An advanced spatio-temporal convolutional recurrent neural network for storm surge predictions
In this research paper, we study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history, leveraging a database of synthetic storm simulations. Traditionally, computational fluid dynamics (CFD) solvers are employed to numerically solv...
Saved in:
| Published in: | Neural computing & applications Vol. 35; no. 26; pp. 18971 - 18987 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.09.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this research paper, we study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history, leveraging a database of synthetic storm simulations. Traditionally, computational fluid dynamics (CFD) solvers are employed to numerically solve the storm surge governing equations that correspond to expensive to evaluate partial differential equations (PDE). This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations. This model can serve as a fast and affordable emulator for the expensive CFD solvers creating the original database. The neural network model is trained with the storm track parameters used to drive the CFD solvers, and the output of the model is the time-series evolution of the predicted storm surge across multiple nodes within the spatial domain of interest. Once the model is trained, it can be deployed for further predictions based on new storm track inputs. The developed neural network model is a time-series model, composed of a long short-term memory (LSTM), a variation of recurrent neural network (RNN), further enriched with convolutional neural networks (CNNs). The convolutional neural network is employed to capture the correlation of data spatially (across the aforementioned nodes). Therefore, the temporal and spatial correlations of data are captured by the combination of the mentioned models, representing the ConvLSTM model. As the problem is a sequence to sequence time-series problem, an encoder–decoder ConvLSTM model is designed. Furthermore, the performance of the developed convolutional recurrent neural network model is improved by residual connection networks. Additional techniques are employed in the process of model training to enrich the model performance that the model can learn from the data in a more effective way. The performance of the developed model is compared with the results provided by a Gaussian process (GP) implementation, representing a state-of-the-art alternative for establishing time-series emulation of storm surge predictions. The results show that the proposed convolutional recurrent neural network outperforms the GP implementation for the examined synthetic storm database. |
|---|---|
| AbstractList | In this research paper, we study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history, leveraging a database of synthetic storm simulations. Traditionally, computational fluid dynamics (CFD) solvers are employed to numerically solve the storm surge governing equations that correspond to expensive to evaluate partial differential equations (PDE). This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations. This model can serve as a fast and affordable emulator for the expensive CFD solvers creating the original database. The neural network model is trained with the storm track parameters used to drive the CFD solvers, and the output of the model is the time-series evolution of the predicted storm surge across multiple nodes within the spatial domain of interest. Once the model is trained, it can be deployed for further predictions based on new storm track inputs. The developed neural network model is a time-series model, composed of a long short-term memory (LSTM), a variation of recurrent neural network (RNN), further enriched with convolutional neural networks (CNNs). The convolutional neural network is employed to capture the correlation of data spatially (across the aforementioned nodes). Therefore, the temporal and spatial correlations of data are captured by the combination of the mentioned models, representing the ConvLSTM model. As the problem is a sequence to sequence time-series problem, an encoder–decoder ConvLSTM model is designed. Furthermore, the performance of the developed convolutional recurrent neural network model is improved by residual connection networks. Additional techniques are employed in the process of model training to enrich the model performance that the model can learn from the data in a more effective way. The performance of the developed model is compared with the results provided by a Gaussian process (GP) implementation, representing a state-of-the-art alternative for establishing time-series emulation of storm surge predictions. The results show that the proposed convolutional recurrent neural network outperforms the GP implementation for the examined synthetic storm database. |
| Author | Sun, Luning Wang, Jianxun Taflanidis, Alexandros A. Adeli, Ehsan |
| Author_xml | – sequence: 1 givenname: Ehsan surname: Adeli fullname: Adeli, Ehsan email: eadeli@nd.edu organization: Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame – sequence: 2 givenname: Luning surname: Sun fullname: Sun, Luning organization: Computational Mechanics & Scientific AI Lab, Department of Aerospace and Mechanical Engineering, University of Notre Dame – sequence: 3 givenname: Jianxun surname: Wang fullname: Wang, Jianxun organization: Computational Mechanics & Scientific AI Lab, Department of Aerospace and Mechanical Engineering, University of Notre Dame – sequence: 4 givenname: Alexandros A. surname: Taflanidis fullname: Taflanidis, Alexandros A. organization: Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame |
| BookMark | eNp9kE1r3DAQhkVJoJuPP5CTIWc3oy_LPoaQNoFAL-21QpZHwemu5IzkLf331XYDhR5yGmbe9xlm3jN2ElNExq44fOIA5iYDaMFbELKF3vChFR_YhispWwm6P2EbGFSVOyU_srOcXwBAdb3esB-3sXHT3kWPU5MXV-bUFtwtidy28Snu03ats1g7Qr8SYSxNxPUgRyy_Ev1sQqIml0S7Jq_0jM1COM3-QOULdhrcNuPlWz1n3z_ff7t7aJ--fnm8u31qveRDaf3IJUcvnMEJtOFyDEHpQQXVjQY08iHUmZNjbwAHZXyPepx0UMGAEFU4Z9fHvQul1xVzsS9ppXp1tqLXoMB0squu_ujylHImDNbP5fByLOTmreVgD2naY5q2pmn_pmlFRcV_6ELzztHv9yF5hHI1x2ekf1e9Q_0BnYeLaw |
| CitedBy_id | crossref_primary_10_3390_jmse13091780 crossref_primary_10_1016_j_inffus_2025_103255 crossref_primary_10_1007_s11069_025_07428_4 crossref_primary_10_1088_1748_9326_adfd74 crossref_primary_10_3389_fmars_2024_1364929 crossref_primary_10_1007_s11069_024_06585_2 crossref_primary_10_1016_j_coastaleng_2024_104532 crossref_primary_10_1016_j_ocemod_2025_102588 crossref_primary_10_1109_TVT_2024_3468390 crossref_primary_10_3390_rs17132306 crossref_primary_10_1016_j_coastaleng_2025_104762 crossref_primary_10_1016_j_ress_2024_109994 crossref_primary_10_1016_j_neucom_2024_129086 crossref_primary_10_3390_jmse11091729 |
| Cites_doi | 10.1016/j.advengsoft.2007.06.005 10.1002/0471721603.ch31 10.1016/j.apor.2019.101871 10.1016/j.oceaneng.2005.04.012 10.1016/j.engappai.2007.03.002 10.1162/neco.1997.9.8.1735 10.1175/2010MWR3136.1 10.1175/2008JAMC1907.1 10.1016/j.cma.2013.03.012 10.1016/j.coastaleng.2022.104231 10.1016/j.ocemod.2009.12.007 10.1109/JSEN.2020.3007809 10.21236/ADA392582 10.1080/21664250.2020.1868736 10.1080/19427867.2022.209328 10.1007/s43069-021-00071-2 10.1175/2007MWR1946.1 10.1145/1409060.1409106 10.1063/1.2982120 10.1061/9780784402429.053 10.1007/s11069-016-2193-4 10.1109/CVPR.2016.207 10.1175/WAF-D-10-05055.1 10.1109/TITS.2021.3055258 10.1007/s11069-014-1508-6 10.1016/j.ocemod.2014.12.002 10.3389/fbuil.2020.549106 10.1007/s11069-015-2111-1 10.1029/2020JD033266 10.1561/2200000006 10.1016/j.csr.2013.10.007 10.3390/jmse9121322 10.1175/2008MWR2395.1 10.1088/1755-1307/6/33/332021 10.1175/2010MWR3317.1 10.1016/j.jcp.2020.110079 10.1016/j.coastaleng.2021.104024 10.1016/j.asoc.2020.106184 10.23915/distill.00003 10.2112/SI95-235.1 10.1016/j.oceaneng.2009.09.004 10.1080/15732479.2020.1721543 10.9753/icce.v32.currents.21 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00521-023-08719-2 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 18987 |
| ExternalDocumentID | 10_1007_s00521_023_08719_2 |
| GrantInformation_xml | – fundername: U.S. Army Corps of Engineers funderid: http://dx.doi.org/10.13039/100006752 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-cb131ec2a7ed05713bff4594f46b705e19f13ba3b870e947c8e5bd5f4f7022ba3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001011210300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 00:47:57 EST 2025 Tue Nov 18 22:15:19 EST 2025 Sat Nov 29 04:30:39 EST 2025 Fri Feb 21 02:43:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 26 |
| Keywords | Advanced neural networks Recurrent neural networks Storm surge prediction Convolutional neural networks |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-cb131ec2a7ed05713bff4594f46b705e19f13ba3b870e947c8e5bd5f4f7022ba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2850407636 |
| PQPubID | 2043988 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2850407636 crossref_citationtrail_10_1007_s00521_023_08719_2 crossref_primary_10_1007_s00521_023_08719_2 springer_journals_10_1007_s00521_023_08719_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20230900 2023-09-00 20230901 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2023 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | IgarashiYTajimaYApplication of recurrent neural network for prediction of the time-varying storm surgeCoast Eng J2021631688210.1080/21664250.2020.1868736 RamosValle AN, Curchitser EN, Bruyere CL, McOwen S (2021) Implementation of an Artificial Neural Network for Storm Surge Forecasting. Journal of Geophysical Research: Atmospheres 126(13) LeeTNeural network prediction of a storm surgeOcean Eng20063348349410.1016/j.oceaneng.2005.04.012 Traffic Flow Prediction for Urban Road Sections Based on Time Series Analysis and LSTM-BILSTM Method. IEEE Transactions on Intelligent Transportation Systems. Volume 23(6), 5615-5624, 2022 ShanQLiZJiaJTangCFast image/video upsamplingACM Trans Graph (TOG)20082751710.1145/1409060.1409106 ToroGResioDDivokyDNiedorodaAReedCEfficient joint-probability methods for hurricane surge frequency analysisOcean Eng201037112513410.1016/j.oceaneng.2009.09.004 ShiXChenZWangHYeungD-YWongW-KWooW-CConvolutional lstm network: a machine learning approach for precipitation nowcastingAdv Neural Inf Process Syst201528802810 Alemany S, Beltran J, Perez A, Ganzfried S Predicting Hurricane Trajectories using a Recurrent Neural Network. arXiv:1802.02548v3 BergstraJBengioYRandom search for hyper-parameter optimizationJ Mach Learn Res20121328130529137011283.68282 Sutskever I, Vinyals O, Le Q (2014) Sequence to sequence learning with neural networks, arXiv preprint arXiv:1409.3215 Luettich RA, Westerink JJ, Scheffner NW (1992) ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Dredging Research Program Technical Report DRP-92-6, U.S Army Engineers Waterways Experiment Station, Vicksburg, MS JiaGTaflanidisANadal-CaraballoNMelbyJKennedyASmithJSurrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic stormsNat Hazards20168190993810.1007/s11069-015-2111-1 ChaoWYoungCHsuTLiuWLiuCLong-lead-time prediction of storm surge using artificial neural networks and effective typhoon parameters: revisit and deeper insightWater 202020201292394 HollandGJBelangerJIFritzAA revised model for radial profiles of hurricane windsMon Weather Rev2010138124393440110.1175/2010MWR3317.1 Marks FD (2003) Hurricanes. Handbook of Weather, Climate, and Water: Dynamics, Climate, Physical Meteorology, Weather Systems, and Measurements 641–675 IrishJLResioDTCialoneMAA surge response function approach to coastal hazard assessmentPart 2: Quantification of spatial attributes of response functions. Natural hazards2009511183205 BajoMUmgiesserGStorm surge forecast through a combination of dynamic and neural network modelsOcean Model20103311910.1016/j.ocemod.2009.12.007 Nadal-CaraballoNCCampbellMOGonzalezVMTorresMJMelbyMJTaflanidisAACoastal hazards system: a probabilistic coastal hazard analysis frameworkJ Coastal Res202095sp11211121610.2112/SI95-235.1 van der MaatenLPostmaEvan den HerikHDimensionality reduction: a comparative review2009Tech. rep.Tilburg University HollandGJA revised hurricane pressure-wind modelMon Weather Rev200813693432344510.1175/2008MWR2395.1 Smith J. M, Sherlock AR, Resio DT (2001) STWAVE: Steady-state spectral wave model user’s manual for STWAVE, Version 3.0. DTIC Document Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks, in: Advances in neural information processing systems,pages 1097-1105 De Oliveira M, Ebecken F, De Oliveira F, de Azevedo Santos I (2009) Neural network model to predict a storm surge. J Appl Meteorol Climatol 48 (1), 143-155 Hallegatte S, Patmore N, Mestre O, Dumas P, Corfee-Morlot J, Herweijer C, Muir-Wood R (2008) Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen. OECD Environment Working Papers(3), 0_1 WesterinkJLuettichRFeyenJAtkinsonJDawsonCRobertsHPowellMDunionJKubatkoEPourtaheriHA basin- to channel-scale unstructured grid hurricane storm surge model applied to Southern LouisianaMon Weather Rev200813683386410.1175/2007MWR1946.1 KimSPanSMaseHArtificial neural network-based storm surge forecast model: Practical application to Sakai Minato JapanAppl Ocean Res20199110.1016/j.apor.2019.101871 DupondSA thorough review on the current advance of neural network structuresAnnu Rev Control201914200230 Davis JR, Paramygin VA, Forrest D, Sheng YP (2010) Toward the probabilistic simulation of storm surge and inundation in a limited-resource environment. Mon Wea Rev 138(7) Shi W, Caballero J, Huszar F, Totz J, Aitken A. P, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, In: Proceedings of the IEEE conference on computer vision and pattern recognition, 1874-1883 KypriotiAPAdeliETaflanidisAAWesterinkJJTolmanHLProbabilistic storm surge estimation for landfalling hurricanes: advancements in computational efficiency using quasi-Monte Carlo techniquesJ Marine Sci Eng2021912132210.3390/jmse9121322 BengioYLearning Deep Architectures for AIFound Trends Mach Learn2009211127405538110.1561/22000000061192.68503 KimSMelbyJNadal-CaraballoNCRatcliJA time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modelingNat Hazards201576156558510.1007/s11069-014-1508-6 Namdari A, Durrani T (2021) HATS: A Multilayer Feedforward Perception Model in Neural Networks for Predicting Stock Market Short-term Trends. Operations Research Forum volume 2, Article number: 38 LeeTBack-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, TaiwanEng Appl Artif Intell200821637210.1016/j.engappai.2007.03.002 JiaGTaflanidisAKriging metamodeling for approximation of high-dimensional wave and surge responses in real-time storm/hurricane risk assessmentComput Methods Appl Mech Eng20132612438306986410.1016/j.cma.2013.03.0121286.86018 Resio D, Westerink J (2008) Modeling the physics of storm surges. Physics Today LeeJ-WIrishJLBensiMTMarcyDCRapid prediction of peak storm surge from tropical cyclone track time series using machine learningCoast Eng202117010.1016/j.coastaleng.2021.104024 Di LibertoTColleBAGeorgasNBlumbergAFTaylorAAVerification of a multimodel storm surge ensemble around New York City and Long Island for the cool seasonWeather Forecast201126692293910.1175/WAF-D-10-05055.1 Taylor AA, Glahn B(2008) Probabilistic guidance for hurricane storm surge. 19th Conference on probability and statistics Jelesnianski C. P, Chen J, Shaffer W. A (1992) SLOSH: Sea, lake, and overland surges from hurricanes. NOAA Technical Report, NWS 48. US Department of Commerce, National Oceanic and Atmospheric Administration ChenKKuangCWangLChenKHanXFanJStorm surge prediction based on long short-term memory neural network in the east china seaAppl. Sci. 2022,2022121181 BernierNBThompsonKRDeterministic and ensemble storm surge prediction for Atlantic Canada with lead times of hours to ten daysOcean Model20158611412710.1016/j.ocemod.2014.12.002 Booij N, Holthuijsen LH, Ris RC (1996) The SWAN wave model for shallow water. 25th International Conference on Coastal Engineering, Orlando, FL, 668-676 DasHJungHEbersoleBWamsleyTWhalinRAn efficient storm surge forecasting tool for coastal MississippiCoastal Eng Proceed20111322110.9753/icce.v32.currents.21 HashemiMSpauldingMShawAFarhadiHLewisMAn efficient artificial intelligence model for prediction of tropical storm surgeNat Hazards201682147149110.1007/s11069-016-2193-4 HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735 Kijewski-CorreaTTaflanidisAVardemanCSweetJZhangJSnaikiRWuTSilverZKennedyAGeospatial environments for hurricane risk assessment: applications to situational awareness and resilience planning in New JerseyFront Built Environ2020610.3389/fbuil.2020.549106 LeeTPredictions of typhoon storm surge in Taiwan using artificial neural networksAdv Eng Softw2009401200120610.1016/j.advengsoft.2007.06.0051170.86301 Al Kajbaf A, Bensi M (2020) Application of surrogate models in estimation of storm surge: A comparative assessment. Applied Soft Computing, 106184 Graves A (2013) Generating sequences with recurrent neural networks, arXiv preprint arXiv:1308.0850 Kim R, So C, Jeong M, Lee S, Kim J, Kang J (2019) HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction. arXiv preprint arXiv:1908.07999 ChenXSensing Data Supported Traffic Flow Prediction via Denoising Schemes and ANN: a comparisonIEEE Sens J20202023143171432810.1109/JSEN.2020.3007809 KypriotiAIrwinCTaflanidisANadal-CaraballoNYawnMAucoinLSpatio-temporal storm surge emulation using Gaussian Process techniquesCoast Eng202318010.1016/j.coastaleng.2022.104231 OdenaADumoulinVOlahCDeconvolution and checkerboard artifactsDistill201611010.23915/distill.00003 DresbackKFlemingJBlantonBKaiserCGourleyJTrombleEKolarRHongYCootenSVergaraHFlamigZLanderHKelleherKNemunaitis-MonroeKSkill assessment of a real-time forecast system utilizing a coupled hydrologic and coastal hydrodynamic model during Hurricane IreneCont Shelf Res201371789410.1016/j.csr.2013.10.007 Han G, Sun L, Wang J (2021) PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain. J Comput Phys 428 ContentoAXuHGardoniPProbabilistic formulation for storm surge predictionsStruct Infrastruct Eng202016454756610.1080/15732479.2020.1721543 Xiao G et al. Exploring influence mechanism of bikesharing on the use of public transportation - a case of Shanghai. https://doi.org/10.1080/19427867.2022.209328 8719_CR45 NB Bernier (8719_CR31) 2015; 86 K Chen (8719_CR43) 2022; 12 8719_CR42 T Lee (8719_CR35) 2009; 40 M Hashemi (8719_CR38) 2016; 82 S Dupond (8719_CR48) 2019; 14 J Bergstra (8719_CR58) 2012; 13 GJ Holland (8719_CR25) 2008; 136 NC Nadal-Caraballo (8719_CR18) 2020; 95 T Lee (8719_CR34) 2008; 21 8719_CR13 8719_CR15 S Hochreiter (8719_CR47) 1997; 9 8719_CR16 GJ Holland (8719_CR26) 2010; 138 A Kyprioti (8719_CR46) 2023; 180 A Contento (8719_CR12) 2020; 16 8719_CR50 8719_CR53 8719_CR54 8719_CR11 8719_CR55 X Shi (8719_CR49) 2015; 28 J Westerink (8719_CR3) 2008; 136 H Das (8719_CR41) 2011; 1 8719_CR23 8719_CR24 T Lee (8719_CR33) 2006; 33 8719_CR27 X Chen (8719_CR14) 2020; 20 K Dresback (8719_CR29) 2013; 71 8719_CR21 8719_CR22 S Kim (8719_CR39) 2019; 91 A Odena (8719_CR57) 2016; 1 Y Igarashi (8719_CR44) 2021; 63 T Di Liberto (8719_CR28) 2011; 26 Y Bengio (8719_CR52) 2009; 2 G Toro (8719_CR19) 2010; 37 8719_CR36 8719_CR4 G Jia (8719_CR10) 2016; 81 AP Kyprioti (8719_CR6) 2021; 9 8719_CR5 8719_CR30 G Jia (8719_CR8) 2013; 261 J-W Lee (8719_CR20) 2021; 170 8719_CR2 8719_CR32 8719_CR1 M Bajo (8719_CR37) 2010; 33 W Chao (8719_CR40) 2020; 12 L van der Maaten (8719_CR51) 2009 T Kijewski-Correa (8719_CR17) 2020; 6 S Kim (8719_CR9) 2015; 76 Q Shan (8719_CR56) 2008; 27 JL Irish (8719_CR7) 2009; 51 |
| References_xml | – reference: KimSMelbyJNadal-CaraballoNCRatcliJA time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modelingNat Hazards201576156558510.1007/s11069-014-1508-6 – reference: Han G, Sun L, Wang J (2021) PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain. J Comput Phys 428, – reference: ChaoWYoungCHsuTLiuWLiuCLong-lead-time prediction of storm surge using artificial neural networks and effective typhoon parameters: revisit and deeper insightWater 202020201292394 – reference: ToroGResioDDivokyDNiedorodaAReedCEfficient joint-probability methods for hurricane surge frequency analysisOcean Eng201037112513410.1016/j.oceaneng.2009.09.004 – reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735 – reference: DasHJungHEbersoleBWamsleyTWhalinRAn efficient storm surge forecasting tool for coastal MississippiCoastal Eng Proceed20111322110.9753/icce.v32.currents.21 – reference: HollandGJA revised hurricane pressure-wind modelMon Weather Rev200813693432344510.1175/2008MWR2395.1 – reference: Namdari A, Durrani T (2021) HATS: A Multilayer Feedforward Perception Model in Neural Networks for Predicting Stock Market Short-term Trends. Operations Research Forum volume 2, Article number: 38, – reference: Graves A (2013) Generating sequences with recurrent neural networks, arXiv preprint arXiv:1308.0850, – reference: DresbackKFlemingJBlantonBKaiserCGourleyJTrombleEKolarRHongYCootenSVergaraHFlamigZLanderHKelleherKNemunaitis-MonroeKSkill assessment of a real-time forecast system utilizing a coupled hydrologic and coastal hydrodynamic model during Hurricane IreneCont Shelf Res201371789410.1016/j.csr.2013.10.007 – reference: Resio D, Westerink J (2008) Modeling the physics of storm surges. Physics Today, – reference: ChenXSensing Data Supported Traffic Flow Prediction via Denoising Schemes and ANN: a comparisonIEEE Sens J20202023143171432810.1109/JSEN.2020.3007809 – reference: BernierNBThompsonKRDeterministic and ensemble storm surge prediction for Atlantic Canada with lead times of hours to ten daysOcean Model20158611412710.1016/j.ocemod.2014.12.002 – reference: HollandGJBelangerJIFritzAA revised model for radial profiles of hurricane windsMon Weather Rev2010138124393440110.1175/2010MWR3317.1 – reference: ShanQLiZJiaJTangCFast image/video upsamplingACM Trans Graph (TOG)20082751710.1145/1409060.1409106 – reference: JiaGTaflanidisAKriging metamodeling for approximation of high-dimensional wave and surge responses in real-time storm/hurricane risk assessmentComput Methods Appl Mech Eng20132612438306986410.1016/j.cma.2013.03.0121286.86018 – reference: Xiao G et al. Exploring influence mechanism of bikesharing on the use of public transportation - a case of Shanghai. https://doi.org/10.1080/19427867.2022.209328 – reference: Nadal-CaraballoNCCampbellMOGonzalezVMTorresMJMelbyMJTaflanidisAACoastal hazards system: a probabilistic coastal hazard analysis frameworkJ Coastal Res202095sp11211121610.2112/SI95-235.1 – reference: LeeTBack-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, TaiwanEng Appl Artif Intell200821637210.1016/j.engappai.2007.03.002 – reference: van der MaatenLPostmaEvan den HerikHDimensionality reduction: a comparative review2009Tech. rep.Tilburg University – reference: KimSPanSMaseHArtificial neural network-based storm surge forecast model: Practical application to Sakai Minato JapanAppl Ocean Res20199110.1016/j.apor.2019.101871 – reference: Shi W, Caballero J, Huszar F, Totz J, Aitken A. P, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, In: Proceedings of the IEEE conference on computer vision and pattern recognition, 1874-1883, – reference: LeeTNeural network prediction of a storm surgeOcean Eng20063348349410.1016/j.oceaneng.2005.04.012 – reference: Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks, in: Advances in neural information processing systems,pages 1097-1105, – reference: Kijewski-CorreaTTaflanidisAVardemanCSweetJZhangJSnaikiRWuTSilverZKennedyAGeospatial environments for hurricane risk assessment: applications to situational awareness and resilience planning in New JerseyFront Built Environ2020610.3389/fbuil.2020.549106 – reference: Luettich RA, Westerink JJ, Scheffner NW (1992) ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Dredging Research Program Technical Report DRP-92-6, U.S Army Engineers Waterways Experiment Station, Vicksburg, MS, – reference: IgarashiYTajimaYApplication of recurrent neural network for prediction of the time-varying storm surgeCoast Eng J2021631688210.1080/21664250.2020.1868736 – reference: WesterinkJLuettichRFeyenJAtkinsonJDawsonCRobertsHPowellMDunionJKubatkoEPourtaheriHA basin- to channel-scale unstructured grid hurricane storm surge model applied to Southern LouisianaMon Weather Rev200813683386410.1175/2007MWR1946.1 – reference: Smith J. M, Sherlock AR, Resio DT (2001) STWAVE: Steady-state spectral wave model user’s manual for STWAVE, Version 3.0. DTIC Document, – reference: HashemiMSpauldingMShawAFarhadiHLewisMAn efficient artificial intelligence model for prediction of tropical storm surgeNat Hazards201682147149110.1007/s11069-016-2193-4 – reference: ContentoAXuHGardoniPProbabilistic formulation for storm surge predictionsStruct Infrastruct Eng202016454756610.1080/15732479.2020.1721543 – reference: Hallegatte S, Patmore N, Mestre O, Dumas P, Corfee-Morlot J, Herweijer C, Muir-Wood R (2008) Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen. OECD Environment Working Papers(3), 0_1, – reference: LeeTPredictions of typhoon storm surge in Taiwan using artificial neural networksAdv Eng Softw2009401200120610.1016/j.advengsoft.2007.06.0051170.86301 – reference: Kim R, So C, Jeong M, Lee S, Kim J, Kang J (2019) HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction. arXiv preprint arXiv:1908.07999, – reference: BengioYLearning Deep Architectures for AIFound Trends Mach Learn2009211127405538110.1561/22000000061192.68503 – reference: Traffic Flow Prediction for Urban Road Sections Based on Time Series Analysis and LSTM-BILSTM Method. IEEE Transactions on Intelligent Transportation Systems. Volume 23(6), 5615-5624, 2022 – reference: KypriotiAIrwinCTaflanidisANadal-CaraballoNYawnMAucoinLSpatio-temporal storm surge emulation using Gaussian Process techniquesCoast Eng202318010.1016/j.coastaleng.2022.104231 – reference: JiaGTaflanidisANadal-CaraballoNMelbyJKennedyASmithJSurrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic stormsNat Hazards20168190993810.1007/s11069-015-2111-1 – reference: Al Kajbaf A, Bensi M (2020) Application of surrogate models in estimation of storm surge: A comparative assessment. Applied Soft Computing, 106184, – reference: OdenaADumoulinVOlahCDeconvolution and checkerboard artifactsDistill201611010.23915/distill.00003 – reference: De Oliveira M, Ebecken F, De Oliveira F, de Azevedo Santos I (2009) Neural network model to predict a storm surge. J Appl Meteorol Climatol 48 (1), 143-155, – reference: BajoMUmgiesserGStorm surge forecast through a combination of dynamic and neural network modelsOcean Model20103311910.1016/j.ocemod.2009.12.007 – reference: Di LibertoTColleBAGeorgasNBlumbergAFTaylorAAVerification of a multimodel storm surge ensemble around New York City and Long Island for the cool seasonWeather Forecast201126692293910.1175/WAF-D-10-05055.1 – reference: Taylor AA, Glahn B(2008) Probabilistic guidance for hurricane storm surge. 19th Conference on probability and statistics, , – reference: Marks FD (2003) Hurricanes. Handbook of Weather, Climate, and Water: Dynamics, Climate, Physical Meteorology, Weather Systems, and Measurements 641–675 – reference: Davis JR, Paramygin VA, Forrest D, Sheng YP (2010) Toward the probabilistic simulation of storm surge and inundation in a limited-resource environment. Mon Wea Rev 138(7): – reference: Sutskever I, Vinyals O, Le Q (2014) Sequence to sequence learning with neural networks, arXiv preprint arXiv:1409.3215, – reference: IrishJLResioDTCialoneMAA surge response function approach to coastal hazard assessmentPart 2: Quantification of spatial attributes of response functions. Natural hazards2009511183205 – reference: DupondSA thorough review on the current advance of neural network structuresAnnu Rev Control201914200230 – reference: BergstraJBengioYRandom search for hyper-parameter optimizationJ Mach Learn Res20121328130529137011283.68282 – reference: Booij N, Holthuijsen LH, Ris RC (1996) The SWAN wave model for shallow water. 25th International Conference on Coastal Engineering, Orlando, FL, 668-676, – reference: RamosValle AN, Curchitser EN, Bruyere CL, McOwen S (2021) Implementation of an Artificial Neural Network for Storm Surge Forecasting. Journal of Geophysical Research: Atmospheres 126(13): – reference: LeeJ-WIrishJLBensiMTMarcyDCRapid prediction of peak storm surge from tropical cyclone track time series using machine learningCoast Eng202117010.1016/j.coastaleng.2021.104024 – reference: Jelesnianski C. P, Chen J, Shaffer W. A (1992) SLOSH: Sea, lake, and overland surges from hurricanes. NOAA Technical Report, NWS 48. US Department of Commerce, National Oceanic and Atmospheric Administration, – reference: ChenKKuangCWangLChenKHanXFanJStorm surge prediction based on long short-term memory neural network in the east china seaAppl. Sci. 2022,2022121181 – reference: Alemany S, Beltran J, Perez A, Ganzfried S Predicting Hurricane Trajectories using a Recurrent Neural Network. arXiv:1802.02548v3 – reference: KypriotiAPAdeliETaflanidisAAWesterinkJJTolmanHLProbabilistic storm surge estimation for landfalling hurricanes: advancements in computational efficiency using quasi-Monte Carlo techniquesJ Marine Sci Eng2021912132210.3390/jmse9121322 – reference: ShiXChenZWangHYeungD-YWongW-KWooW-CConvolutional lstm network: a machine learning approach for precipitation nowcastingAdv Neural Inf Process Syst201528802810 – volume: 40 start-page: 1200 year: 2009 ident: 8719_CR35 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2007.06.005 – ident: 8719_CR27 doi: 10.1002/0471721603.ch31 – volume: 91 year: 2019 ident: 8719_CR39 publication-title: Appl Ocean Res doi: 10.1016/j.apor.2019.101871 – volume: 12 start-page: 181 issue: 1 year: 2022 ident: 8719_CR43 publication-title: Appl. Sci. 2022, – volume: 33 start-page: 483 year: 2006 ident: 8719_CR33 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2005.04.012 – volume: 21 start-page: 63 year: 2008 ident: 8719_CR34 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2007.03.002 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 8719_CR47 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – ident: 8719_CR30 doi: 10.1175/2010MWR3136.1 – ident: 8719_CR36 doi: 10.1175/2008JAMC1907.1 – volume-title: Dimensionality reduction: a comparative review year: 2009 ident: 8719_CR51 – ident: 8719_CR50 – volume: 261 start-page: 24 year: 2013 ident: 8719_CR8 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2013.03.012 – ident: 8719_CR53 – volume: 180 year: 2023 ident: 8719_CR46 publication-title: Coast Eng doi: 10.1016/j.coastaleng.2022.104231 – volume: 33 start-page: 1 issue: 1 year: 2010 ident: 8719_CR37 publication-title: Ocean Model doi: 10.1016/j.ocemod.2009.12.007 – volume: 20 start-page: 14317 issue: 23 year: 2020 ident: 8719_CR14 publication-title: IEEE Sens J doi: 10.1109/JSEN.2020.3007809 – ident: 8719_CR5 doi: 10.21236/ADA392582 – volume: 63 start-page: 68 issue: 1 year: 2021 ident: 8719_CR44 publication-title: Coast Eng J doi: 10.1080/21664250.2020.1868736 – ident: 8719_CR15 doi: 10.1080/19427867.2022.209328 – ident: 8719_CR22 – ident: 8719_CR23 doi: 10.1007/s43069-021-00071-2 – volume: 136 start-page: 833 year: 2008 ident: 8719_CR3 publication-title: Mon Weather Rev doi: 10.1175/2007MWR1946.1 – volume: 27 start-page: 1 issue: 5 year: 2008 ident: 8719_CR56 publication-title: ACM Trans Graph (TOG) doi: 10.1145/1409060.1409106 – volume: 13 start-page: 281 year: 2012 ident: 8719_CR58 publication-title: J Mach Learn Res – ident: 8719_CR16 doi: 10.1063/1.2982120 – ident: 8719_CR4 doi: 10.1061/9780784402429.053 – volume: 82 start-page: 471 issue: 1 year: 2016 ident: 8719_CR38 publication-title: Nat Hazards doi: 10.1007/s11069-016-2193-4 – ident: 8719_CR2 – volume: 28 start-page: 802 year: 2015 ident: 8719_CR49 publication-title: Adv Neural Inf Process Syst – ident: 8719_CR55 doi: 10.1109/CVPR.2016.207 – volume: 26 start-page: 922 issue: 6 year: 2011 ident: 8719_CR28 publication-title: Weather Forecast doi: 10.1175/WAF-D-10-05055.1 – ident: 8719_CR13 doi: 10.1109/TITS.2021.3055258 – volume: 12 start-page: 2394 issue: 9 year: 2020 ident: 8719_CR40 publication-title: Water 2020 – volume: 76 start-page: 565 issue: 1 year: 2015 ident: 8719_CR9 publication-title: Nat Hazards doi: 10.1007/s11069-014-1508-6 – ident: 8719_CR32 – volume: 86 start-page: 114 year: 2015 ident: 8719_CR31 publication-title: Ocean Model doi: 10.1016/j.ocemod.2014.12.002 – volume: 6 year: 2020 ident: 8719_CR17 publication-title: Front Built Environ doi: 10.3389/fbuil.2020.549106 – volume: 81 start-page: 909 year: 2016 ident: 8719_CR10 publication-title: Nat Hazards doi: 10.1007/s11069-015-2111-1 – ident: 8719_CR21 doi: 10.1029/2020JD033266 – ident: 8719_CR42 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 8719_CR52 publication-title: Found Trends Mach Learn doi: 10.1561/2200000006 – volume: 71 start-page: 78 year: 2013 ident: 8719_CR29 publication-title: Cont Shelf Res doi: 10.1016/j.csr.2013.10.007 – volume: 9 start-page: 1322 issue: 12 year: 2021 ident: 8719_CR6 publication-title: J Marine Sci Eng doi: 10.3390/jmse9121322 – volume: 136 start-page: 3432 issue: 9 year: 2008 ident: 8719_CR25 publication-title: Mon Weather Rev doi: 10.1175/2008MWR2395.1 – ident: 8719_CR1 doi: 10.1088/1755-1307/6/33/332021 – volume: 138 start-page: 4393 issue: 12 year: 2010 ident: 8719_CR26 publication-title: Mon Weather Rev doi: 10.1175/2010MWR3317.1 – ident: 8719_CR54 doi: 10.1016/j.jcp.2020.110079 – volume: 170 year: 2021 ident: 8719_CR20 publication-title: Coast Eng doi: 10.1016/j.coastaleng.2021.104024 – ident: 8719_CR24 – ident: 8719_CR11 doi: 10.1016/j.asoc.2020.106184 – volume: 1 issue: 10 year: 2016 ident: 8719_CR57 publication-title: Distill doi: 10.23915/distill.00003 – volume: 51 start-page: 183 issue: 1 year: 2009 ident: 8719_CR7 publication-title: Part 2: Quantification of spatial attributes of response functions. Natural hazards – ident: 8719_CR45 – volume: 95 start-page: 1211 issue: sp1 year: 2020 ident: 8719_CR18 publication-title: J Coastal Res doi: 10.2112/SI95-235.1 – volume: 37 start-page: 125 issue: 1 year: 2010 ident: 8719_CR19 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2009.09.004 – volume: 14 start-page: 200 year: 2019 ident: 8719_CR48 publication-title: Annu Rev Control – volume: 16 start-page: 547 issue: 4 year: 2020 ident: 8719_CR12 publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2020.1721543 – volume: 1 start-page: 21 issue: 32 year: 2011 ident: 8719_CR41 publication-title: Coastal Eng Proceed doi: 10.9753/icce.v32.currents.21 |
| SSID | ssj0004685 |
| Score | 2.418388 |
| Snippet | In this research paper, we study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 18971 |
| SubjectTerms | Artificial Intelligence Artificial neural networks Coders Computational Biology/Bioinformatics Computational fluid dynamics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Gaussian process Image Processing and Computer Vision Mathematical models Neural networks Nodes Original Article Partial differential equations Probability and Statistics in Computer Science Recurrent neural networks Solvers Storm surges Storms Tidal waves Time series |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQkAc2sKgd5-EJVYiKAVUdAFUMRIljS0glLU3h93PnOi0g0YUlUuw4inJ39vn83X2EnGcGy1DJDksKmzMpNGcqTOCidBRnRRDljjPy6T7u95PhUA18wK3ysMp6TnQTdTHWGCO_EkkI-gbWEF1P3hmyRuHpqqfQWCcbWCUBqRsG4fO3vEhHyQk7GET3yMAnzbjUOYyHQqsIWAf2DIqJnwvT0tv8dUDq1p1e879fvEO2vcdJu3MV2SVrptwjzZrNgXrj3icv3ZLWiABaOaA184WrRhTB6V5J4W6KQXos60SxHCY0lHMwOQUPmCLc8o1WmG5NJ1M8B3KqfUAee7cPN3fMsy8wDWY5YzrnATdaZLEpwKnjQW6tDJW0MsrjTmi4stCWBTlYvFEy1okJ8yK00sbgF0DHIWmU49IcEaqsiIK4Y-MsCKW1Cfo8WhjOc604jGgRXv_6VPvS5MiQMUoXRZWduFIQV-rElYoWuViMmcwLc6x8ul3LKPVGWqVLAbXIZS3lZfffbzte_bYTsiWcYiESrU0as-mHOSWb-nP2Wk3PnIp-AaUn7EM priority: 102 providerName: ProQuest |
| Title | An advanced spatio-temporal convolutional recurrent neural network for storm surge predictions |
| URI | https://link.springer.com/article/10.1007/s00521-023-08719-2 https://www.proquest.com/docview/2850407636 |
| Volume | 35 |
| WOSCitedRecordID | wos001011210300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZg48CF8RSDMeXADSItbdI2x4GYOKBp4iXEgarNEglplKkd_H6cLB0PARJcKrV5qHJsx4ntzwCHmbYwVLxHk7HJKQ8Uo1Ik-JAqirNxGOWuZuTtRTwcJnd3cuSTwqo62r12STpNvUh2szeYePQNQtpDK19SVLxNYdFm7Bn96vZDNqQrxInnFhvTw0OfKvP9HJ-3o3cb84tb1O02g9b__nMd1rx1SfpzdtiAJV1sQquu3EC8IG_BQ78gtfefVC6omnqQqgmxgeieIfGttBfyFsKJWOhL_FDMA8cJWrvEhlY-kcqmVpNpaX0-jo234WZwdn16Tn2lBapQBGdU5SxkWgVZrMdowLEwN4YLyQ2P8rgnNJMGv2VhjtKtJY9VokU-FoabGG0AbNiBRvFc6F0g0gRRGPdMnIWCG5NY-0YFmrFcSYYj2sBqgqfKw5DbahiTdAGg7AiYIgFTR8A0aMPRYsx0DsLxa-9OvY6pF8gqDRKB6gqVadSG43rd3pt_nm3vb933YTVwS2-j0DrQmJUv-gBW1OvssSq70Dw5G44uu7A8Evddx7ZvBzDkvQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RQCoXaKGIpbT40J7Aauw4Dx9QhVoQiO2KA0WIAyFxbAlpCctmoeqf6m9kxpuwBQluHLhEip1YSvzNeOx5fABfcktlqFTA09IVXEkjuI5SvGgTJ3kZxoXnjDzuJr1eenKiD6fgX5sLQ2GVrU70irq8MnRG_k2mEeINpSH-PrjmxBpF3tWWQmMMiwP79w9u2eqt_Z84v1-l3N05-rHHG1YBbhBuI24KEQprZJ7YEo0VERbOqUgrp-IiCSIrtMO2PCwQyVarxKQ2KsrIKZfgeocdOO4bmFFKBsSYcBid_peH6SlAccdE0UQqbJJ0fKoenb9iqwx5gHsUzeXDhXBi3T5yyPp1bnfhtf2hdzDfWNRseywC72HKVouw0LJVsEZ5LcHZdsXaiAdW-0By3hTm6jMKvm-EEO-G5ISgslWMyn1iQzUOlmdo4TMKJ71kNaWTs8GQ_FxedD_A7xf5ymWYrq4quwJMOxmHSeCSPIyUcynZdEZaIQqjBb7RAdFOdWaa0uvEANLP7otGe3hkCI_MwyOTHdi4f2cwLjzy7NNrLSayRgnV2QQQHdhsUTXpfnq01edHW4e3e0e_ull3v3fwEeakBzVF3a3B9Gh4Yz_BrLkdXdTDz148GJy_NNruAJMDSfw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIr44rzidmgffNGxp0ksehzoUxxhexp4sbZqAMOtoq7_fk7TdpqggvhTaXCgn5yQnyXe-g9BppAwNFe-QINEx4Y6kRLgBPIT0_ChhXmxzRo76_mAQjMdiuBDFb9Hu9ZVkGdNgWJrSoj1NdHsW-GZOM2Eb7DDSAY9fEJiEVzjsZAyo6-5-tBAZaZNywh7G4Hs4q8Jmvu_j89I09ze_XJHalafX-P8_b6KNyuvE3VJNttCSSrdRo87ogCsD30FP3RTXqACcW7A1qcirJtgA1CtFhbfMHNQbaidsKDHhQ1oCyjF4wdhALl9wbkKu8TQzd0FWvXfRY-_q4eKaVBkYiATTLIiMKaNKOpGvEnDsKIu15q7gmnux33EVFRq-RSwGq1eC-zJQbpy4mmsffAMo2EPL6Wuq9hEW2vGY39F-xFyudWD8HukoSmMpKLRoIloLP5QVPbnJkjEJZ8TKVoAhCDC0AgydJjqbtZmW5By_1m7VYxpWhpqHTuDCNAaTrNdE5_UYzot_7u3gb9VP0Nrwshf2bwa3h2jdsVpggGottFxkb-oIrcr34jnPjq3-fgAXH-3r |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+advanced+spatio-temporal+convolutional+recurrent+neural+network+for+storm+surge+predictions&rft.jtitle=Neural+computing+%26+applications&rft.au=Adeli%2C+Ehsan&rft.au=Sun%2C+Luning&rft.au=Wang%2C+Jianxun&rft.au=Taflanidis%2C+Alexandros+A.&rft.date=2023-09-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=26&rft.spage=18971&rft.epage=18987&rft_id=info:doi/10.1007%2Fs00521-023-08719-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_023_08719_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |