21664250.2020.1868736
– reference: WesterinkJLuettichRFeyenJAtkinsonJDawsonCRobertsHPowellMDunionJKubatkoEPourtaheriHA basin- to channel-scale unstructured grid hurricane storm surge model applied to Southern LouisianaMon Weather Rev200813683386410.1175/2007MWR1946.1
– reference: Smith J. M, Sherlock AR, Resio DT (2001) STWAVE: Steady-state spectral wave model user’s manual for STWAVE, Version 3.0. DTIC Document,
– reference: HashemiMSpauldingMShawAFarhadiHLewisMAn efficient artificial intelligence model for prediction of tropical storm surgeNat Hazards201682147149110.1007/s11069-016-2193-4
– reference: ContentoAXuHGardoniPProbabilistic formulation for storm surge predictionsStruct Infrastruct Eng202016454756610.1080/15732479.2020.1721543
– reference: Hallegatte S, Patmore N, Mestre O, Dumas P, Corfee-Morlot J, Herweijer C, Muir-Wood R (2008) Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen. OECD Environment Working Papers(3), 0_1,
– reference: LeeTPredictions of typhoon storm surge in Taiwan using artificial neural networksAdv Eng Softw2009401200120610.1016/j.advengsoft.2007.06.0051170.86301
– reference: Kim R, So C, Jeong M, Lee S, Kim J, Kang J (2019) HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction. arXiv preprint arXiv:1908.07999,
– reference: BengioYLearning Deep Architectures for AIFound Trends Mach Learn2009211127405538110.1561/22000000061192.68503
– reference: Traffic Flow Prediction for Urban Road Sections Based on Time Series Analysis and LSTM-BILSTM Method. IEEE Transactions on Intelligent Transportation Systems. Volume 23(6), 5615-5624, 2022
– reference: KypriotiAIrwinCTaflanidisANadal-CaraballoNYawnMAucoinLSpatio-temporal storm surge emulation using Gaussian Process techniquesCoast Eng202318010.1016/j.coastaleng.2022.104231
– reference: JiaGTaflanidisANadal-CaraballoNMelbyJKennedyASmithJSurrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic stormsNat Hazards20168190993810.1007/s11069-015-2111-1
– reference: Al Kajbaf A, Bensi M (2020) Application of surrogate models in estimation of storm surge: A comparative assessment. Applied Soft Computing, 106184,
– reference: OdenaADumoulinVOlahCDeconvolution and checkerboard artifactsDistill201611010.23915/distill.00003
– reference: De Oliveira M, Ebecken F, De Oliveira F, de Azevedo Santos I (2009) Neural network model to predict a storm surge. J Appl Meteorol Climatol 48 (1), 143-155,
– reference: BajoMUmgiesserGStorm surge forecast through a combination of dynamic and neural network modelsOcean Model20103311910.1016/j.ocemod.2009.12.007
– reference: Di LibertoTColleBAGeorgasNBlumbergAFTaylorAAVerification of a multimodel storm surge ensemble around New York City and Long Island for the cool seasonWeather Forecast201126692293910.1175/WAF-D-10-05055.1
– reference: Taylor AA, Glahn B(2008) Probabilistic guidance for hurricane storm surge. 19th Conference on probability and statistics, ,
– reference: Marks FD (2003) Hurricanes. Handbook of Weather, Climate, and Water: Dynamics, Climate, Physical Meteorology, Weather Systems, and Measurements 641–675
– reference: Davis JR, Paramygin VA, Forrest D, Sheng YP (2010) Toward the probabilistic simulation of storm surge and inundation in a limited-resource environment. Mon Wea Rev 138(7):
– reference: Sutskever I, Vinyals O, Le Q (2014) Sequence to sequence learning with neural networks, arXiv preprint arXiv:1409.3215,
– reference: IrishJLResioDTCialoneMAA surge response function approach to coastal hazard assessmentPart 2: Quantification of spatial attributes of response functions. Natural hazards2009511183205
– reference: DupondSA thorough review on the current advance of neural network structuresAnnu Rev Control201914200230
– reference: BergstraJBengioYRandom search for hyper-parameter optimizationJ Mach Learn Res20121328130529137011283.68282
– reference: Booij N, Holthuijsen LH, Ris RC (1996) The SWAN wave model for shallow water. 25th International Conference on Coastal Engineering, Orlando, FL, 668-676,
– reference: RamosValle AN, Curchitser EN, Bruyere CL, McOwen S (2021) Implementation of an Artificial Neural Network for Storm Surge Forecasting. Journal of Geophysical Research: Atmospheres 126(13):
– reference: LeeJ-WIrishJLBensiMTMarcyDCRapid prediction of peak storm surge from tropical cyclone track time series using machine learningCoast Eng202117010.1016/j.coastaleng.2021.104024
– reference: Jelesnianski C. P, Chen J, Shaffer W. A (1992) SLOSH: Sea, lake, and overland surges from hurricanes. NOAA Technical Report, NWS 48. US Department of Commerce, National Oceanic and Atmospheric Administration,
– reference: ChenKKuangCWangLChenKHanXFanJStorm surge prediction based on long short-term memory neural network in the east china seaAppl. Sci. 2022,2022121181
– reference: Alemany S, Beltran J, Perez A, Ganzfried S Predicting Hurricane Trajectories using a Recurrent Neural Network. arXiv:1802.02548v3
– reference: KypriotiAPAdeliETaflanidisAAWesterinkJJTolmanHLProbabilistic storm surge estimation for landfalling hurricanes: advancements in computational efficiency using quasi-Monte Carlo techniquesJ Marine Sci Eng2021912132210.3390/jmse9121322
– reference: ShiXChenZWangHYeungD-YWongW-KWooW-CConvolutional lstm network: a machine learning approach for precipitation nowcastingAdv Neural Inf Process Syst201528802810
– volume: 40
  start-page: 1200
  year: 2009
  ident: 8719_CR35
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2007.06.005
– ident: 8719_CR27
  doi: 10.1002/0471721603.ch31
– volume: 91
  year: 2019
  ident: 8719_CR39
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2019.101871
– volume: 12
  start-page: 181
  issue: 1
  year: 2022
  ident: 8719_CR43
  publication-title: Appl. Sci. 2022,
– volume: 33
  start-page: 483
  year: 2006
  ident: 8719_CR33
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2005.04.012
– volume: 21
  start-page: 63
  year: 2008
  ident: 8719_CR34
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2007.03.002
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 8719_CR47
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 8719_CR30
  doi: 10.1175/2010MWR3136.1
– ident: 8719_CR36
  doi: 10.1175/2008JAMC1907.1
– volume-title: Dimensionality reduction: a comparative review
  year: 2009
  ident: 8719_CR51
– ident: 8719_CR50
– volume: 261
  start-page: 24
  year: 2013
  ident: 8719_CR8
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2013.03.012
– ident: 8719_CR53
– volume: 180
  year: 2023
  ident: 8719_CR46
  publication-title: Coast Eng
  doi: 10.1016/j.coastaleng.2022.104231
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  ident: 8719_CR37
  publication-title: Ocean Model
  doi: 10.1016/j.ocemod.2009.12.007
– volume: 20
  start-page: 14317
  issue: 23
  year: 2020
  ident: 8719_CR14
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2020.3007809
– ident: 8719_CR5
  doi: 10.21236/ADA392582
– volume: 63
  start-page: 68
  issue: 1
  year: 2021
  ident: 8719_CR44
  publication-title: Coast Eng J
  doi: 10.1080/21664250.2020.1868736
– ident: 8719_CR15
  doi: 10.1080/19427867.2022.209328
– ident: 8719_CR22
– ident: 8719_CR23
  doi: 10.1007/s43069-021-00071-2
– volume: 136
  start-page: 833
  year: 2008
  ident: 8719_CR3
  publication-title: Mon Weather Rev
  doi: 10.1175/2007MWR1946.1
– volume: 27
  start-page: 1
  issue: 5
  year: 2008
  ident: 8719_CR56
  publication-title: ACM Trans Graph (TOG)
  doi: 10.1145/1409060.1409106
– volume: 13
  start-page: 281
  year: 2012
  ident: 8719_CR58
  publication-title: J Mach Learn Res
– ident: 8719_CR16
  doi: 10.1063/1.2982120
– ident: 8719_CR4
  doi: 10.1061/9780784402429.053
– volume: 82
  start-page: 471
  issue: 1
  year: 2016
  ident: 8719_CR38
  publication-title: Nat Hazards
  doi: 10.1007/s11069-016-2193-4
– ident: 8719_CR2
– volume: 28
  start-page: 802
  year: 2015
  ident: 8719_CR49
  publication-title: Adv Neural Inf Process Syst
– ident: 8719_CR55
  doi: 10.1109/CVPR.2016.207
– volume: 26
  start-page: 922
  issue: 6
  year: 2011
  ident: 8719_CR28
  publication-title: Weather Forecast
  doi: 10.1175/WAF-D-10-05055.1
– ident: 8719_CR13
  doi: 10.1109/TITS.2021.3055258
– volume: 12
  start-page: 2394
  issue: 9
  year: 2020
  ident: 8719_CR40
  publication-title: Water 2020
– volume: 76
  start-page: 565
  issue: 1
  year: 2015
  ident: 8719_CR9
  publication-title: Nat Hazards
  doi: 10.1007/s11069-014-1508-6
– ident: 8719_CR32
– volume: 86
  start-page: 114
  year: 2015
  ident: 8719_CR31
  publication-title: Ocean Model
  doi: 10.1016/j.ocemod.2014.12.002
– volume: 6
  year: 2020
  ident: 8719_CR17
  publication-title: Front Built Environ
  doi: 10.3389/fbuil.2020.549106
– volume: 81
  start-page: 909
  year: 2016
  ident: 8719_CR10
  publication-title: Nat Hazards
  doi: 10.1007/s11069-015-2111-1
– ident: 8719_CR21
  doi: 10.1029/2020JD033266
– ident: 8719_CR42
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 8719_CR52
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000006
– volume: 71
  start-page: 78
  year: 2013
  ident: 8719_CR29
  publication-title: Cont Shelf Res
  doi: 10.1016/j.csr.2013.10.007
– volume: 9
  start-page: 1322
  issue: 12
  year: 2021
  ident: 8719_CR6
  publication-title: J Marine Sci Eng
  doi: 10.3390/jmse9121322
– volume: 136
  start-page: 3432
  issue: 9
  year: 2008
  ident: 8719_CR25
  publication-title: Mon Weather Rev
  doi: 10.1175/2008MWR2395.1
– ident: 8719_CR1
  doi: 10.1088/1755-1307/6/33/332021
– volume: 138
  start-page: 4393
  issue: 12
  year: 2010
  ident: 8719_CR26
  publication-title: Mon Weather Rev
  doi: 10.1175/2010MWR3317.1
– ident: 8719_CR54
  doi: 10.1016/j.jcp.2020.110079
– volume: 170
  year: 2021
  ident: 8719_CR20
  publication-title: Coast Eng
  doi: 10.1016/j.coastaleng.2021.104024
– ident: 8719_CR24
– ident: 8719_CR11
  doi: 10.1016/j.asoc.2020.106184
– volume: 1
  issue: 10
  year: 2016
  ident: 8719_CR57
  publication-title: Distill
  doi: 10.23915/distill.00003
– volume: 51
  start-page: 183
  issue: 1
  year: 2009
  ident: 8719_CR7
  publication-title: Part 2: Quantification of spatial attributes of response functions. Natural hazards
– ident: 8719_CR45
– volume: 95
  start-page: 1211
  issue: sp1
  year: 2020
  ident: 8719_CR18
  publication-title: J Coastal Res
  doi: 10.2112/SI95-235.1
– volume: 37
  start-page: 125
  issue: 1
  year: 2010
  ident: 8719_CR19
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2009.09.004
– volume: 14
  start-page: 200
  year: 2019
  ident: 8719_CR48
  publication-title: Annu Rev Control
– volume: 16
  start-page: 547
  issue: 4
  year: 2020
  ident: 8719_CR12
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732479.2020.1721543
– volume: 1
  start-page: 21
  issue: 32
  year: 2011
  ident: 8719_CR41
  publication-title: Coastal Eng Proceed
  doi: 10.9753/icce.v32.currents.21
SSID ssj0004685
Score 2.4183042
Snippet In this research paper, we study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18971
SubjectTerms Artificial Intelligence
Artificial neural networks
Coders
Computational Biology/Bioinformatics
Computational fluid dynamics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Gaussian process
Image Processing and Computer Vision
Mathematical models
Neural networks
Nodes
Original Article
Partial differential equations
Probability and Statistics in Computer Science
Recurrent neural networks
Solvers
Storm surges
Storms
Tidal waves
Time series
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yPXhxfuJ0Sg7eNNA2SdMehzg8DcEPdrIkaQLCrKOt_v2-ZOmmooIem6ahvLz38nt5XwidRVxaKVNGuFCRK6qtiDSqJNQIZ46UiZaZbzYhJpNsOs1vQlJY00W7dy5Jr6mXyW7uBhNM34SSCFB-TkDxrnNXbcbZ6LcPH7IhfSNOsFtcTA-jIVXm-zU-H0crjPnFLepPm3H_f_-5jbYCusSjBTvsoDVT7aJ-17kBB0HeQ4-jCnfef9z4oGoSilTNsAtEDwwJT7W7kHclnLArfQkD1SJwHAPaxS608hk3LrUaz2vn8_FsvI_ux1d3l9ckdFogGkSwJVrFNDY6kcKUAOBiqqxlPGeWpUpE3MS5hTFJFUi3yZnQmeGq5JZZARgAXhygXvVSmUOEo9RqCRiSspyy1Igs19IIblMFyIeXeoDijuCFDmXIXTeMWbEsoOwJWAABC0_AIhmg8-U380URjl9nD7t9LIJANkWScVBXoEzTAbro9m31-ufVjv42_RhtJn7rXRTaEPXa-tWcoA391j419aln1HffV-MG
  priority: 102
  providerName: Springer Nature
Title An advanced spatio-temporal convolutional recurrent neural network for storm surge predictions
URI https://link.springer.com/article/10.1007/s00521-023-08719-2
https://www.proquest.com/docview/2850407636
Volume 35
WOSCitedRecordID wos001011210300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6Vx4ELtKWoW7bIB27FIg87Tk7VUoE4rVbQIsSByHZsqRKE7Wbh9zPjdVhAKhcukWInVpSZscfjb74B2E-k9loXgktlEiLVNlw70_DcKdqONJnVZSg2ocbj8vKymsSAWxdhlf2cGCbq5s5SjPwwKyXqG1pD8XP6j1PVKDpdjSU0VmCNmMpQz9eOjseTs2eZkaEoJ-5hCN8j8pg2E5LnKCKKrVnOE9w1VDx7uTQt_c1XR6Rh5TnZeu83f4TN6HOy0UJJPsEH136Grb6eA4vmvQ3Xo5b1mADWBag1j9RVN4zg6VFN8W5GYXoidmJEiIkN7QJOztAHZgS4vGUdJVyz6YxOgoJyf4E_J8e_f53yWH-BWzTMObcmzVNnM61cg25dmhvvhayEF4VRiXRp5bFN5wZt3lVC2dJJ00gvvELPADt2YLW9a91XYEnhrUbPMhdVLgqnyspqp6QvDPpDsrEDSPtfX9tITk41Mm7qJ1rlIK4axVUHcdXZAH48vTNdUHO8-fSwl1EdzbSrlwIawEEv5WX3_0f79vZou7CRBcUiLNoQVueze_cd1u3D_G8324tKugcrE3mF17Pzi0f11_B9
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRK9UD7VhQI-wAksEseOk0OFCrRq1bKqUJF6ItiOLSGVdNksIP4Uv7EzXqcLSPTWA8c4iaXEb8YznjczAE8zZYIxpeRK24yKaltuvG154TW5I61wporNJvRkUp2c1Ecr8GvIhSFa5aATo6Juzxydkb8UlUK8oTSUr6ZfOXWNoujq0EJjAYsD__MHumz91v5bXN9nQuzuHL_Z46mrAHcItzl3Ni9y74TRvkVjJS9sCFLVMsjS6kz5vA44ZgqLSPa11K7yyrYqyKBxv8MbOO81WJWFLNUIVl_vTI7e_5aJGZuAos9EfCJZpDSdmKxHJ7A4KgqeoZdSc_HnVri0b_8Kycadbnf9f_tHt-BmsqnZ9kIIbsOK7-7A-tCvgiX1dRc-bnds4DywPlLJeSrNdcqIfp_EEK9mFIagwlWMCn7iQLegyzO08RkRSr-wnhLK2XRGka4ovPfgw5V85X0YdWed3wCWlcEZtJwLWSMuvK5qZ7xWobRo76nWjSEflrpxqfg69QA5bS7KRkd4NAiPJsKjEWN4fvHOdFF65NKnNwdMNEkN9c0SEGN4MaBqefvfsz24fLYncGPv-N1hc7g_OXgIayKCmnh3mzCaz775R3DdfZ9_7mePk4Aw-HTVeDsHQEhMHQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-iIr44P3E6NQ--aVg_kqZ9HOpQlDH8Yk-WJE1AmHWs07_fS9puU1QQH5umoVzukt8lv7tD6NhjwggRUcK49GxSbUmElhkJNbfuSBYoEbtiE7zXiweDpD8Xxe_Y7vWVZBnTYLM05ZP2KDPtaeCbPc0ENzgIiQeIPyGwCC9R8GQsqev27nEuMtIV5QQfxvJ7aFiFzXw_xuetaYY3v1yRup2n2_j_P6-jtQp14k6pJhtoQeebqFFXdMCVgW-hp06Oa1YALhzZmlTJq4bYEtQrRYWnsT2ot6mdsE2JCQ15SSjHgIKxpVy-4MKGXOPR2N4FOfXeRg_di_uzS1JVYCAKTHNClPRDX6tAcJ0BsPNDaQxlCTU0ktxj2k8MtIlQgtXrhHIVayYzZqjhgA3gxQ5azF9zvYuwFxklAFuGNAlppHmcKKE5M5EERMQy1UR-LfxUVenJbZWMYTpNrOwEmIIAUyfANGiik-k3ozI5x6-9W_WcppWhFmkQM1jGYJGNmui0nsPZ659H2_tb9yO00j_vpjdXvet9tBo4LbBEtRZanIzf9AFaVu-T52J86PT3A3lw7s4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+advanced+spatio-temporal+convolutional+recurrent+neural+network+for+storm+surge+predictions&rft.jtitle=Neural+computing+%26+applications&rft.au=Adeli%2C+Ehsan&rft.au=Sun%2C+Luning&rft.au=Wang%2C+Jianxun&rft.au=Taflanidis%2C+Alexandros+A.&rft.date=2023-09-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=26&rft.spage=18971&rft.epage=18987&rft_id=info:doi/10.1007%2Fs00521-023-08719-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_023_08719_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon