Near-Linear Algorithms for Geometric Hitting Sets and Set Covers
Given a finite range space Σ = ( X , R ) , with N = | X | + | R | , we present two simple algorithms, based on the multiplicative-weight method, for computing a small-size hitting set or set cover of Σ . The first algorithm is a simpler variant of the Brönnimann–Goodrich algorithm but more efficient...
Uložené v:
| Vydané v: | Discrete & computational geometry Ročník 63; číslo 2; s. 460 - 482 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.03.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0179-5376, 1432-0444 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Given a finite range space
Σ
=
(
X
,
R
)
, with
N
=
|
X
|
+
|
R
|
, we present two simple algorithms, based on the multiplicative-weight method, for computing a small-size hitting set or set cover of
Σ
. The first algorithm is a simpler variant of the Brönnimann–Goodrich algorithm but more efficient to implement, and the second algorithm can be viewed as solving a two-player zero-sum game. These algorithms, in conjunction with some standard geometric data structures, lead to near-linear algorithms for computing a small-size hitting set or set cover for a number of geometric range spaces. For example, they lead to
O
(
N
polylog
(
N
)
)
expected-time randomized
O
(1)-approximation algorithms for both hitting set and set cover if
X
is a set of points and
R
a set of disks in
R
2
. |
|---|---|
| AbstractList | Given a finite range space Σ=(X,R), with N=|X|+|R|, we present two simple algorithms, based on the multiplicative-weight method, for computing a small-size hitting set or set cover of Σ. The first algorithm is a simpler variant of the Brönnimann–Goodrich algorithm but more efficient to implement, and the second algorithm can be viewed as solving a two-player zero-sum game. These algorithms, in conjunction with some standard geometric data structures, lead to near-linear algorithms for computing a small-size hitting set or set cover for a number of geometric range spaces. For example, they lead to O(Npolylog(N)) expected-time randomized O(1)-approximation algorithms for both hitting set and set cover if X is a set of points and R a set of disks in R2. Given a finite range space Σ = ( X , R ) , with N = | X | + | R | , we present two simple algorithms, based on the multiplicative-weight method, for computing a small-size hitting set or set cover of Σ . The first algorithm is a simpler variant of the Brönnimann–Goodrich algorithm but more efficient to implement, and the second algorithm can be viewed as solving a two-player zero-sum game. These algorithms, in conjunction with some standard geometric data structures, lead to near-linear algorithms for computing a small-size hitting set or set cover for a number of geometric range spaces. For example, they lead to O ( N polylog ( N ) ) expected-time randomized O (1)-approximation algorithms for both hitting set and set cover if X is a set of points and R a set of disks in R 2 . |
| Author | Pan, Jiangwei Agarwal, Pankaj K. |
| Author_xml | – sequence: 1 givenname: Pankaj K. surname: Agarwal fullname: Agarwal, Pankaj K. organization: Department of Computer Science, Duke University – sequence: 2 givenname: Jiangwei orcidid: 0000-0003-0397-8971 surname: Pan fullname: Pan, Jiangwei email: panjiangwei@gmail.com organization: Department of Computer Science, Duke University |
| BookMark | eNp9kM1KQzEQhYNUsFZfwNUF19GkyU1udpairVB0oa5Dmp-a0iY1SQXf3tQrCC46mzOL880ZzjkYhBgsAFcY3WCE-G1GiLYUIiwgQkgIyE7AEFMyhohSOgBDhLmALeHsDJznvK4mKlA3BHdPViW48KFKM9msYvLlfZsbF1Mzs3FrS_K6mftSfFg1L7bkRgVzWJpp_LQpX4BTpzbZXv7qCLw93L9O53DxPHucThZQEywK1Kq12IxNa4Qx1mmNBemQsRRzJqzm2hnlGHKELTlzVnfUdJpx2wqi2qUTZASu-7u7FD_2Nhe5jvsUaqQc1yEtxpxU17h36RRzTtbJXfJblb4kRvLQlOybkrUp-dOUZBXq_kHaF1V8DCUpvzmOkh7NNSesbPr76gj1DVbwf3o |
| CitedBy_id | crossref_primary_10_1016_j_comgeo_2024_102122 crossref_primary_10_1016_j_ejor_2021_02_015 crossref_primary_10_1007_s00454_024_00709_y crossref_primary_10_1016_j_orl_2023_07_005 crossref_primary_10_1016_j_tcs_2024_114452 crossref_primary_10_1137_23M1596582 crossref_primary_10_1007_s00453_024_01244_1 crossref_primary_10_1007_s00454_022_00402_y crossref_primary_10_3390_math13152479 crossref_primary_10_1016_j_comgeo_2025_102188 crossref_primary_10_1145_3603376 |
| Cites_doi | 10.1007/s00453-011-9517-2 10.1145/2462356.2462363 10.1016/j.comgeo.2015.12.002 10.1016/0196-6774(80)90015-2 10.1145/1542362.1542420 10.1137/0215051 10.1007/BF02187876 10.1007/s00454-006-1273-8 10.1007/s00454-010-9285-9 10.1007/BF02187743 10.1145/2390176.2390185 10.1137/1.9781611973068.21 10.1007/BF02293051 10.1017/CBO9780511814075 10.1145/1542362.1542366 10.1137/090762968 10.1016/0167-6377(95)00032-0 10.1090/S0894-0347-2012-00759-0 10.1145/201019.201036 10.1145/285055.285059 10.1145/1377676.1377708 10.1007/s00454-010-9323-7 10.1137/1.9781611973068.97 10.1007/s00453-013-9771-6 10.1007/978-3-540-77974-2 10.1006/game.1999.0738 10.1137/120891241 10.1007/BF02570718 10.1090/conm/223/03131 10.1016/0020-0190(81)90111-3 10.1137/060669474 10.1016/0925-7721(92)90006-E 10.1287/moor.20.2.257 10.1109/FOCS.2014.64 10.4086/toc.2012.v008a006 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Discrete & Computational Geometry is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Discrete & Computational Geometry is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ GUQSH HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M2O M2P M7S MBDVC P5Z P62 PADUT PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s00454-019-00099-6 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Research Library China ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Research Library Prep |
| Database_xml | – sequence: 1 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1432-0444 |
| EndPage | 482 |
| ExternalDocumentID | 10_1007_s00454_019_00099_6 |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CCF-11-61359; IIS-14-08846 funderid: http://dx.doi.org/10.13039/100000001 – fundername: United States - Israel Binational Science Foundation grantid: 2012/229 funderid: http://dx.doi.org/10.13039/100006221 – fundername: Army Research Office grantid: W911NF-15-1-0408 funderid: http://dx.doi.org/10.13039/100000183 – fundername: National Science Foundation grantid: CCF-15-13816; ISS-14-47554 funderid: http://dx.doi.org/10.13039/100000001 |
| GroupedDBID | -52 -5D -5G -BR -DZ -EM -Y2 -~C -~X .4S .86 .DC 06D 0R~ 0VY 199 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 88I 8AO 8FE 8FG 8FW 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIHN ACIPV ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C1A CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KQ8 L6V LAS LLZTM LO0 M0N M2O M2P M4Y M7S MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P62 P9R PADUT PF0 PKN PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I REI RHV RIG RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YIN YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-ca5e1d2d5d9ddefcc19380de41769ec7cfdaf60f36b76fec84d8c67e593a5bf93 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000511936600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0179-5376 |
| IngestDate | Thu Nov 27 13:41:58 EST 2025 Sat Nov 29 02:58:48 EST 2025 Tue Nov 18 21:35:38 EST 2025 Fri Feb 21 02:43:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Rectangles Multiplicative weight method Disks Geometric set cover Near-linear algorithms 68U05 52C17 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-ca5e1d2d5d9ddefcc19380de41769ec7cfdaf60f36b76fec84d8c67e593a5bf93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0397-8971 |
| PQID | 2222351173 |
| PQPubID | 31658 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2222351173 crossref_primary_10_1007_s00454_019_00099_6 crossref_citationtrail_10_1007_s00454_019_00099_6 springer_journals_10_1007_s00454_019_00099_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20200300 2020-3-00 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 3 year: 2020 text: 20200300 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Discrete & computational geometry |
| PublicationTitleAbbrev | Discrete Comput Geom |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | ClarksonKenneth L.Algorithms for polytope covering and approximationLecture Notes in Computer Science1993Berlin, HeidelbergSpringer Berlin Heidelberg246252 ClarksonKLLas Vegas algorithms for linear and integer programming when the dimension is smallJ. ACM199542248849914097440885.6506310.1145/201019.201036 AronovBde BergMEzraESharirMImproved bounds for the union of locally fat objects in the planeSIAM J. Comput.201443254357231884011295.0525810.1137/120891241 AronovBEzraESharirMSmall-size $\varepsilon $-nets for axis-parallel rectangles and boxesSIAM J. Comput.20103973248328226780741209.6862410.1137/090762968 FeigeUA threshold of $\ln n$ for approximating set coverJ. ACM199845463465216750951065.6857310.1145/285055.285059 AlonNA non-linear lower bound for planar epsilon-netsDiscrete Comput. Geom.201247223524428725351232.6816110.1007/s00454-010-9323-7 MatoušekJEfficient partition treesDiscrete Comput. Geom.19928331533411743600752.6808810.1007/BF02293051 Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09), pp. 892–901. SIAM, Philadelphia (2009) Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. In: Proceedings of the 25th Annual Symposium on Computational Geometry (SoCG’09), pp. 333–340. ACM, New York (2009) AronovBHar-PeledSOn approximating the depth and related problemsSIAM J. Comput.200838389992124210711180.6827810.1137/060669474 ChazelleBWelzlEQuasi-optimal range searching in spaces of finite VC-dimensionDiscrete Comput. Geom.19894546748910147390681.6808110.1007/BF02187743 HausslerDWelzlE$\varepsilon $-nets and simplex range queriesDiscrete Comput. Geom.1987221271518842230619.6805610.1007/BF02187876 CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20093BostonMcGraw-Hill1187.68679 ClarksonKLVaradarajanKRImproved approximation algorithms for geometric set coverDiscrete Comput. Geom.2007371435822798631106.6812110.1007/s00454-006-1273-8 FreundYSchapireREAdaptive game playing using multiplicative weightsGames Econ. Behav.1999291–27910317293110964.9100710.1006/game.1999.0738 BusNGargSMustafaNHRaySTighter estimates for e-nets for disksComput. Geom. Theory Appl.201653C273534545421334.6504810.1016/j.comgeo.2015.12.002 ChazelleBFiltering search: a new approach to query answeringSIAM J. Comput.19861537037248504180612.6808810.1137/0215051 Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J., Pollack, R. (eds.) Advances in Discrete and Computational Geometry. Contemporary Mathematics, vol. 223, pp. 1–56. American Mathematical Society, Providence (1999) BentleyJLSaxeJBDecomposable searching problems. I. Static-to-dynamic transformationJ. Algorithms1980143013586048690461.6806510.1016/0196-6774(80)90015-2 MotwaniRRaghavanPRandomized Algorithms1995CambridgeCambridge University Press0849.6803910.1017/CBO9780511814075 BrönnimannHGoodrichMTAlmost optimal set covers in finite VC-dimensionDiscrete Comput. Geom.199514146347913609480841.6812210.1007/BF02570718 LongPhilip M.Using the Pseudo-Dimension to Analyze Approximation Algorithms for Integer ProgrammingLecture Notes in Computer Science2001Berlin, HeidelbergSpringer Berlin Heidelberg2637 PlotkinSAShmoysDBTardosÉFast approximation algorithms for fractional packing and covering problemsMath. Oper. Res.199520225730113429480837.9010310.1287/moor.20.2.257 AgarwalPKEzraESharirMNear-linear approximation algorithms for geometric hitting setsAlgorithmica2012631–212528860621286.6849310.1007/s00453-011-9517-2 KoufogiannakisCYoungNEA nearly linear-time PTAS for explicit fractional packing and covering linear programsAlgorithmica201470464867432713711311.9007110.1007/s00453-013-9771-6 Shaul, H.: Range Searching: Emptiness, Reporting, and Approximate Counting. PhD thesis, Tel Aviv University (2011) ChekuriCClarksonKLHar-PeledSOn the set multicover problem in geometric settingsACM Trans. Algorithms2012919:19:1730083041301.6823710.1145/2390176.2390185 Har-PeledSGeometric Approximation Algorithms. Mathematical Surveys and Monographs2011ProvidenceAmerican Mathematical Society1230.68215 Pyrga, E., Ray, S.: New existence proofs for $\varepsilon $-nets. In: Proceedings of the 24th Annual Symposium on Computational Geometry (SoCG’08), pp. 199–207. ACM, New York (2008) Chan, T.M., Tsakalidis, K.: Optimal deterministic algorithms for 2-d and 3-d shallow cuttings. In: Proceedings of the 31th Annual Symposium on Computational Geometry (SoCG’15). LIPIcs. Leibniz International Proceedings in Informatics, vol. 34, pp. 719–732. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2015) Ezra, E.E.: Small-size relative ($p,\varepsilon $)-approximations for well-behaved range spaces. In: Proceedings of the 29th Annual Symposium on Computational Geometry (SoCG’13), pp. 233–242. ACM, New York (2013) Lauen, S.: Geometric set cover and hitting sets for polytopes in $R^3$. In: Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science. LIPIcs. Leibniz International Proceedings in Informatics, vol. 1, pp. 479–490. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2008) Varadarajan, K.: Epsilon nets and union complexity. In: Proceedings of the 25th Annual Symposium on Computational Geometry (SoCG’09), pp. 11–16. ACM, New York (2009) GareyMRJohnsonDSComputers and Intractability: A Guide to the Theory of NP-Completeness1979San FranciscoW. H. Freeman0411.68039 Kupavskii, A., Mustafa, N., Pach, J.: New lower bounds for epsilon-nets. In: Proceedings of the 32nd International Symposium on Computational Geometry. LIPIcs. Leibniz International Proceedings in Informatics, vol. 51, pp. 54:1–54:16. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2016) PachJTardosGTight lower bounds for the size of epsilon-netsJ. Am. Math. Soc.201326364565830377841268.5201110.1090/S0894-0347-2012-00759-0 MustafaNHRaySImproved results on geometric hitting set problemsDiscrete Comput. Geom.201044488389527280381207.6842010.1007/s00454-010-9285-9 AroraSHazanEKaleSThe multiplicative weights update method: a meta-algorithm and applicationsTheory Comput.20128612116429485021283.6841410.4086/toc.2012.v008a006 de BergMCheongOvan KreveldMOvermarsMComputational Geometry: Algorithms and Applications20083BerlinSpringer1140.6806910.1007/978-3-540-77974-2 Mustafa, N.H., Raman, R., Ray, S.: Settling the APX-hardness status for geometric set cover. In: Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science, pp. 541–550. IEEE, Los Alamitos (2014) GrigoriadisMDKhachiyanLGA sublinear-time randomized approximation algorithm for matrix gamesOper. Res. Lett.1995182535813618610857.9014410.1016/0167-6377(95)00032-0 Afshani, P., Chan, T.M.: Optimal halfspace range reporting in three dimensions. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09), pp. 180–186. SIAM, Philadelphia (2009) FowlerRJPatersonMSTanimotoSLOptimal packing and covering in the plane are NP-completeInf. Process. Lett.19811231331376189230469.6805310.1016/0020-0190(81)90111-3 MatoušekJReporting points in halfspacesComput. Geom.19922316918611905990772.6810510.1016/0925-7721(92)90006-E B Aronov (99_CR6) 2010; 39 N Alon (99_CR4) 2012; 47 R Motwani (99_CR37) 1995 B Aronov (99_CR7) 2008; 38 PK Agarwal (99_CR3) 2012; 63 99_CR43 99_CR42 99_CR23 MD Grigoriadis (99_CR28) 1995; 18 99_CR44 99_CR1 N Bus (99_CR11) 2016; 53 J Pach (99_CR40) 2013; 26 99_CR2 B Chazelle (99_CR15) 1986; 15 Philip M. Long (99_CR34) 2001 TH Cormen (99_CR21) 2009 M de Berg (99_CR22) 2008 J Matoušek (99_CR36) 1992; 2 KL Clarkson (99_CR20) 2007; 37 Kenneth L. Clarkson (99_CR18) 1993 U Feige (99_CR24) 1998; 45 SA Plotkin (99_CR41) 1995; 20 B Chazelle (99_CR16) 1989; 4 RJ Fowler (99_CR25) 1981; 12 MR Garey (99_CR27) 1979 Y Freund (99_CR26) 1999; 29 S Har-Peled (99_CR29) 2011 99_CR32 99_CR12 JL Bentley (99_CR9) 1980; 1 99_CR33 99_CR14 99_CR13 NH Mustafa (99_CR39) 2010; 44 99_CR38 D Haussler (99_CR30) 1987; 2 KL Clarkson (99_CR19) 1995; 42 C Koufogiannakis (99_CR31) 2014; 70 B Aronov (99_CR5) 2014; 43 S Arora (99_CR8) 2012; 8 H Brönnimann (99_CR10) 1995; 14 C Chekuri (99_CR17) 2012; 9 J Matoušek (99_CR35) 1992; 8 |
| References_xml | – reference: MatoušekJEfficient partition treesDiscrete Comput. Geom.19928331533411743600752.6808810.1007/BF02293051 – reference: Ezra, E.E.: Small-size relative ($p,\varepsilon $)-approximations for well-behaved range spaces. In: Proceedings of the 29th Annual Symposium on Computational Geometry (SoCG’13), pp. 233–242. ACM, New York (2013) – reference: Shaul, H.: Range Searching: Emptiness, Reporting, and Approximate Counting. PhD thesis, Tel Aviv University (2011) – reference: PlotkinSAShmoysDBTardosÉFast approximation algorithms for fractional packing and covering problemsMath. Oper. Res.199520225730113429480837.9010310.1287/moor.20.2.257 – reference: Mustafa, N.H., Raman, R., Ray, S.: Settling the APX-hardness status for geometric set cover. In: Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science, pp. 541–550. IEEE, Los Alamitos (2014) – reference: Chan, T.M., Tsakalidis, K.: Optimal deterministic algorithms for 2-d and 3-d shallow cuttings. In: Proceedings of the 31th Annual Symposium on Computational Geometry (SoCG’15). LIPIcs. Leibniz International Proceedings in Informatics, vol. 34, pp. 719–732. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2015) – reference: Afshani, P., Chan, T.M.: Optimal halfspace range reporting in three dimensions. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09), pp. 180–186. SIAM, Philadelphia (2009) – reference: ChazelleBFiltering search: a new approach to query answeringSIAM J. Comput.19861537037248504180612.6808810.1137/0215051 – reference: FeigeUA threshold of $\ln n$ for approximating set coverJ. ACM199845463465216750951065.6857310.1145/285055.285059 – reference: LongPhilip M.Using the Pseudo-Dimension to Analyze Approximation Algorithms for Integer ProgrammingLecture Notes in Computer Science2001Berlin, HeidelbergSpringer Berlin Heidelberg2637 – reference: GareyMRJohnsonDSComputers and Intractability: A Guide to the Theory of NP-Completeness1979San FranciscoW. H. Freeman0411.68039 – reference: MatoušekJReporting points in halfspacesComput. Geom.19922316918611905990772.6810510.1016/0925-7721(92)90006-E – reference: Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J., Pollack, R. (eds.) Advances in Discrete and Computational Geometry. Contemporary Mathematics, vol. 223, pp. 1–56. American Mathematical Society, Providence (1999) – reference: Har-PeledSGeometric Approximation Algorithms. Mathematical Surveys and Monographs2011ProvidenceAmerican Mathematical Society1230.68215 – reference: ClarksonKLLas Vegas algorithms for linear and integer programming when the dimension is smallJ. ACM199542248849914097440885.6506310.1145/201019.201036 – reference: KoufogiannakisCYoungNEA nearly linear-time PTAS for explicit fractional packing and covering linear programsAlgorithmica201470464867432713711311.9007110.1007/s00453-013-9771-6 – reference: AronovBEzraESharirMSmall-size $\varepsilon $-nets for axis-parallel rectangles and boxesSIAM J. Comput.20103973248328226780741209.6862410.1137/090762968 – reference: de BergMCheongOvan KreveldMOvermarsMComputational Geometry: Algorithms and Applications20083BerlinSpringer1140.6806910.1007/978-3-540-77974-2 – reference: AronovBde BergMEzraESharirMImproved bounds for the union of locally fat objects in the planeSIAM J. Comput.201443254357231884011295.0525810.1137/120891241 – reference: FowlerRJPatersonMSTanimotoSLOptimal packing and covering in the plane are NP-completeInf. Process. Lett.19811231331376189230469.6805310.1016/0020-0190(81)90111-3 – reference: GrigoriadisMDKhachiyanLGA sublinear-time randomized approximation algorithm for matrix gamesOper. Res. Lett.1995182535813618610857.9014410.1016/0167-6377(95)00032-0 – reference: AroraSHazanEKaleSThe multiplicative weights update method: a meta-algorithm and applicationsTheory Comput.20128612116429485021283.6841410.4086/toc.2012.v008a006 – reference: AgarwalPKEzraESharirMNear-linear approximation algorithms for geometric hitting setsAlgorithmica2012631–212528860621286.6849310.1007/s00453-011-9517-2 – reference: BentleyJLSaxeJBDecomposable searching problems. I. Static-to-dynamic transformationJ. Algorithms1980143013586048690461.6806510.1016/0196-6774(80)90015-2 – reference: MustafaNHRaySImproved results on geometric hitting set problemsDiscrete Comput. Geom.201044488389527280381207.6842010.1007/s00454-010-9285-9 – reference: BrönnimannHGoodrichMTAlmost optimal set covers in finite VC-dimensionDiscrete Comput. Geom.199514146347913609480841.6812210.1007/BF02570718 – reference: ChazelleBWelzlEQuasi-optimal range searching in spaces of finite VC-dimensionDiscrete Comput. Geom.19894546748910147390681.6808110.1007/BF02187743 – reference: Lauen, S.: Geometric set cover and hitting sets for polytopes in $R^3$. In: Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science. LIPIcs. Leibniz International Proceedings in Informatics, vol. 1, pp. 479–490. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2008) – reference: Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. In: Proceedings of the 25th Annual Symposium on Computational Geometry (SoCG’09), pp. 333–340. ACM, New York (2009) – reference: AlonNA non-linear lower bound for planar epsilon-netsDiscrete Comput. Geom.201247223524428725351232.6816110.1007/s00454-010-9323-7 – reference: Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09), pp. 892–901. SIAM, Philadelphia (2009) – reference: ClarksonKenneth L.Algorithms for polytope covering and approximationLecture Notes in Computer Science1993Berlin, HeidelbergSpringer Berlin Heidelberg246252 – reference: Kupavskii, A., Mustafa, N., Pach, J.: New lower bounds for epsilon-nets. In: Proceedings of the 32nd International Symposium on Computational Geometry. LIPIcs. Leibniz International Proceedings in Informatics, vol. 51, pp. 54:1–54:16. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2016) – reference: Pyrga, E., Ray, S.: New existence proofs for $\varepsilon $-nets. In: Proceedings of the 24th Annual Symposium on Computational Geometry (SoCG’08), pp. 199–207. ACM, New York (2008) – reference: FreundYSchapireREAdaptive game playing using multiplicative weightsGames Econ. Behav.1999291–27910317293110964.9100710.1006/game.1999.0738 – reference: HausslerDWelzlE$\varepsilon $-nets and simplex range queriesDiscrete Comput. Geom.1987221271518842230619.6805610.1007/BF02187876 – reference: ClarksonKLVaradarajanKRImproved approximation algorithms for geometric set coverDiscrete Comput. Geom.2007371435822798631106.6812110.1007/s00454-006-1273-8 – reference: ChekuriCClarksonKLHar-PeledSOn the set multicover problem in geometric settingsACM Trans. Algorithms2012919:19:1730083041301.6823710.1145/2390176.2390185 – reference: PachJTardosGTight lower bounds for the size of epsilon-netsJ. Am. Math. Soc.201326364565830377841268.5201110.1090/S0894-0347-2012-00759-0 – reference: MotwaniRRaghavanPRandomized Algorithms1995CambridgeCambridge University Press0849.6803910.1017/CBO9780511814075 – reference: AronovBHar-PeledSOn approximating the depth and related problemsSIAM J. Comput.200838389992124210711180.6827810.1137/060669474 – reference: CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20093BostonMcGraw-Hill1187.68679 – reference: Varadarajan, K.: Epsilon nets and union complexity. In: Proceedings of the 25th Annual Symposium on Computational Geometry (SoCG’09), pp. 11–16. ACM, New York (2009) – reference: BusNGargSMustafaNHRaySTighter estimates for e-nets for disksComput. Geom. Theory Appl.201653C273534545421334.6504810.1016/j.comgeo.2015.12.002 – volume: 63 start-page: 1 issue: 1–2 year: 2012 ident: 99_CR3 publication-title: Algorithmica doi: 10.1007/s00453-011-9517-2 – ident: 99_CR23 doi: 10.1145/2462356.2462363 – start-page: 26 volume-title: Lecture Notes in Computer Science year: 2001 ident: 99_CR34 – volume: 53 start-page: 27 issue: C year: 2016 ident: 99_CR11 publication-title: Comput. Geom. Theory Appl. doi: 10.1016/j.comgeo.2015.12.002 – ident: 99_CR14 – volume: 1 start-page: 301 issue: 4 year: 1980 ident: 99_CR9 publication-title: J. Algorithms doi: 10.1016/0196-6774(80)90015-2 – ident: 99_CR13 doi: 10.1145/1542362.1542420 – volume: 15 start-page: 703 issue: 3 year: 1986 ident: 99_CR15 publication-title: SIAM J. Comput. doi: 10.1137/0215051 – volume: 2 start-page: 127 issue: 2 year: 1987 ident: 99_CR30 publication-title: Discrete Comput. Geom. doi: 10.1007/BF02187876 – ident: 99_CR33 – ident: 99_CR43 – volume: 37 start-page: 43 issue: 1 year: 2007 ident: 99_CR20 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-006-1273-8 – volume-title: Geometric Approximation Algorithms. Mathematical Surveys and Monographs year: 2011 ident: 99_CR29 – volume: 44 start-page: 883 issue: 4 year: 2010 ident: 99_CR39 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-010-9285-9 – volume: 4 start-page: 467 issue: 5 year: 1989 ident: 99_CR16 publication-title: Discrete Comput. Geom. doi: 10.1007/BF02187743 – volume: 9 start-page: 9:1 issue: 1 year: 2012 ident: 99_CR17 publication-title: ACM Trans. Algorithms doi: 10.1145/2390176.2390185 – ident: 99_CR1 doi: 10.1137/1.9781611973068.21 – volume: 8 start-page: 315 issue: 3 year: 1992 ident: 99_CR35 publication-title: Discrete Comput. Geom. doi: 10.1007/BF02293051 – volume-title: Randomized Algorithms year: 1995 ident: 99_CR37 doi: 10.1017/CBO9780511814075 – ident: 99_CR44 doi: 10.1145/1542362.1542366 – volume: 39 start-page: 3248 issue: 7 year: 2010 ident: 99_CR6 publication-title: SIAM J. Comput. doi: 10.1137/090762968 – volume: 18 start-page: 53 issue: 2 year: 1995 ident: 99_CR28 publication-title: Oper. Res. Lett. doi: 10.1016/0167-6377(95)00032-0 – volume: 26 start-page: 645 issue: 3 year: 2013 ident: 99_CR40 publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-2012-00759-0 – start-page: 246 volume-title: Lecture Notes in Computer Science year: 1993 ident: 99_CR18 – volume: 42 start-page: 488 issue: 2 year: 1995 ident: 99_CR19 publication-title: J. ACM doi: 10.1145/201019.201036 – volume: 45 start-page: 634 issue: 4 year: 1998 ident: 99_CR24 publication-title: J. ACM doi: 10.1145/285055.285059 – ident: 99_CR42 doi: 10.1145/1377676.1377708 – volume-title: Introduction to Algorithms year: 2009 ident: 99_CR21 – volume: 47 start-page: 235 issue: 2 year: 2012 ident: 99_CR4 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-010-9323-7 – ident: 99_CR12 doi: 10.1137/1.9781611973068.97 – volume: 70 start-page: 648 issue: 4 year: 2014 ident: 99_CR31 publication-title: Algorithmica doi: 10.1007/s00453-013-9771-6 – volume-title: Computational Geometry: Algorithms and Applications year: 2008 ident: 99_CR22 doi: 10.1007/978-3-540-77974-2 – ident: 99_CR32 – volume-title: Computers and Intractability: A Guide to the Theory of NP-Completeness year: 1979 ident: 99_CR27 – volume: 29 start-page: 79 issue: 1–2 year: 1999 ident: 99_CR26 publication-title: Games Econ. Behav. doi: 10.1006/game.1999.0738 – volume: 43 start-page: 543 issue: 2 year: 2014 ident: 99_CR5 publication-title: SIAM J. Comput. doi: 10.1137/120891241 – volume: 14 start-page: 463 issue: 1 year: 1995 ident: 99_CR10 publication-title: Discrete Comput. Geom. doi: 10.1007/BF02570718 – ident: 99_CR2 doi: 10.1090/conm/223/03131 – volume: 12 start-page: 133 issue: 3 year: 1981 ident: 99_CR25 publication-title: Inf. Process. Lett. doi: 10.1016/0020-0190(81)90111-3 – volume: 38 start-page: 899 issue: 3 year: 2008 ident: 99_CR7 publication-title: SIAM J. Comput. doi: 10.1137/060669474 – volume: 2 start-page: 169 issue: 3 year: 1992 ident: 99_CR36 publication-title: Comput. Geom. doi: 10.1016/0925-7721(92)90006-E – volume: 20 start-page: 257 issue: 2 year: 1995 ident: 99_CR41 publication-title: Math. Oper. Res. doi: 10.1287/moor.20.2.257 – ident: 99_CR38 doi: 10.1109/FOCS.2014.64 – volume: 8 start-page: 121 issue: 6 year: 2012 ident: 99_CR8 publication-title: Theory Comput. doi: 10.4086/toc.2012.v008a006 |
| SSID | ssj0004908 |
| Score | 2.431379 |
| Snippet | Given a finite range space
Σ
=
(
X
,
R
)
, with
N
=
|
X
|
+
|
R
|
, we present two simple algorithms, based on the multiplicative-weight method, for computing... Given a finite range space Σ=(X,R), with N=|X|+|R|, we present two simple algorithms, based on the multiplicative-weight method, for computing a small-size... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 460 |
| SubjectTerms | Algorithms Combinatorics Computation Computational Mathematics and Numerical Analysis Data structures Disks Mathematics Mathematics and Statistics Zero sum games |
| SummonAdditionalLinks | – databaseName: Springer LINK Contemporary dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9KAHp1NxOiUHbxpom7Zpb47h3MUhTmW3kuZDB1sna_XvN8naDkUFPbXQJJT3kfcLee_3AM4dR0qq4wx2pXSwryIHM41CMHM8RlPiC5UK22yCDofReBzflUVheZXtXl1J2p26LnazbHH66Btji2twuA4bOtxFxh3vR0-rasjY9qEzpoYNWUlZKvP9Gp_D0QpjfrkWtdGm3_zff-7CTokuUXdpDnuwJrMWNKvODah05BZs39Zsrfk-XA21uWN9KtUP1J0-zxeT4mWWI41n0Y2cz0zTLY4GE5sijUayyBHLhHlBPZMBmh_AY__6oTfAZWcFzLXLFZizQLrCE4GI9famONcwLnKE9F0axpJTrgRToaNImNJQSR75IuIhlUFMWJCqmBxCI5tn8giQoUhzdEyLgpD6SuudpEwQrgKhJGGMtsGtBJzwknbcdL-YJjVhshVYogWWWIElYRsu6jmvS9KNX0d3Kr0lpQPmiWdwjwaTlLThstLT6vPPqx3_bfgJbHnmBG6z0jrQKBZv8hQ2-XsxyRdn1jA_AI2726Q priority: 102 providerName: Springer Nature |
| Title | Near-Linear Algorithms for Geometric Hitting Sets and Set Covers |
| URI | https://link.springer.com/article/10.1007/s00454-019-00099-6 https://www.proquest.com/docview/2222351173 |
| Volume | 63 |
| WOSCitedRecordID | wos000511936600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1432-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHeBAWUXZ5AM3sMju5MRSAZVQS0UBIS6R4wWQoAUS-H7GxmkFEly4TCIlsazMjOfZHs8D2PE8pRjGGeor5dFIpx7liEIo9wLOijCSupCWbIJ1u-ntbdZzC26lS6usx0Q7UMuhMGvk-4EJZIgOWHjw8koNa5TZXXUUGpMw7QeBb-z8nNHxucjMMtIZo6OmbIk7NGOPztnacziRzqhFSTT5HpjGaPPHBqmNO6eN__Z4AeYd4iRHXyayCBNqsASNms2BOOdegrnOqIJruQyHXXQBijNVvJCjp3tsuHp4LgliXHKmhs-GiEuQ9qNNmyZ9VZWED6S5IS2TFVquwPXpyVWrTR3bAhXohhUVPFa-DGQsMxzytBAI7VJPqshnSaYEE1pynXg6TAqWaCXSSKYiYSrOQh4XOgtXYWowHKg1IKZsmodxLo0TFmm0hbDgMhQ6llqFnLMm-PWvzoUrRW4YMZ7yURFlq54c1ZNb9eRJE3ZH37x8FeL48-3NWie5c8oyHyukCXu1VsePf29t_e_WNmA2MLNwm5m2CVPV27vaghnxUT2Wb9swfXzS7V1uW9NE2QkurOwZyfooe_Edysv-zSfPruu2 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LLwRBEK4IEhy8xbLoAyc6ZufVMwdBvFaWjQSJ2-jpB5usXcwg_pTfqLp3Zjck3BycZpJ5ZHr666rq7qrvA1h3HKUY-hlaU8qhvo4cyjEKodxxOUs9X-pUWrEJ1mxGNzfxxRB8lLUwJq2ytInWUMuuMGvk265xZBgdMG_38Yka1Sizu1pKaPRg0VDvbzhly3ZOD7F_N1z3-OjqoE4LVQEqEG45FTxQNenKQMY4tLUQGMJEjlR-jYWxEkxoyXXoaC9MWaiViHwZiZCpIPZ4kGpDvoQmf8T3Ima4-huMDuowY6uAZ0BODU1KUaRjS_Us1x1O3GNqozIafnWEg-j224as9XPHU__tD03DZBFRk_3eEJiBIdWZhalSrYIUxmsWJs77DLXZHOw18UspzsTxQPbbd9iQ_P4hIxjDkxPVfTBCY4LUWzYtnFyqPCO8I80JOTBZr9k8XP9JqxZguNPtqEUghhbOQT8eBSHzNWLdS7n0hA6kVh7nrAK1smsTUVCtG8WPdtInibZwSBAOiYVDElZgs__MY49o5Ne7qyUGksLoZMkAABXYKlE0uPzz25Z-f9sajNWvzs-Ss9NmYxnGXbPiYLPwqjCcP7-oFRgVr3kre161w4HA7V-j6xPMnUbL |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bL8RAFD4RRHhwF8tiHnhiotvbtA-CYJFlI0HiraZzYZO1ixbx1_w6Z2bb3ZDw5sFTm_SSTuc7l5k5830A646jFMM4Q2tKOdTXkUM5ZiGUOy5nqedLnUorNsGazejmJr4Ygo9yL4wpqyx9onXUsivMHPm2awIZZgfM29ZFWcTFYX338YkaBSmz0lrKafQg0lDvbzh8y3ZOD7GvN1y3fnR1cEILhQEqEHo5FTxQNenKQMZo5loITGciRyq_xsJYCSa05Dp0tBemLNRKRL6MRMhUEHs8SLUhYkL3P4JRODA21mB0sCcztmp4BvDUUKYUG3bstj3Le4eD-JjaDI2GX4PiINP9tjhrY1596j__rWmYLDJtst8zjRkYUp1ZmCpVLEjh1GZh4rzPXJvNwV4Tv5TiCB0PZL99hw3J7x8ygrk9OVbdByNAJshJy5aLk0uVZ4R3pDkhB6YaNpuH6z9p1QIMd7odtQjE0MU5GN-jIGS-RhvwUi49oQOplcc5q0Ct7OZEFBTsRgmknfTJoy00EoRGYqGRhBXY7D_z2CMg-fXuaomHpHBGWTIAQwW2SkQNLv_8tqXf37YGYwiq5Oy02ViGcddMRNjivCoM588vagVGxWveyp5XrWUQuP1rcH0CjCpPhQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Linear+Algorithms+for+Geometric+Hitting+Sets+and+Set+Covers&rft.jtitle=Discrete+%26+computational+geometry&rft.au=Agarwal%2C+Pankaj+K&rft.au=Pan+Jiangwei&rft.date=2020-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0179-5376&rft.eissn=1432-0444&rft.volume=63&rft.issue=2&rft.spage=460&rft.epage=482&rft_id=info:doi/10.1007%2Fs00454-019-00099-6&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0179-5376&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0179-5376&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0179-5376&client=summon |