Near-Linear Algorithms for Geometric Hitting Sets and Set Covers

Given a finite range space Σ = ( X , R ) , with N = | X | + | R | , we present two simple algorithms, based on the multiplicative-weight method, for computing a small-size hitting set or set cover of Σ . The first algorithm is a simpler variant of the Brönnimann–Goodrich algorithm but more efficient...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete & computational geometry Ročník 63; číslo 2; s. 460 - 482
Hlavní autori: Agarwal, Pankaj K., Pan, Jiangwei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.03.2020
Springer Nature B.V
Predmet:
ISSN:0179-5376, 1432-0444
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Given a finite range space Σ = ( X , R ) , with N = | X | + | R | , we present two simple algorithms, based on the multiplicative-weight method, for computing a small-size hitting set or set cover of Σ . The first algorithm is a simpler variant of the Brönnimann–Goodrich algorithm but more efficient to implement, and the second algorithm can be viewed as solving a two-player zero-sum game. These algorithms, in conjunction with some standard geometric data structures, lead to near-linear algorithms for computing a small-size hitting set or set cover for a number of geometric range spaces. For example, they lead to O ( N polylog ( N ) ) expected-time randomized O (1)-approximation algorithms for both hitting set and set cover if X is a set of points and R a set of disks in R 2 .
AbstractList Given a finite range space Σ=(X,R), with N=|X|+|R|, we present two simple algorithms, based on the multiplicative-weight method, for computing a small-size hitting set or set cover of Σ. The first algorithm is a simpler variant of the Brönnimann–Goodrich algorithm but more efficient to implement, and the second algorithm can be viewed as solving a two-player zero-sum game. These algorithms, in conjunction with some standard geometric data structures, lead to near-linear algorithms for computing a small-size hitting set or set cover for a number of geometric range spaces. For example, they lead to O(Npolylog(N)) expected-time randomized O(1)-approximation algorithms for both hitting set and set cover if X is a set of points and R a set of disks in R2.
Given a finite range space Σ = ( X , R ) , with N = | X | + | R | , we present two simple algorithms, based on the multiplicative-weight method, for computing a small-size hitting set or set cover of Σ . The first algorithm is a simpler variant of the Brönnimann–Goodrich algorithm but more efficient to implement, and the second algorithm can be viewed as solving a two-player zero-sum game. These algorithms, in conjunction with some standard geometric data structures, lead to near-linear algorithms for computing a small-size hitting set or set cover for a number of geometric range spaces. For example, they lead to O ( N polylog ( N ) ) expected-time randomized O (1)-approximation algorithms for both hitting set and set cover if X is a set of points and R a set of disks in R 2 .
Author Pan, Jiangwei
Agarwal, Pankaj K.
Author_xml – sequence: 1
  givenname: Pankaj K.
  surname: Agarwal
  fullname: Agarwal, Pankaj K.
  organization: Department of Computer Science, Duke University
– sequence: 2
  givenname: Jiangwei
  orcidid: 0000-0003-0397-8971
  surname: Pan
  fullname: Pan, Jiangwei
  email: panjiangwei@gmail.com
  organization: Department of Computer Science, Duke University
BookMark eNp9kM1KQzEQhYNUsFZfwNUF19GkyU1udpairVB0oa5Dmp-a0iY1SQXf3tQrCC46mzOL880ZzjkYhBgsAFcY3WCE-G1GiLYUIiwgQkgIyE7AEFMyhohSOgBDhLmALeHsDJznvK4mKlA3BHdPViW48KFKM9msYvLlfZsbF1Mzs3FrS_K6mftSfFg1L7bkRgVzWJpp_LQpX4BTpzbZXv7qCLw93L9O53DxPHucThZQEywK1Kq12IxNa4Qx1mmNBemQsRRzJqzm2hnlGHKELTlzVnfUdJpx2wqi2qUTZASu-7u7FD_2Nhe5jvsUaqQc1yEtxpxU17h36RRzTtbJXfJblb4kRvLQlOybkrUp-dOUZBXq_kHaF1V8DCUpvzmOkh7NNSesbPr76gj1DVbwf3o
CitedBy_id crossref_primary_10_1016_j_comgeo_2024_102122
crossref_primary_10_1016_j_ejor_2021_02_015
crossref_primary_10_1007_s00454_024_00709_y
crossref_primary_10_1016_j_orl_2023_07_005
crossref_primary_10_1016_j_tcs_2024_114452
crossref_primary_10_1137_23M1596582
crossref_primary_10_1007_s00453_024_01244_1
crossref_primary_10_1007_s00454_022_00402_y
crossref_primary_10_3390_math13152479
crossref_primary_10_1016_j_comgeo_2025_102188
crossref_primary_10_1145_3603376
Cites_doi 10.1007/s00453-011-9517-2
10.1145/2462356.2462363
10.1016/j.comgeo.2015.12.002
10.1016/0196-6774(80)90015-2
10.1145/1542362.1542420
10.1137/0215051
10.1007/BF02187876
10.1007/s00454-006-1273-8
10.1007/s00454-010-9285-9
10.1007/BF02187743
10.1145/2390176.2390185
10.1137/1.9781611973068.21
10.1007/BF02293051
10.1017/CBO9780511814075
10.1145/1542362.1542366
10.1137/090762968
10.1016/0167-6377(95)00032-0
10.1090/S0894-0347-2012-00759-0
10.1145/201019.201036
10.1145/285055.285059
10.1145/1377676.1377708
10.1007/s00454-010-9323-7
10.1137/1.9781611973068.97
10.1007/s00453-013-9771-6
10.1007/978-3-540-77974-2
10.1006/game.1999.0738
10.1137/120891241
10.1007/BF02570718
10.1090/conm/223/03131
10.1016/0020-0190(81)90111-3
10.1137/060669474
10.1016/0925-7721(92)90006-E
10.1287/moor.20.2.257
10.1109/FOCS.2014.64
10.4086/toc.2012.v008a006
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Discrete & Computational Geometry is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Discrete & Computational Geometry is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00454-019-00099-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Research Library China
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep

Database_xml – sequence: 1
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1432-0444
EndPage 482
ExternalDocumentID 10_1007_s00454_019_00099_6
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-11-61359; IIS-14-08846
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: United States - Israel Binational Science Foundation
  grantid: 2012/229
  funderid: http://dx.doi.org/10.13039/100006221
– fundername: Army Research Office
  grantid: W911NF-15-1-0408
  funderid: http://dx.doi.org/10.13039/100000183
– fundername: National Science Foundation
  grantid: CCF-15-13816; ISS-14-47554
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -52
-5D
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.4S
.86
.DC
06D
0R~
0VY
199
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
88I
8AO
8FE
8FG
8FW
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C1A
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KQ8
L6V
LAS
LLZTM
LO0
M0N
M2O
M2P
M4Y
M7S
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P62
P9R
PADUT
PF0
PKN
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YIN
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-ca5e1d2d5d9ddefcc19380de41769ec7cfdaf60f36b76fec84d8c67e593a5bf93
IEDL.DBID K7-
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000511936600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0179-5376
IngestDate Thu Nov 27 13:41:58 EST 2025
Sat Nov 29 02:58:48 EST 2025
Tue Nov 18 21:35:38 EST 2025
Fri Feb 21 02:43:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Rectangles
Multiplicative weight method
Disks
Geometric set cover
Near-linear algorithms
68U05
52C17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ca5e1d2d5d9ddefcc19380de41769ec7cfdaf60f36b76fec84d8c67e593a5bf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0397-8971
PQID 2222351173
PQPubID 31658
PageCount 23
ParticipantIDs proquest_journals_2222351173
crossref_primary_10_1007_s00454_019_00099_6
crossref_citationtrail_10_1007_s00454_019_00099_6
springer_journals_10_1007_s00454_019_00099_6
PublicationCentury 2000
PublicationDate 20200300
2020-3-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 3
  year: 2020
  text: 20200300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Discrete & computational geometry
PublicationTitleAbbrev Discrete Comput Geom
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ClarksonKenneth L.Algorithms for polytope covering and approximationLecture Notes in Computer Science1993Berlin, HeidelbergSpringer Berlin Heidelberg246252
ClarksonKLLas Vegas algorithms for linear and integer programming when the dimension is smallJ. ACM199542248849914097440885.6506310.1145/201019.201036
AronovBde BergMEzraESharirMImproved bounds for the union of locally fat objects in the planeSIAM J. Comput.201443254357231884011295.0525810.1137/120891241
AronovBEzraESharirMSmall-size $\varepsilon $-nets for axis-parallel rectangles and boxesSIAM J. Comput.20103973248328226780741209.6862410.1137/090762968
FeigeUA threshold of $\ln n$ for approximating set coverJ. ACM199845463465216750951065.6857310.1145/285055.285059
AlonNA non-linear lower bound for planar epsilon-netsDiscrete Comput. Geom.201247223524428725351232.6816110.1007/s00454-010-9323-7
MatoušekJEfficient partition treesDiscrete Comput. Geom.19928331533411743600752.6808810.1007/BF02293051
Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09), pp. 892–901. SIAM, Philadelphia (2009)
Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. In: Proceedings of the 25th Annual Symposium on Computational Geometry (SoCG’09), pp. 333–340. ACM, New York (2009)
AronovBHar-PeledSOn approximating the depth and related problemsSIAM J. Comput.200838389992124210711180.6827810.1137/060669474
ChazelleBWelzlEQuasi-optimal range searching in spaces of finite VC-dimensionDiscrete Comput. Geom.19894546748910147390681.6808110.1007/BF02187743
HausslerDWelzlE$\varepsilon $-nets and simplex range queriesDiscrete Comput. Geom.1987221271518842230619.6805610.1007/BF02187876
CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20093BostonMcGraw-Hill1187.68679
ClarksonKLVaradarajanKRImproved approximation algorithms for geometric set coverDiscrete Comput. Geom.2007371435822798631106.6812110.1007/s00454-006-1273-8
FreundYSchapireREAdaptive game playing using multiplicative weightsGames Econ. Behav.1999291–27910317293110964.9100710.1006/game.1999.0738
BusNGargSMustafaNHRaySTighter estimates for e-nets for disksComput. Geom. Theory Appl.201653C273534545421334.6504810.1016/j.comgeo.2015.12.002
ChazelleBFiltering search: a new approach to query answeringSIAM J. Comput.19861537037248504180612.6808810.1137/0215051
Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J., Pollack, R. (eds.) Advances in Discrete and Computational Geometry. Contemporary Mathematics, vol. 223, pp. 1–56. American Mathematical Society, Providence (1999)
BentleyJLSaxeJBDecomposable searching problems. I. Static-to-dynamic transformationJ. Algorithms1980143013586048690461.6806510.1016/0196-6774(80)90015-2
MotwaniRRaghavanPRandomized Algorithms1995CambridgeCambridge University Press0849.6803910.1017/CBO9780511814075
BrönnimannHGoodrichMTAlmost optimal set covers in finite VC-dimensionDiscrete Comput. Geom.199514146347913609480841.6812210.1007/BF02570718
LongPhilip M.Using the Pseudo-Dimension to Analyze Approximation Algorithms for Integer ProgrammingLecture Notes in Computer Science2001Berlin, HeidelbergSpringer Berlin Heidelberg2637
PlotkinSAShmoysDBTardosÉFast approximation algorithms for fractional packing and covering problemsMath. Oper. Res.199520225730113429480837.9010310.1287/moor.20.2.257
AgarwalPKEzraESharirMNear-linear approximation algorithms for geometric hitting setsAlgorithmica2012631–212528860621286.6849310.1007/s00453-011-9517-2
KoufogiannakisCYoungNEA nearly linear-time PTAS for explicit fractional packing and covering linear programsAlgorithmica201470464867432713711311.9007110.1007/s00453-013-9771-6
Shaul, H.: Range Searching: Emptiness, Reporting, and Approximate Counting. PhD thesis, Tel Aviv University (2011)
ChekuriCClarksonKLHar-PeledSOn the set multicover problem in geometric settingsACM Trans. Algorithms2012919:19:1730083041301.6823710.1145/2390176.2390185
Har-PeledSGeometric Approximation Algorithms. Mathematical Surveys and Monographs2011ProvidenceAmerican Mathematical Society1230.68215
Pyrga, E., Ray, S.: New existence proofs for $\varepsilon $-nets. In: Proceedings of the 24th Annual Symposium on Computational Geometry (SoCG’08), pp. 199–207. ACM, New York (2008)
Chan, T.M., Tsakalidis, K.: Optimal deterministic algorithms for 2-d and 3-d shallow cuttings. In: Proceedings of the 31th Annual Symposium on Computational Geometry (SoCG’15). LIPIcs. Leibniz International Proceedings in Informatics, vol. 34, pp. 719–732. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2015)
Ezra, E.E.: Small-size relative ($p,\varepsilon $)-approximations for well-behaved range spaces. In: Proceedings of the 29th Annual Symposium on Computational Geometry (SoCG’13), pp. 233–242. ACM, New York (2013)
Lauen, S.: Geometric set cover and hitting sets for polytopes in $R^3$. In: Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science. LIPIcs. Leibniz International Proceedings in Informatics, vol. 1, pp. 479–490. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2008)
Varadarajan, K.: Epsilon nets and union complexity. In: Proceedings of the 25th Annual Symposium on Computational Geometry (SoCG’09), pp. 11–16. ACM, New York (2009)
GareyMRJohnsonDSComputers and Intractability: A Guide to the Theory of NP-Completeness1979San FranciscoW. H. Freeman0411.68039
Kupavskii, A., Mustafa, N., Pach, J.: New lower bounds for epsilon-nets. In: Proceedings of the 32nd International Symposium on Computational Geometry. LIPIcs. Leibniz International Proceedings in Informatics, vol. 51, pp. 54:1–54:16. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2016)
PachJTardosGTight lower bounds for the size of epsilon-netsJ. Am. Math. Soc.201326364565830377841268.5201110.1090/S0894-0347-2012-00759-0
MustafaNHRaySImproved results on geometric hitting set problemsDiscrete Comput. Geom.201044488389527280381207.6842010.1007/s00454-010-9285-9
AroraSHazanEKaleSThe multiplicative weights update method: a meta-algorithm and applicationsTheory Comput.20128612116429485021283.6841410.4086/toc.2012.v008a006
de BergMCheongOvan KreveldMOvermarsMComputational Geometry: Algorithms and Applications20083BerlinSpringer1140.6806910.1007/978-3-540-77974-2
Mustafa, N.H., Raman, R., Ray, S.: Settling the APX-hardness status for geometric set cover. In: Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science, pp. 541–550. IEEE, Los Alamitos (2014)
GrigoriadisMDKhachiyanLGA sublinear-time randomized approximation algorithm for matrix gamesOper. Res. Lett.1995182535813618610857.9014410.1016/0167-6377(95)00032-0
Afshani, P., Chan, T.M.: Optimal halfspace range reporting in three dimensions. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09), pp. 180–186. SIAM, Philadelphia (2009)
FowlerRJPatersonMSTanimotoSLOptimal packing and covering in the plane are NP-completeInf. Process. Lett.19811231331376189230469.6805310.1016/0020-0190(81)90111-3
MatoušekJReporting points in halfspacesComput. Geom.19922316918611905990772.6810510.1016/0925-7721(92)90006-E
B Aronov (99_CR6) 2010; 39
N Alon (99_CR4) 2012; 47
R Motwani (99_CR37) 1995
B Aronov (99_CR7) 2008; 38
PK Agarwal (99_CR3) 2012; 63
99_CR43
99_CR42
99_CR23
MD Grigoriadis (99_CR28) 1995; 18
99_CR44
99_CR1
N Bus (99_CR11) 2016; 53
J Pach (99_CR40) 2013; 26
99_CR2
B Chazelle (99_CR15) 1986; 15
Philip M. Long (99_CR34) 2001
TH Cormen (99_CR21) 2009
M de Berg (99_CR22) 2008
J Matoušek (99_CR36) 1992; 2
KL Clarkson (99_CR20) 2007; 37
Kenneth L. Clarkson (99_CR18) 1993
U Feige (99_CR24) 1998; 45
SA Plotkin (99_CR41) 1995; 20
B Chazelle (99_CR16) 1989; 4
RJ Fowler (99_CR25) 1981; 12
MR Garey (99_CR27) 1979
Y Freund (99_CR26) 1999; 29
S Har-Peled (99_CR29) 2011
99_CR32
99_CR12
JL Bentley (99_CR9) 1980; 1
99_CR33
99_CR14
99_CR13
NH Mustafa (99_CR39) 2010; 44
99_CR38
D Haussler (99_CR30) 1987; 2
KL Clarkson (99_CR19) 1995; 42
C Koufogiannakis (99_CR31) 2014; 70
B Aronov (99_CR5) 2014; 43
S Arora (99_CR8) 2012; 8
H Brönnimann (99_CR10) 1995; 14
C Chekuri (99_CR17) 2012; 9
J Matoušek (99_CR35) 1992; 8
References_xml – reference: MatoušekJEfficient partition treesDiscrete Comput. Geom.19928331533411743600752.6808810.1007/BF02293051
– reference: Ezra, E.E.: Small-size relative ($p,\varepsilon $)-approximations for well-behaved range spaces. In: Proceedings of the 29th Annual Symposium on Computational Geometry (SoCG’13), pp. 233–242. ACM, New York (2013)
– reference: Shaul, H.: Range Searching: Emptiness, Reporting, and Approximate Counting. PhD thesis, Tel Aviv University (2011)
– reference: PlotkinSAShmoysDBTardosÉFast approximation algorithms for fractional packing and covering problemsMath. Oper. Res.199520225730113429480837.9010310.1287/moor.20.2.257
– reference: Mustafa, N.H., Raman, R., Ray, S.: Settling the APX-hardness status for geometric set cover. In: Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science, pp. 541–550. IEEE, Los Alamitos (2014)
– reference: Chan, T.M., Tsakalidis, K.: Optimal deterministic algorithms for 2-d and 3-d shallow cuttings. In: Proceedings of the 31th Annual Symposium on Computational Geometry (SoCG’15). LIPIcs. Leibniz International Proceedings in Informatics, vol. 34, pp. 719–732. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2015)
– reference: Afshani, P., Chan, T.M.: Optimal halfspace range reporting in three dimensions. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09), pp. 180–186. SIAM, Philadelphia (2009)
– reference: ChazelleBFiltering search: a new approach to query answeringSIAM J. Comput.19861537037248504180612.6808810.1137/0215051
– reference: FeigeUA threshold of $\ln n$ for approximating set coverJ. ACM199845463465216750951065.6857310.1145/285055.285059
– reference: LongPhilip M.Using the Pseudo-Dimension to Analyze Approximation Algorithms for Integer ProgrammingLecture Notes in Computer Science2001Berlin, HeidelbergSpringer Berlin Heidelberg2637
– reference: GareyMRJohnsonDSComputers and Intractability: A Guide to the Theory of NP-Completeness1979San FranciscoW. H. Freeman0411.68039
– reference: MatoušekJReporting points in halfspacesComput. Geom.19922316918611905990772.6810510.1016/0925-7721(92)90006-E
– reference: Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J., Pollack, R. (eds.) Advances in Discrete and Computational Geometry. Contemporary Mathematics, vol. 223, pp. 1–56. American Mathematical Society, Providence (1999)
– reference: Har-PeledSGeometric Approximation Algorithms. Mathematical Surveys and Monographs2011ProvidenceAmerican Mathematical Society1230.68215
– reference: ClarksonKLLas Vegas algorithms for linear and integer programming when the dimension is smallJ. ACM199542248849914097440885.6506310.1145/201019.201036
– reference: KoufogiannakisCYoungNEA nearly linear-time PTAS for explicit fractional packing and covering linear programsAlgorithmica201470464867432713711311.9007110.1007/s00453-013-9771-6
– reference: AronovBEzraESharirMSmall-size $\varepsilon $-nets for axis-parallel rectangles and boxesSIAM J. Comput.20103973248328226780741209.6862410.1137/090762968
– reference: de BergMCheongOvan KreveldMOvermarsMComputational Geometry: Algorithms and Applications20083BerlinSpringer1140.6806910.1007/978-3-540-77974-2
– reference: AronovBde BergMEzraESharirMImproved bounds for the union of locally fat objects in the planeSIAM J. Comput.201443254357231884011295.0525810.1137/120891241
– reference: FowlerRJPatersonMSTanimotoSLOptimal packing and covering in the plane are NP-completeInf. Process. Lett.19811231331376189230469.6805310.1016/0020-0190(81)90111-3
– reference: GrigoriadisMDKhachiyanLGA sublinear-time randomized approximation algorithm for matrix gamesOper. Res. Lett.1995182535813618610857.9014410.1016/0167-6377(95)00032-0
– reference: AroraSHazanEKaleSThe multiplicative weights update method: a meta-algorithm and applicationsTheory Comput.20128612116429485021283.6841410.4086/toc.2012.v008a006
– reference: AgarwalPKEzraESharirMNear-linear approximation algorithms for geometric hitting setsAlgorithmica2012631–212528860621286.6849310.1007/s00453-011-9517-2
– reference: BentleyJLSaxeJBDecomposable searching problems. I. Static-to-dynamic transformationJ. Algorithms1980143013586048690461.6806510.1016/0196-6774(80)90015-2
– reference: MustafaNHRaySImproved results on geometric hitting set problemsDiscrete Comput. Geom.201044488389527280381207.6842010.1007/s00454-010-9285-9
– reference: BrönnimannHGoodrichMTAlmost optimal set covers in finite VC-dimensionDiscrete Comput. Geom.199514146347913609480841.6812210.1007/BF02570718
– reference: ChazelleBWelzlEQuasi-optimal range searching in spaces of finite VC-dimensionDiscrete Comput. Geom.19894546748910147390681.6808110.1007/BF02187743
– reference: Lauen, S.: Geometric set cover and hitting sets for polytopes in $R^3$. In: Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science. LIPIcs. Leibniz International Proceedings in Informatics, vol. 1, pp. 479–490. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2008)
– reference: Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. In: Proceedings of the 25th Annual Symposium on Computational Geometry (SoCG’09), pp. 333–340. ACM, New York (2009)
– reference: AlonNA non-linear lower bound for planar epsilon-netsDiscrete Comput. Geom.201247223524428725351232.6816110.1007/s00454-010-9323-7
– reference: Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09), pp. 892–901. SIAM, Philadelphia (2009)
– reference: ClarksonKenneth L.Algorithms for polytope covering and approximationLecture Notes in Computer Science1993Berlin, HeidelbergSpringer Berlin Heidelberg246252
– reference: Kupavskii, A., Mustafa, N., Pach, J.: New lower bounds for epsilon-nets. In: Proceedings of the 32nd International Symposium on Computational Geometry. LIPIcs. Leibniz International Proceedings in Informatics, vol. 51, pp. 54:1–54:16. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2016)
– reference: Pyrga, E., Ray, S.: New existence proofs for $\varepsilon $-nets. In: Proceedings of the 24th Annual Symposium on Computational Geometry (SoCG’08), pp. 199–207. ACM, New York (2008)
– reference: FreundYSchapireREAdaptive game playing using multiplicative weightsGames Econ. Behav.1999291–27910317293110964.9100710.1006/game.1999.0738
– reference: HausslerDWelzlE$\varepsilon $-nets and simplex range queriesDiscrete Comput. Geom.1987221271518842230619.6805610.1007/BF02187876
– reference: ClarksonKLVaradarajanKRImproved approximation algorithms for geometric set coverDiscrete Comput. Geom.2007371435822798631106.6812110.1007/s00454-006-1273-8
– reference: ChekuriCClarksonKLHar-PeledSOn the set multicover problem in geometric settingsACM Trans. Algorithms2012919:19:1730083041301.6823710.1145/2390176.2390185
– reference: PachJTardosGTight lower bounds for the size of epsilon-netsJ. Am. Math. Soc.201326364565830377841268.5201110.1090/S0894-0347-2012-00759-0
– reference: MotwaniRRaghavanPRandomized Algorithms1995CambridgeCambridge University Press0849.6803910.1017/CBO9780511814075
– reference: AronovBHar-PeledSOn approximating the depth and related problemsSIAM J. Comput.200838389992124210711180.6827810.1137/060669474
– reference: CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20093BostonMcGraw-Hill1187.68679
– reference: Varadarajan, K.: Epsilon nets and union complexity. In: Proceedings of the 25th Annual Symposium on Computational Geometry (SoCG’09), pp. 11–16. ACM, New York (2009)
– reference: BusNGargSMustafaNHRaySTighter estimates for e-nets for disksComput. Geom. Theory Appl.201653C273534545421334.6504810.1016/j.comgeo.2015.12.002
– volume: 63
  start-page: 1
  issue: 1–2
  year: 2012
  ident: 99_CR3
  publication-title: Algorithmica
  doi: 10.1007/s00453-011-9517-2
– ident: 99_CR23
  doi: 10.1145/2462356.2462363
– start-page: 26
  volume-title: Lecture Notes in Computer Science
  year: 2001
  ident: 99_CR34
– volume: 53
  start-page: 27
  issue: C
  year: 2016
  ident: 99_CR11
  publication-title: Comput. Geom. Theory Appl.
  doi: 10.1016/j.comgeo.2015.12.002
– ident: 99_CR14
– volume: 1
  start-page: 301
  issue: 4
  year: 1980
  ident: 99_CR9
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(80)90015-2
– ident: 99_CR13
  doi: 10.1145/1542362.1542420
– volume: 15
  start-page: 703
  issue: 3
  year: 1986
  ident: 99_CR15
  publication-title: SIAM J. Comput.
  doi: 10.1137/0215051
– volume: 2
  start-page: 127
  issue: 2
  year: 1987
  ident: 99_CR30
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02187876
– ident: 99_CR33
– ident: 99_CR43
– volume: 37
  start-page: 43
  issue: 1
  year: 2007
  ident: 99_CR20
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-006-1273-8
– volume-title: Geometric Approximation Algorithms. Mathematical Surveys and Monographs
  year: 2011
  ident: 99_CR29
– volume: 44
  start-page: 883
  issue: 4
  year: 2010
  ident: 99_CR39
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-010-9285-9
– volume: 4
  start-page: 467
  issue: 5
  year: 1989
  ident: 99_CR16
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02187743
– volume: 9
  start-page: 9:1
  issue: 1
  year: 2012
  ident: 99_CR17
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/2390176.2390185
– ident: 99_CR1
  doi: 10.1137/1.9781611973068.21
– volume: 8
  start-page: 315
  issue: 3
  year: 1992
  ident: 99_CR35
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02293051
– volume-title: Randomized Algorithms
  year: 1995
  ident: 99_CR37
  doi: 10.1017/CBO9780511814075
– ident: 99_CR44
  doi: 10.1145/1542362.1542366
– volume: 39
  start-page: 3248
  issue: 7
  year: 2010
  ident: 99_CR6
  publication-title: SIAM J. Comput.
  doi: 10.1137/090762968
– volume: 18
  start-page: 53
  issue: 2
  year: 1995
  ident: 99_CR28
  publication-title: Oper. Res. Lett.
  doi: 10.1016/0167-6377(95)00032-0
– volume: 26
  start-page: 645
  issue: 3
  year: 2013
  ident: 99_CR40
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-2012-00759-0
– start-page: 246
  volume-title: Lecture Notes in Computer Science
  year: 1993
  ident: 99_CR18
– volume: 42
  start-page: 488
  issue: 2
  year: 1995
  ident: 99_CR19
  publication-title: J. ACM
  doi: 10.1145/201019.201036
– volume: 45
  start-page: 634
  issue: 4
  year: 1998
  ident: 99_CR24
  publication-title: J. ACM
  doi: 10.1145/285055.285059
– ident: 99_CR42
  doi: 10.1145/1377676.1377708
– volume-title: Introduction to Algorithms
  year: 2009
  ident: 99_CR21
– volume: 47
  start-page: 235
  issue: 2
  year: 2012
  ident: 99_CR4
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-010-9323-7
– ident: 99_CR12
  doi: 10.1137/1.9781611973068.97
– volume: 70
  start-page: 648
  issue: 4
  year: 2014
  ident: 99_CR31
  publication-title: Algorithmica
  doi: 10.1007/s00453-013-9771-6
– volume-title: Computational Geometry: Algorithms and Applications
  year: 2008
  ident: 99_CR22
  doi: 10.1007/978-3-540-77974-2
– ident: 99_CR32
– volume-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
  year: 1979
  ident: 99_CR27
– volume: 29
  start-page: 79
  issue: 1–2
  year: 1999
  ident: 99_CR26
  publication-title: Games Econ. Behav.
  doi: 10.1006/game.1999.0738
– volume: 43
  start-page: 543
  issue: 2
  year: 2014
  ident: 99_CR5
  publication-title: SIAM J. Comput.
  doi: 10.1137/120891241
– volume: 14
  start-page: 463
  issue: 1
  year: 1995
  ident: 99_CR10
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02570718
– ident: 99_CR2
  doi: 10.1090/conm/223/03131
– volume: 12
  start-page: 133
  issue: 3
  year: 1981
  ident: 99_CR25
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(81)90111-3
– volume: 38
  start-page: 899
  issue: 3
  year: 2008
  ident: 99_CR7
  publication-title: SIAM J. Comput.
  doi: 10.1137/060669474
– volume: 2
  start-page: 169
  issue: 3
  year: 1992
  ident: 99_CR36
  publication-title: Comput. Geom.
  doi: 10.1016/0925-7721(92)90006-E
– volume: 20
  start-page: 257
  issue: 2
  year: 1995
  ident: 99_CR41
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.20.2.257
– ident: 99_CR38
  doi: 10.1109/FOCS.2014.64
– volume: 8
  start-page: 121
  issue: 6
  year: 2012
  ident: 99_CR8
  publication-title: Theory Comput.
  doi: 10.4086/toc.2012.v008a006
SSID ssj0004908
Score 2.431379
Snippet Given a finite range space Σ = ( X , R ) , with N = | X | + | R | , we present two simple algorithms, based on the multiplicative-weight method, for computing...
Given a finite range space Σ=(X,R), with N=|X|+|R|, we present two simple algorithms, based on the multiplicative-weight method, for computing a small-size...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 460
SubjectTerms Algorithms
Combinatorics
Computation
Computational Mathematics and Numerical Analysis
Data structures
Disks
Mathematics
Mathematics and Statistics
Zero sum games
SummonAdditionalLinks – databaseName: Springer LINK Contemporary
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9KAHp1NxOiUHbxpom7Zpb47h3MUhTmW3kuZDB1sna_XvN8naDkUFPbXQJJT3kfcLee_3AM4dR0qq4wx2pXSwryIHM41CMHM8RlPiC5UK22yCDofReBzflUVheZXtXl1J2p26LnazbHH66Btji2twuA4bOtxFxh3vR0-rasjY9qEzpoYNWUlZKvP9Gp_D0QpjfrkWtdGm3_zff-7CTokuUXdpDnuwJrMWNKvODah05BZs39Zsrfk-XA21uWN9KtUP1J0-zxeT4mWWI41n0Y2cz0zTLY4GE5sijUayyBHLhHlBPZMBmh_AY__6oTfAZWcFzLXLFZizQLrCE4GI9famONcwLnKE9F0axpJTrgRToaNImNJQSR75IuIhlUFMWJCqmBxCI5tn8giQoUhzdEyLgpD6SuudpEwQrgKhJGGMtsGtBJzwknbcdL-YJjVhshVYogWWWIElYRsu6jmvS9KNX0d3Kr0lpQPmiWdwjwaTlLThstLT6vPPqx3_bfgJbHnmBG6z0jrQKBZv8hQ2-XsxyRdn1jA_AI2726Q
  priority: 102
  providerName: Springer Nature
Title Near-Linear Algorithms for Geometric Hitting Sets and Set Covers
URI https://link.springer.com/article/10.1007/s00454-019-00099-6
https://www.proquest.com/docview/2222351173
Volume 63
WOSCitedRecordID wos000511936600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHeBAWUXZ5AM3sMju5MRSAZVQS0UBIS6R4wWQoAUS-H7GxmkFEly4TCIlsazMjOfZHs8D2PE8pRjGGeor5dFIpx7liEIo9wLOijCSupCWbIJ1u-ntbdZzC26lS6usx0Q7UMuhMGvk-4EJZIgOWHjw8koNa5TZXXUUGpMw7QeBb-z8nNHxucjMMtIZo6OmbIk7NGOPztnacziRzqhFSTT5HpjGaPPHBqmNO6eN__Z4AeYd4iRHXyayCBNqsASNms2BOOdegrnOqIJruQyHXXQBijNVvJCjp3tsuHp4LgliXHKmhs-GiEuQ9qNNmyZ9VZWED6S5IS2TFVquwPXpyVWrTR3bAhXohhUVPFa-DGQsMxzytBAI7VJPqshnSaYEE1pynXg6TAqWaCXSSKYiYSrOQh4XOgtXYWowHKg1IKZsmodxLo0TFmm0hbDgMhQ6llqFnLMm-PWvzoUrRW4YMZ7yURFlq54c1ZNb9eRJE3ZH37x8FeL48-3NWie5c8oyHyukCXu1VsePf29t_e_WNmA2MLNwm5m2CVPV27vaghnxUT2Wb9swfXzS7V1uW9NE2QkurOwZyfooe_Edysv-zSfPruu2
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LLwRBEK4IEhy8xbLoAyc6ZufVMwdBvFaWjQSJ2-jpB5usXcwg_pTfqLp3Zjck3BycZpJ5ZHr666rq7qrvA1h3HKUY-hlaU8qhvo4cyjEKodxxOUs9X-pUWrEJ1mxGNzfxxRB8lLUwJq2ytInWUMuuMGvk265xZBgdMG_38Yka1Sizu1pKaPRg0VDvbzhly3ZOD7F_N1z3-OjqoE4LVQEqEG45FTxQNenKQMY4tLUQGMJEjlR-jYWxEkxoyXXoaC9MWaiViHwZiZCpIPZ4kGpDvoQmf8T3Ima4-huMDuowY6uAZ0BODU1KUaRjS_Us1x1O3GNqozIafnWEg-j224as9XPHU__tD03DZBFRk_3eEJiBIdWZhalSrYIUxmsWJs77DLXZHOw18UspzsTxQPbbd9iQ_P4hIxjDkxPVfTBCY4LUWzYtnFyqPCO8I80JOTBZr9k8XP9JqxZguNPtqEUghhbOQT8eBSHzNWLdS7n0hA6kVh7nrAK1smsTUVCtG8WPdtInibZwSBAOiYVDElZgs__MY49o5Ne7qyUGksLoZMkAABXYKlE0uPzz25Z-f9sajNWvzs-Ss9NmYxnGXbPiYLPwqjCcP7-oFRgVr3kre161w4HA7V-j6xPMnUbL
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bL8RAFD4RRHhwF8tiHnhiotvbtA-CYJFlI0HiraZzYZO1ixbx1_w6Z2bb3ZDw5sFTm_SSTuc7l5k5830A646jFMM4Q2tKOdTXkUM5ZiGUOy5nqedLnUorNsGazejmJr4Ygo9yL4wpqyx9onXUsivMHPm2awIZZgfM29ZFWcTFYX338YkaBSmz0lrKafQg0lDvbzh8y3ZOD7GvN1y3fnR1cEILhQEqEHo5FTxQNenKQMZo5loITGciRyq_xsJYCSa05Dp0tBemLNRKRL6MRMhUEHs8SLUhYkL3P4JRODA21mB0sCcztmp4BvDUUKYUG3bstj3Le4eD-JjaDI2GX4PiINP9tjhrY1596j__rWmYLDJtst8zjRkYUp1ZmCpVLEjh1GZh4rzPXJvNwV4Tv5TiCB0PZL99hw3J7x8ygrk9OVbdByNAJshJy5aLk0uVZ4R3pDkhB6YaNpuH6z9p1QIMd7odtQjE0MU5GN-jIGS-RhvwUi49oQOplcc5q0Ct7OZEFBTsRgmknfTJoy00EoRGYqGRhBXY7D_z2CMg-fXuaomHpHBGWTIAQwW2SkQNLv_8tqXf37YGYwiq5Oy02ViGcddMRNjivCoM588vagVGxWveyp5XrWUQuP1rcH0CjCpPhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Linear+Algorithms+for+Geometric+Hitting+Sets+and+Set+Covers&rft.jtitle=Discrete+%26+computational+geometry&rft.au=Agarwal%2C+Pankaj+K&rft.au=Pan+Jiangwei&rft.date=2020-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0179-5376&rft.eissn=1432-0444&rft.volume=63&rft.issue=2&rft.spage=460&rft.epage=482&rft_id=info:doi/10.1007%2Fs00454-019-00099-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0179-5376&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0179-5376&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0179-5376&client=summon