Estimating rainfed groundnut’s leaf area index using Sentinel-2 based on Machine Learning Regression Algorithms and Empirical Models
The leaf area index (LAI), a crucial biophysical indicator, is used to assess and monitor crop growth for effective agricultural management. This study assessed the LAI at the seedling stage after conducting a field experiment with rainfed groundnut. The study tests the performance of multiple machi...
Uložené v:
| Vydané v: | Precision agriculture Ročník 25; číslo 3; s. 1404 - 1428 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.06.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1385-2256, 1573-1618 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The leaf area index (LAI), a crucial biophysical indicator, is used to assess and monitor crop growth for effective agricultural management. This study assessed the LAI at the seedling stage after conducting a field experiment with rainfed groundnut. The study tests the performance of multiple machine learning regression algorithms (MLRAs) and empirical vegetation indices (VIs) in retrieving groundnut's LAI using freely available Sentinel-2 data. The bands at 665 nm, 705 nm, 842 nm, and 2190 nm are the most sensitive for retrieving groundnut's LAI, according to an analysis of its band spectrum. Results suggest that VIs computed with wavebands centered at red (665 nm), red edge (705 nm), and near-infrared (842 nm) exhibited optimal R
2
with Sentinel-2 data. Normalized difference vegetation index (NDVI), red edge normalized difference vegetation index (NDVIre), simple ratio (SR), red edge simple ratio (SRre), and green normalized difference vegetation index (gNDVI) were utilized as predictors for LAI. Regarding the results of the validation between estimated and measured LAI, SR demonstrated the highest accuracy for groundnut LAI prediction (r
2
= 0.67, RMSE = 0.89). Ten MLRAs were tested, and results indicate from the perspective of the accuracy of models, the Gaussian processes regression, GPR (r
2
= 0.73 and RMSE = 0.81), Kernel ridge regression, KRR (r
2
= 0.72 and RMSE = 0.82) and Support vector regression, SVR (r
2
= 0.70 and RMSE = 0.85) demonstrated to be the most suitable for LAI estimation for rainfed groundnut at the seedling stage. The systematic analysis based on the regression approaches tested here revealed that the GPR outperformed other models combined, therefore, most suitable for estimating rainfed groundnut LAI at the seedling stage. These findings serve as a benchmark for obtaining crop biophysical parameters in the framework of groundnut traits monitoring in a tropical West Africa. |
|---|---|
| AbstractList | The leaf area index (LAI), a crucial biophysical indicator, is used to assess and monitor crop growth for effective agricultural management. This study assessed the LAI at the seedling stage after conducting a field experiment with rainfed groundnut. The study tests the performance of multiple machine learning regression algorithms (MLRAs) and empirical vegetation indices (VIs) in retrieving groundnut's LAI using freely available Sentinel-2 data. The bands at 665 nm, 705 nm, 842 nm, and 2190 nm are the most sensitive for retrieving groundnut's LAI, according to an analysis of its band spectrum. Results suggest that VIs computed with wavebands centered at red (665 nm), red edge (705 nm), and near-infrared (842 nm) exhibited optimal R2 with Sentinel-2 data. Normalized difference vegetation index (NDVI), red edge normalized difference vegetation index (NDVIre), simple ratio (SR), red edge simple ratio (SRre), and green normalized difference vegetation index (gNDVI) were utilized as predictors for LAI. Regarding the results of the validation between estimated and measured LAI, SR demonstrated the highest accuracy for groundnut LAI prediction (r2 = 0.67, RMSE = 0.89). Ten MLRAs were tested, and results indicate from the perspective of the accuracy of models, the Gaussian processes regression, GPR (r2 = 0.73 and RMSE = 0.81), Kernel ridge regression, KRR (r2 = 0.72 and RMSE = 0.82) and Support vector regression, SVR (r2 = 0.70 and RMSE = 0.85) demonstrated to be the most suitable for LAI estimation for rainfed groundnut at the seedling stage. The systematic analysis based on the regression approaches tested here revealed that the GPR outperformed other models combined, therefore, most suitable for estimating rainfed groundnut LAI at the seedling stage. These findings serve as a benchmark for obtaining crop biophysical parameters in the framework of groundnut traits monitoring in a tropical West Africa. The leaf area index (LAI), a crucial biophysical indicator, is used to assess and monitor crop growth for effective agricultural management. This study assessed the LAI at the seedling stage after conducting a field experiment with rainfed groundnut. The study tests the performance of multiple machine learning regression algorithms (MLRAs) and empirical vegetation indices (VIs) in retrieving groundnut's LAI using freely available Sentinel-2 data. The bands at 665 nm, 705 nm, 842 nm, and 2190 nm are the most sensitive for retrieving groundnut's LAI, according to an analysis of its band spectrum. Results suggest that VIs computed with wavebands centered at red (665 nm), red edge (705 nm), and near-infrared (842 nm) exhibited optimal R 2 with Sentinel-2 data. Normalized difference vegetation index (NDVI), red edge normalized difference vegetation index (NDVIre), simple ratio (SR), red edge simple ratio (SRre), and green normalized difference vegetation index (gNDVI) were utilized as predictors for LAI. Regarding the results of the validation between estimated and measured LAI, SR demonstrated the highest accuracy for groundnut LAI prediction (r 2 = 0.67, RMSE = 0.89). Ten MLRAs were tested, and results indicate from the perspective of the accuracy of models, the Gaussian processes regression, GPR (r 2 = 0.73 and RMSE = 0.81), Kernel ridge regression, KRR (r 2 = 0.72 and RMSE = 0.82) and Support vector regression, SVR (r 2 = 0.70 and RMSE = 0.85) demonstrated to be the most suitable for LAI estimation for rainfed groundnut at the seedling stage. The systematic analysis based on the regression approaches tested here revealed that the GPR outperformed other models combined, therefore, most suitable for estimating rainfed groundnut LAI at the seedling stage. These findings serve as a benchmark for obtaining crop biophysical parameters in the framework of groundnut traits monitoring in a tropical West Africa. |
| Author | Ekwe, Michael Chibuike Adeluyi, Oluseun Verrelst, Jochem Kross, Angela Odiji, Caleb Akoji |
| Author_xml | – sequence: 1 givenname: Michael Chibuike surname: Ekwe fullname: Ekwe, Michael Chibuike organization: Department of Geography, Planning and Environment, Concordia University, Department of Strategic Space Applications, National Space Research and Development Agency (NASRDA) – sequence: 2 givenname: Oluseun surname: Adeluyi fullname: Adeluyi, Oluseun organization: Department of Strategic Space Applications, National Space Research and Development Agency (NASRDA) – sequence: 3 givenname: Jochem surname: Verrelst fullname: Verrelst, Jochem organization: Image Processing Laboratory (IPL), Parc Científic, Universitat de València – sequence: 4 givenname: Angela surname: Kross fullname: Kross, Angela organization: Department of Geography, Planning and Environment, Concordia University – sequence: 5 givenname: Caleb Akoji surname: Odiji fullname: Odiji, Caleb Akoji organization: Department of Strategic Space Applications, National Space Research and Development Agency (NASRDA) |
| BookMark | eNp9kMlKBDEQhoMouL6Ap4DnaJbu6e6jyLjAiOByDplOpY30JGPSDXrz5Dv4ej6JNY4geLAuVST_VwnfLtkMMQAhh4IfC86rkyywGsZlwQQXomJ8g-yIslJMTES9ibOqSyZlOdkmuzk_cY5YIXfI-zQPfmEGHzqajA8OLO1SHIMN4_D59pFpD8ZRk8BQHyy80DGvsncQkIGeSTo3GaEY6LVpH_GMzsCksArdQpcgZ493p30Xkx8eF5maYOl0sfTJt6an19FCn_fJljN9hoOfvkcezqf3Z5dsdnNxdXY6Y60SzcDaxvLCcWmdVa6uXGXmdSsaUUs1r60RciLLBltbyKqqhATppDRzBaIowTW12iNH673LFJ9HyIN-imMK-KRWvFSTQqIzTNXrVJtizgmcbv2AjmIY0FGvBdcr63ptXaN1_W1dc0TlH3SZ0G96_R9SayhjOHSQfn_1D_UFEguYyw |
| CitedBy_id | crossref_primary_10_3390_land14010171 crossref_primary_10_1016_j_eja_2025_127632 crossref_primary_10_1080_01431161_2024_2413027 crossref_primary_10_3390_s24206739 |
| Cites_doi | 10.1016/j.rse.2008.08.017 10.3390/rs13183663 10.20870/oeno-one.2020.54.1.2481 10.1016/j.jag.2021.102454 10.1109/TGRS.2019.2940826 10.1023/A:1018628609742 10.1007/978-981-15-4194-0_4 10.1016/j.eja.2018.12.003 10.1016/S0034-4257(96)00072-7 10.1023/A:1010933404324 10.1016/j.jag.2017.02.013 10.1016/j.rse.2019.04.005 10.3390/s110707063 10.1177/0309133312471367 10.1078/0176-1617-01176 10.3390/rs9121325 10.1016/j.rse.2011.09.026 10.1016/j.rse.2011.11.002 10.3390/rs13214314 10.1109/TGRS.2011.2168962 10.3390/s20051296 10.3390/agronomy8090172 10.1109/JSTARS.2012.2222356 10.1016/j.eja.2011.09.004 10.1016/S1672-6308(07)60027-4 10.5897/AJPS2014.1260 10.3390/s20236732 10.1016/j.jag.2019.04.019 10.1016/j.rse.2016.10.009 10.1016/j.agrformet.2014.08.005 10.2307/1936256 10.1109/TGRS.2013.2271813 10.1109/JSTARS.2014.2298752 10.1016/j.rse.2006.09.031 10.1038/s41598-021-00936-w 10.3390/rs13061094 10.1016/j.jag.2014.08.002 10.3390/rs13081427 10.3390/ijgi9110622 10.1016/j.rse.2008.06.006 10.1016/S0034-4257(01)00223-1 10.1080/01431160210163074 10.1016/j.jag.2016.07.016 10.3390/rs8040324 10.1016/j.jag.2012.10.008 10.1371/journal.pone.0207624 10.1007/BF00058655 10.1016/j.rse.2003.12.013 10.1117/1.JRS.10.036015 10.1016/j.asr.2015.09.022 10.1109/IGARSS.2007.4423394 10.1117/1.JRS.6.063557 10.1016/j.rse.2020.111935 10.1016/j.isprsjprs.2020.04.014 10.5539/jsd.v9n6p111 10.3390/rs12091406 10.1080/15481603.2017.1370169 10.1007/s13197-015-2007-9 10.3390/rs12091357 10.1016/j.isprsjprs.2015.05.005 10.1080/09064710.2019.1601252 10.3390/s90402719 10.1016/j.isprsjprs.2017.10.004 10.1080/14786440109462720 10.1016/j.rse.2018.12.032 10.1016/j.envsoft.2007.10.003 10.1016/j.rse.2007.11.001 10.1016/j.fcr.2016.08.007 10.1016/j.rse.2011.08.010 10.1016/j.isprsjprs.2019.06.007 10.1016/S0034-4257(97)00005-9 10.3390/rs6064927 10.1016/0034-4257(95)00186-7 10.1201/9781315139470 10.1016/0034-4257(94)00111-Y 10.3390/rs13122404 10.1080/00401706.1977.10489581 10.1016/j.isprsjprs.2015.04.013 10.1016/0034-4257(94)90134-1 10.1002/eco.1974 10.1016/S0176-1617(11)81633-0 10.3390/rs14020415 10.2135/cropsci1997.0011183X003700010033x 10.1046/j.1469-8137.1999.00424.x 10.1080/07038992.2020.1740584 10.3390/rs8040351 10.1016/S1002-0160(21)60038-3 10.1029/97JD01107 10.1093/treephys/18.3.185 10.1016/S0034-4257(99)00057-7 10.1109/IGARSS.2008.4779128 10.22004/AG.ECON.156141 10.1007/978-3-540-28650-9_4 10.5194/isprsarchives-XXXIX-B1-77-2012 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7ST 7WY 7WZ 7X2 7XB 87Z 88I 8FE 8FH 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ K60 K6~ L.- M0C M0K M2P PATMY PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U SOI |
| DOI | 10.1007/s11119-024-10117-0 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global (OCUL) Agricultural Science Database Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts |
| DatabaseTitle | CrossRef Agricultural Science Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest Central ABI/INFORM Professional Advanced ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Physics Computer Science |
| EISSN | 1573-1618 |
| EndPage | 1428 |
| ExternalDocumentID | 10_1007_s11119_024_10117_0 |
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67M 67Z 6NX 78A 7WY 7X2 7XC 88I 8FE 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAK LLZTM M0C M0K M2P M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PYCSY Q2X QOR QOS R89 R9I RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 Y6R YLTOR Z45 Z7R Z7U Z7V Z7W Z7Y Z83 ZMTXR ZOVNA ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7XB 8FK C1K ESTFP L.- PKEHL PQEST PQUKI Q9U SOI |
| ID | FETCH-LOGICAL-c319t-c9d04f02dfd3f87f7ab8c191823b8da126259a12c4277712e2f22ab3e145ef983 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001168634000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1385-2256 |
| IngestDate | Mon Nov 24 18:14:14 EST 2025 Tue Nov 18 21:39:34 EST 2025 Sat Nov 29 01:49:55 EST 2025 Fri Feb 21 02:38:54 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Seedling stage Machine learning algorithms LAI Vegetation indices Sentinel-2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-c9d04f02dfd3f87f7ab8c191823b8da126259a12c4277712e2f22ab3e145ef983 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3053642573 |
| PQPubID | 54630 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_3053642573 crossref_citationtrail_10_1007_s11119_024_10117_0 crossref_primary_10_1007_s11119_024_10117_0 springer_journals_10_1007_s11119_024_10117_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20240600 2024-06-00 20240601 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal on Advances in Precision Agriculture |
| PublicationTitle | Precision agriculture |
| PublicationTitleAbbrev | Precision Agric |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Peng, Han, Ao, Wang (CR58) 2021; 13 Kganyago, Mhangara, Adjorlolo (CR43) 2021; 13 Verrelst, Muñoz, Alonso, Delegido, Rivera, Camps-Valls, Moreno (CR87) 2012; 118 Gitelson, Merzlyak (CR35) 1994; 143 Snee (CR75) 1977; 19 Fassnacht, Gower, MacKenzie, Nordheim, Lillesand (CR26) 1997; 61 Syed, Arif, Ahmed, Khalid, Tanwar, Goyal (CR80) 2021 Xie, Huang, Dash, Song, Huang, Zhao, Wang (CR98) 2015; 56 Metternicht (CR52) 2003; 24 Jiang, Huete, Didan, Miura (CR39) 2008; 112 Haboudane (CR36) 2004; 90 Dong, Liu, Shang, Qian, Ma, Kovacs, Walters, Jiao, Geng, Shi (CR22) 2019; 222 Forkuor, Dimobe, Serme, Tondoh (CR28) 2018; 55 Faye, Webber, Gaiser, Diop, Owusu-Sekyere, Naab (CR27) 2016; 9 Price (CR63) 1995; 52 Sun, Qin, Ren, Zhang, Chen (CR77) 2020; 58 Omer, Mutanga, Abdel-Rahman, Adam (CR55) 2016; 8 Pichon, Taylor, Tisseyre (CR61) 2020; 54 Kiala, Odindi, Mutanga, Peerbhay (CR44) 2016; 10 Breiman (CR8) 1996; 24 Tao, Feng, Xu, Miao, Long, Yue, Li, Yang, Yang, Fan (CR81) 2020; 20 Pinty, Lavergne, Widlowski, Gobron, Verstraete (CR62) 2009; 113 Peñuelas, Isla, Filella, Araus (CR60) 1997; 37 Mastewal, Sakhuja, Mashilla (CR51) 2017; 2 Miura, Huete, Yoshioka, Holben (CR53) 2001; 78 Jordan (CR40) 1969; 50 Martimort, Arino, Berger, Biasutti, Carnicero, Del Bello, Fernandez, Gascon, Greco, Silvestrin, Spoto, Sy (CR50) 2007; 2007 Wang, Xiao, Bajgain, Starks, Steiner, Doughty, Chang (CR95) 2019; 154 Gitelson, Kaufman, Merzlyak (CR34) 1996; 58 Pôças, Gonçalves, Costa, Gonçalves, Pereira, Cunha (CR64) 2017; 58 Zeng, Xu, Wu, Huang (CR99) 2016; 198 Campos-Taberner, García-Haro, Camps-Valls, Grau-Muedra, Nutini, Crema, Boschetti (CR13) 2016; 187 Kang, Özdoğan (CR41) 2019; 228 Brown, Meier, Morris, Pastor-Guzman, Bai, Lerebourg, Gobron, Lanconelli, Clerici, Dash (CR11) 2020; 247 Pearson (CR57) 2010; 2 Svendsen, Morales-Álvarez, Ruescas, Molina, Camps-Valls (CR79) 2020; 166 CR56 CR54 Cohrs, Cook, Gray, Albaugh (CR18) 2020; 12 Malenovský, Rott, Cihlar, Schaepman, García-Santos, Fernandes, Berger (CR49) 2012; 120 Casa, Varella, Buis, Guérif, De Solan, Baret (CR14) 2012; 37 Verrelst, Schaepman, Koetz, Kneubühler (CR90) 2008; 112 Adeluyi, Harris, Verrelst, Foster, Clay (CR2) 2021; 102 Perich, Aasen, Verrelst, Argento, Walter, Liebisch (CR59) 2021; 13 Arya, Salve, Chauhan (CR6) 2016; 53 Chrysafis, Korakis, Kyriazopoulos, Mallinis (CR16) 2020; 9 Xie, Dash, Huete, Jiang, Yin, Ding, Peng, Hall, Brown, Shi, Ye, Dong, Huang (CR97) 2019; 80 Chen, Rich, Gower, Norman, Plummer (CR15) 1997; 102 CR68 Reisi Gahrouei, McNairn, Hosseini, Homayouni (CR69) 2020; 46 CR67 Verrelst, Alonso, Camps-Valls, Delegido, Moreno (CR84) 2012; 50 Duchemin, Maisongrande, Boulet, Benhadj (CR23) 2008; 23 Qi, Zhu, Wu, Liang, Li, Wang, Chen, Lan, Zhang (CR66) 2020; 20 Rivera, Verrelst, Delegido, Veroustraete, Moreno (CR71) 2014; 6 Roy, Li, Zhang (CR73) 2017; 9 Kanniah, Kang, Sharma, Amir (CR42) 2021; 13 Turner, Cohen, Kennedy, Fassnacht, Briggs (CR82) 1999; 70 Clevers, Gitelson (CR17) 2013; 23 Viña, Gitelson, Nguy-Robertson, Peng (CR92) 2011; 115 Debele, Amare (CR19) 2015; 9 Zheng, Moskal (CR101) 2009; 9 Barclay (CR7) 1998; 18 Gilardelli, Stella, Confalonieri, Ranghetti, Campos-Taberner, García-Haro, Boschetti (CR32) 2019; 103 Breiman (CR9) 2001; 45 Richter, Atzberger, Hank, Mauser (CR70) 2012; 6 CR4 CR3 CR5 Delegido, Verrelst, Alonso, Moreno (CR20) 2011; 11 Gan, Zhang, Shi, Yang, Eamus, Cheng, Chiew, Yu (CR31) 2018; 11 Qi, Chehbouni, Huete, Kerr, Sorooshian (CR65) 1994; 48 Gamon, Surfus (CR30) 1999; 143 CR83 Liu, Zeng, Wu, Lei, Chen, Gaiser, Srivastava (CR47) 2021; 13 Gitelson (CR33) 2004; 161 Fang, Li, Wei, Jiang (CR25) 2014; 198–199 Verrelst, Rivera, Gitelson, Delegido, Moreno, Camps-Valls (CR88) 2016; 52 Wang, Chang, Yang, Zhang, Li (CR93) 2018; 13 Lei, Zeng, Jiang, Ao, Wu, Huang (CR46) 2021; 31 Xiao, Liang, Wang, Jiang (CR96) 2016; 8 Wang, Huang, Tang, Wang (CR94) 2007; 14 Gaikpa, Akromah, Asibuo, Appiah-Kubi, Nyadanu (CR29) 2015; 3 Rondeaux, Steven, Baret (CR72) 1996; 55 Kross, McNairn, Lapen, Sunohara, Champagne (CR45) 2015; 34 Verrelst, Rivera, Veroustraete, Muñoz-Marí, Clevers, Camps-Valls, Moreno (CR89) 2015; 108 Verrelst, Alonso, Rivera Caicedo, Moreno, Camps-Valls (CR85) 2013; 6 Suykens, Vandewalle (CR78) 1999; 9 Song (CR76) 2013; 37 Maimaitijiang, Sagan, Sidike, Daloye, Erkbol, Fritschi (CR48) 2020; 12 Abady, Shimelis, Janila, Mashilo (CR1) 2019; 69 Verrelst, Camps-Valls, Muñoz-Marí, Rivera, Veroustraete, Clevers, Moreno (CR86) 2015; 108 Durbha, King, Younan (CR24) 2007; 107 Vincini, Amaducci, Frazzi (CR91) 2014; 52 Sarkar, Cazenave, Oakes, McCall, Thomason, Abbott, Balota (CR74) 2021; 11 Breiman, Friedman, Olshen, Stone (CR10) 2017 CR100 Desmae, Sones (CR21) 2017 Houborg, McCabe (CR37) 2018; 135 Zhu, Zeng, Ma, Lei, Zha, Fang, Wu, Huang (CR102) 2018; 8 Caicedo, Verrelst, Munoz-Mari, Moreno, Camps-Valls (CR12) 2014; 7 Ilniyaz, Kurban, Du (CR38) 2022; 14 M Kganyago (10117_CR43) 2021; 13 J Qi (10117_CR65) 1994; 48 AA Gitelson (10117_CR34) 1996; 58 S Sarkar (10117_CR74) 2021; 11 KS Fassnacht (10117_CR26) 1997; 61 J Verrelst (10117_CR85) 2013; 6 G Omer (10117_CR55) 2016; 8 F Wang (10117_CR94) 2007; 14 KD Kanniah (10117_CR42) 2021; 13 JA Gamon (10117_CR30) 1999; 143 Q Xie (10117_CR97) 2019; 80 B Duchemin (10117_CR23) 2008; 23 C Gilardelli (10117_CR32) 2019; 103 J Peñuelas (10117_CR60) 1997; 37 A Gitelson (10117_CR35) 1994; 143 M Vincini (10117_CR91) 2014; 52 KLIII Pearson (10117_CR57) 2010; 2 G Perich (10117_CR59) 2021; 13 D Roy (10117_CR73) 2017; 9 X Peng (10117_CR58) 2021; 13 10117_CR5 10117_CR4 10117_CR3 S Liu (10117_CR47) 2021; 13 J Verrelst (10117_CR86) 2015; 108 M Campos-Taberner (10117_CR13) 2016; 187 G Lei (10117_CR46) 2021; 31 Z Malenovský (10117_CR49) 2012; 120 H Qi (10117_CR66) 2020; 20 L Breiman (10117_CR8) 1996; 24 L Breiman (10117_CR10) 2017 J Delegido (10117_CR20) 2011; 11 Z Kiala (10117_CR44) 2016; 10 L Pichon (10117_CR61) 2020; 54 H Tao (10117_CR81) 2020; 20 G Metternicht (10117_CR52) 2003; 24 H Desmae (10117_CR21) 2017 T Dong (10117_CR22) 2019; 222 Y Kang (10117_CR41) 2019; 228 RD Snee (10117_CR75) 1977; 19 W Zeng (10117_CR99) 2016; 198 C Song (10117_CR76) 2013; 37 Z Xiao (10117_CR96) 2016; 8 B Faye (10117_CR27) 2016; 9 R Casa (10117_CR14) 2012; 37 LA Brown (10117_CR11) 2020; 247 CF Jordan (10117_CR40) 1969; 50 J Zhu (10117_CR102) 2018; 8 O Ilniyaz (10117_CR38) 2022; 14 SS Arya (10117_CR6) 2016; 53 HJ Barclay (10117_CR7) 1998; 18 JGPW Clevers (10117_CR17) 2013; 23 T Miura (10117_CR53) 2001; 78 Z Jiang (10117_CR39) 2008; 112 G Zheng (10117_CR101) 2009; 9 DH Svendsen (10117_CR79) 2020; 166 CW Cohrs (10117_CR18) 2020; 12 J Price (10117_CR63) 1995; 52 JM Chen (10117_CR15) 1997; 102 10117_CR100 JPR Caicedo (10117_CR12) 2014; 7 DS Gaikpa (10117_CR29) 2015; 3 O Reisi Gahrouei (10117_CR69) 2020; 46 Y Sun (10117_CR77) 2020; 58 G Rondeaux (10117_CR72) 1996; 55 L Breiman (10117_CR9) 2001; 45 J Verrelst (10117_CR87) 2012; 118 P Martimort (10117_CR50) 2007; 2007 SS Durbha (10117_CR24) 2007; 107 H Fang (10117_CR25) 2014; 198–199 10117_CR83 J Verrelst (10117_CR89) 2015; 108 I Chrysafis (10117_CR16) 2020; 9 S Debele (10117_CR19) 2015; 9 A Kross (10117_CR45) 2015; 34 JAK Suykens (10117_CR78) 1999; 9 I Pôças (10117_CR64) 2017; 58 J Rivera (10117_CR71) 2014; 6 DP Turner (10117_CR82) 1999; 70 R Houborg (10117_CR37) 2018; 135 J Wang (10117_CR95) 2019; 154 10117_CR56 D Haboudane (10117_CR36) 2004; 90 10117_CR54 J Verrelst (10117_CR90) 2008; 112 B Pinty (10117_CR62) 2009; 113 J Verrelst (10117_CR88) 2016; 52 G Forkuor (10117_CR28) 2018; 55 A Mastewal (10117_CR51) 2017; 2 L Wang (10117_CR93) 2018; 13 M Maimaitijiang (10117_CR48) 2020; 12 J Verrelst (10117_CR84) 2012; 50 F Syed (10117_CR80) 2021 Q Xie (10117_CR98) 2015; 56 A Viña (10117_CR92) 2011; 115 10117_CR67 K Richter (10117_CR70) 2012; 6 S Abady (10117_CR1) 2019; 69 O Adeluyi (10117_CR2) 2021; 102 AA Gitelson (10117_CR33) 2004; 161 10117_CR68 R Gan (10117_CR31) 2018; 11 |
| References_xml | – volume: 113 start-page: 10 issue: 1 year: 2009 end-page: 23 ident: CR62 article-title: On the need to observe vegetation canopies in the near-infrared to estimate visible light absorption publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2008.08.017 – ident: CR68 – volume: 13 start-page: 3663 issue: 18 year: 2021 ident: CR47 article-title: Simulating the leaf area index of rice from multispectral images publication-title: Remote Sensing doi: 10.3390/rs13183663 – volume: 54 start-page: 123 issue: 1 year: 2020 end-page: 130 ident: CR61 article-title: Using smartphone leaf area index data acquired in a collaborative context within vineyards in southern France publication-title: OENO One doi: 10.20870/oeno-one.2020.54.1.2481 – volume: 102 start-page: 102454 year: 2021 ident: CR2 article-title: Estimating the phenological dynamics of irrigated rice leaf area index using the combination of PROSAIL and Gaussian Process Regression publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2021.102454 – volume: 58 start-page: 826 issue: 2 year: 2020 end-page: 840 ident: CR77 article-title: Red-Edge Band Vegetation Indices for Leaf Area Index estimation from sentinel-2/MSI imagery publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2019.2940826 – ident: CR54 – volume: 9 start-page: 293 issue: 3 year: 1999 end-page: 300 ident: CR78 article-title: No title found publication-title: Neural Processing Letters doi: 10.1023/A:1018628609742 – start-page: 93 year: 2021 end-page: 122 ident: CR80 article-title: Groundnut (Peanut) (Arachis hypogaea) publication-title: Oilseeds: Health attributes and food applications doi: 10.1007/978-981-15-4194-0_4 – volume: 103 start-page: 108 year: 2019 end-page: 116 ident: CR32 article-title: Downscaling rice yield simulation at sub-field scale using remotely sensed LAI data publication-title: European Journal of Agronomy doi: 10.1016/j.eja.2018.12.003 – volume: 58 start-page: 289 issue: 3 year: 1996 end-page: 298 ident: CR34 article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(96)00072-7 – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR9 article-title: No title found publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 2 start-page: 000123 year: 2017 ident: CR51 article-title: Evaluation of released and local groundnut varieties against groundnut rust ( ) at Babile, Eastern Ethiopia publication-title: Open Access Journal of Agricultural Research – volume: 58 start-page: 177 year: 2017 end-page: 190 ident: CR64 article-title: Hyperspectral-based predictive modelling of grapevine water status in the Portuguese Douro wine region publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2017.02.013 – volume: 228 start-page: 144 year: 2019 end-page: 163 ident: CR41 article-title: Field-level crop yield mapping with Landsat using a hierarchical data assimilation approach publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2019.04.005 – volume: 11 start-page: 7063 issue: 7 year: 2011 end-page: 7081 ident: CR20 article-title: Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content publication-title: Sensors doi: 10.3390/s110707063 – volume: 37 start-page: 98 issue: 1 year: 2013 end-page: 113 ident: CR76 article-title: Optical remote sensing of forest leaf area index and biomass publication-title: Progress in Physical Geography: Earth and Environment doi: 10.1177/0309133312471367 – volume: 161 start-page: 165 issue: 2 year: 2004 end-page: 173 ident: CR33 article-title: Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation publication-title: Journal of Plant Physiology doi: 10.1078/0176-1617-01176 – volume: 3 start-page: 66 year: 2015 end-page: 75 ident: CR29 article-title: Evaluation of yield and yield components of groundnut genotypes under Cercospora leaf spots disease pressure publication-title: International Journal of Agronomy and Agricultural Research – volume: 9 start-page: 1325 issue: 12 year: 2017 ident: CR73 article-title: Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI) Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR) and Quantification of Red-Edge Band BRDF Effects publication-title: Remote Sensing doi: 10.3390/rs9121325 – volume: 120 start-page: 91 year: 2012 end-page: 101 ident: CR49 article-title: Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.09.026 – ident: CR5 – volume: 118 start-page: 127 year: 2012 end-page: 139 ident: CR87 article-title: Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.11.002 – volume: 13 start-page: 4314 issue: 21 year: 2021 ident: CR43 article-title: Estimating crop biophysical parameters using machine learning algorithms and sentinel-2 imagery publication-title: Remote Sensing doi: 10.3390/rs13214314 – volume: 50 start-page: 1832 issue: 5 year: 2012 end-page: 1843 ident: CR84 article-title: Retrieval of vegetation biophysical parameters using Gaussian process techniques publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2011.2168962 – volume: 20 start-page: 1296 issue: 5 year: 2020 ident: CR81 article-title: Estimation of crop growth parameters using UAV-based hyperspectral remote sensing data publication-title: Sensors doi: 10.3390/s20051296 – volume: 8 start-page: 172 issue: 9 year: 2018 ident: CR102 article-title: Testing and improving the WOFOST model for sunflower simulation on saline soils of inner Mongolia, China publication-title: Agronomy doi: 10.3390/agronomy8090172 – volume: 6 start-page: 867 issue: 2 year: 2013 end-page: 874 ident: CR85 article-title: Gaussian process retrieval of chlorophyll content from imaging spectroscopy data publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2012.2222356 – ident: CR100 – volume: 37 start-page: 1 issue: 1 year: 2012 end-page: 10 ident: CR14 article-title: Forcing a wheat crop model with LAI data to access agronomic variables: Evaluation of the impact of model and LAI uncertainties and comparison with an empirical approach publication-title: European Journal of Agronomy doi: 10.1016/j.eja.2011.09.004 – volume: 14 start-page: 195 issue: 3 year: 2007 end-page: 203 ident: CR94 article-title: New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice publication-title: Rice Science doi: 10.1016/S1672-6308(07)60027-4 – volume: 9 start-page: 82 year: 2015 end-page: 89 ident: CR19 article-title: Integrated management of Cercospora leaf spots of groundnut ( L.) through host resistance and fungicides in Eastern Ethiopia publication-title: Afr J Plant Sci. doi: 10.5897/AJPS2014.1260 – volume: 20 start-page: 6732 issue: 23 year: 2020 ident: CR66 article-title: Estimation of Peanut Leaf Area Index from Unmanned Aerial Vehicle Multispectral Images publication-title: Sensors doi: 10.3390/s20236732 – volume: 80 start-page: 187 year: 2019 end-page: 195 ident: CR97 article-title: Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2019.04.019 – volume: 187 start-page: 102 year: 2016 end-page: 118 ident: CR13 article-title: Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2016.10.009 – volume: 198–199 start-page: 126 year: 2014 end-page: 141 ident: CR25 article-title: Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2014.08.005 – volume: 50 start-page: 663 issue: 4 year: 1969 end-page: 666 ident: CR40 article-title: Derivation of leaf-area index from quality of light on the forest floor publication-title: Ecology doi: 10.2307/1936256 – volume: 52 start-page: 3220 issue: 6 year: 2014 end-page: 3235 ident: CR91 article-title: Empirical estimation of leaf chlorophyll density in winter wheat canopies using sentinel-2 spectral resolution publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2013.2271813 – volume: 7 start-page: 1249 issue: 4 year: 2014 end-page: 1259 ident: CR12 article-title: Toward a semiautomatic machine learning retrieval of biophysical parameters publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2014.2298752 – volume: 107 start-page: 348 issue: 1–2 year: 2007 end-page: 361 ident: CR24 article-title: Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.09.031 – volume: 11 start-page: 21661 issue: 1 year: 2021 ident: CR74 article-title: Aerial high-throughput phenotyping of peanut leaf area index and lateral growth publication-title: Scientific Reports doi: 10.1038/s41598-021-00936-w – volume: 13 start-page: 1094 issue: 6 year: 2021 ident: CR58 article-title: Assimilation of LAI derived from UAV multispectral data into the SAFY model to estimate maize yield publication-title: Remote Sensing doi: 10.3390/rs13061094 – volume: 34 start-page: 235 year: 2015 end-page: 248 ident: CR45 article-title: Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2014.08.002 – volume: 13 start-page: 1427 issue: 8 year: 2021 ident: CR42 article-title: Remote sensing to study Mangrove fragmentation and its impacts on leaf area index and gross primary productivity in the South of Peninsular Malaysia publication-title: Remote Sensing doi: 10.3390/rs13081427 – volume: 9 start-page: 622 issue: 11 year: 2020 ident: CR16 article-title: Retrieval of leaf area index using sentinel-2 imagery in a mixed mediterranean forest area publication-title: ISPRS International Journal of Geo-Information doi: 10.3390/ijgi9110622 – ident: CR3 – year: 2017 ident: CR21 publication-title: Groundnut cropping guide. Africa soil health Consortium – ident: CR83 – volume: 112 start-page: 3833 issue: 10 year: 2008 end-page: 3845 ident: CR39 article-title: Development of a two-band enhanced vegetation index without a blue band publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2008.06.006 – volume: 78 start-page: 284 issue: 3 year: 2001 end-page: 298 ident: CR53 article-title: An error and sensitivity analysis of atmospheric resistant vegetation indices derived from dark target-based atmospheric correction publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(01)00223-1 – volume: 24 start-page: 2855 issue: 14 year: 2003 end-page: 2877 ident: CR52 article-title: Vegetation indices derived from high-resolution airborne videography for precision crop management publication-title: International Journal of Remote Sensing doi: 10.1080/01431160210163074 – ident: CR4 – volume: 52 start-page: 554 year: 2016 end-page: 567 ident: CR88 article-title: Spectral band selection for vegetation properties retrieval using Gaussian processes regression publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2016.07.016 – volume: 8 start-page: 324 issue: 4 year: 2016 ident: CR55 article-title: Empirical prediction of leaf area index (LAI) of Endangered tree species in intact and fragmented indigenous forests ecosystems using WorldView-2 data and two robust machine learning algorithms publication-title: Remote Sensing doi: 10.3390/rs8040324 – volume: 23 start-page: 344 year: 2013 end-page: 351 ident: CR17 article-title: Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3 publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2012.10.008 – volume: 13 start-page: e0207624 issue: 12 year: 2018 ident: CR93 article-title: Estimation of paddy rice leaf area index using machine learning methods based on hyperspectral data from multi-year experiments publication-title: PLoS ONE doi: 10.1371/journal.pone.0207624 – volume: 24 start-page: 123 issue: 2 year: 1996 end-page: 140 ident: CR8 article-title: Bagging predictors publication-title: Machine Learning doi: 10.1007/BF00058655 – volume: 90 start-page: 337 issue: 3 year: 2004 end-page: 352 ident: CR36 article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2003.12.013 – volume: 10 start-page: 036015 issue: 3 year: 2016 ident: CR44 article-title: Comparison of partial least squares and support vector regressions for predicting leaf area index on a tropical grassland using hyperspectral data publication-title: Journal of Applied Remote Sensing doi: 10.1117/1.JRS.10.036015 – volume: 56 start-page: 2365 issue: 11 year: 2015 end-page: 2373 ident: CR98 article-title: Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and water conditions publication-title: Advances in Space Research doi: 10.1016/j.asr.2015.09.022 – volume: 2007 start-page: 2677 year: 2007 end-page: 2680 ident: CR50 article-title: Sentinel-2 optical high resolution mission for GMES operational services publication-title: IEEE International Geoscience and Remote Sensing Symposium doi: 10.1109/IGARSS.2007.4423394 – volume: 6 start-page: 063557 issue: 1 year: 2012 end-page: 63561 ident: CR70 article-title: Derivation of biophysical variables from Earth observation data: Validation and statistical measures publication-title: Journal of Applied Remote Sensing doi: 10.1117/1.JRS.6.063557 – volume: 247 start-page: 111935 year: 2020 ident: CR11 article-title: Evaluation of global leaf area index and fraction of absorbed photosynthetically active radiation products over North America using Copernicus Ground Based Observations for Validation data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2020.111935 – volume: 166 start-page: 68 year: 2020 end-page: 81 ident: CR79 article-title: Deep Gaussian processes for biogeophysical parameter retrieval and model inversion publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2020.04.014 – volume: 9 start-page: 111 year: 2016 end-page: 131 ident: CR27 article-title: Effects of fertilization rate and water availability on peanut growth and yield in Senegal (West Africa) publication-title: J Sustain Develop. doi: 10.5539/jsd.v9n6p111 – ident: CR67 – volume: 12 start-page: 1406 issue: 9 year: 2020 ident: CR18 article-title: Sentinel-2 leaf area index estimation for pine plantations in the Southeastern United States publication-title: Remote Sensing doi: 10.3390/rs12091406 – volume: 55 start-page: 331 issue: 3 year: 2018 end-page: 354 ident: CR28 article-title: Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso publication-title: GIScience & Remote Sensing doi: 10.1080/15481603.2017.1370169 – volume: 53 start-page: 31 issue: 1 year: 2016 end-page: 41 ident: CR6 article-title: Peanuts as functional food: A review publication-title: Journal of Food Science and Technology doi: 10.1007/s13197-015-2007-9 – volume: 12 start-page: 1357 issue: 9 year: 2020 ident: CR48 article-title: Crop monitoring using satellite/UAV data fusion and machine learning publication-title: Remote Sensing doi: 10.3390/rs12091357 – volume: 108 start-page: 273 year: 2015 end-page: 290 ident: CR86 article-title: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2015.05.005 – volume: 69 start-page: 528 issue: 6 year: 2019 end-page: 545 ident: CR1 article-title: Groundnut ( L.) improvement in sub-Saharan Africa: A review publication-title: Acta Agriculturae Scandinavica, Section B—Soil & Plant Science doi: 10.1080/09064710.2019.1601252 – volume: 9 start-page: 2719 issue: 4 year: 2009 end-page: 2745 ident: CR101 article-title: Retrieving Leaf Area Index (LAI) using remote sensing: Theories. Methods and sensors publication-title: Sensors doi: 10.3390/s90402719 – volume: 135 start-page: 173 year: 2018 end-page: 188 ident: CR37 article-title: A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2017.10.004 – volume: 2 start-page: 559 year: 2010 end-page: 572 ident: CR57 article-title: On lines and planes of closest fit to systems of points in space publication-title: The London, Edinburgh, and Dublin Philosophical Magazine Journal of Science doi: 10.1080/14786440109462720 – volume: 222 start-page: 133 year: 2019 end-page: 143 ident: CR22 article-title: Assessment of red-edge vegetation indices for crop leaf area index estimation publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2018.12.032 – volume: 23 start-page: 876 issue: 7 year: 2008 end-page: 892 ident: CR23 article-title: A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index publication-title: Environmental Modelling & Software doi: 10.1016/j.envsoft.2007.10.003 – volume: 112 start-page: 2341 issue: 5 year: 2008 end-page: 2353 ident: CR90 article-title: Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.11.001 – volume: 198 start-page: 1 year: 2016 end-page: 15 ident: CR99 article-title: Sunflower seed yield estimation under the interaction of soil salinity and nitrogen application publication-title: Field Crops Research doi: 10.1016/j.fcr.2016.08.007 – volume: 115 start-page: 3468 issue: 12 year: 2011 end-page: 3478 ident: CR92 article-title: Comparison of different vegetation indices for the remote assessment of green leaf area index of crops publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.08.010 – volume: 154 start-page: 189 year: 2019 end-page: 201 ident: CR95 article-title: Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2019.06.007 – volume: 61 start-page: 229 issue: 2 year: 1997 end-page: 245 ident: CR26 article-title: Estimating the leaf area index of North Central Wisconsin forests using the landsat thematic mapper publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(97)00005-9 – volume: 6 start-page: 4927 issue: 6 year: 2014 end-page: 4951 ident: CR71 article-title: On the semi-automatic retrieval of biophysical parameters based on spectral index optimization publication-title: Remote Sensing doi: 10.3390/rs6064927 – volume: 55 start-page: 95 issue: 2 year: 1996 end-page: 107 ident: CR72 article-title: Optimization of soil-adjusted vegetation indices publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(95)00186-7 – year: 2017 ident: CR10 publication-title: Classification and regression trees doi: 10.1201/9781315139470 – volume: 52 start-page: 55 issue: 1 year: 1995 end-page: 65 ident: CR63 article-title: Leaf area index estimation from visible and near-infrared reflectance data publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(94)00111-Y – volume: 13 start-page: 2404 issue: 12 year: 2021 ident: CR59 article-title: Crop nitrogen retrieval methods for simulated sentinel-2 data using in-field spectrometer data publication-title: Remote Sensing doi: 10.3390/rs13122404 – volume: 19 start-page: 415 issue: 4 year: 1977 end-page: 428 ident: CR75 article-title: Validation of regression models: Methods and examples publication-title: Technometrics doi: 10.1080/00401706.1977.10489581 – volume: 108 start-page: 260 year: 2015 end-page: 272 ident: CR89 article-title: Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A comparison publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2015.04.013 – ident: CR56 – volume: 48 start-page: 119 issue: 2 year: 1994 end-page: 126 ident: CR65 article-title: A modified soil adjusted vegetation index publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(94)90134-1 – volume: 11 start-page: e1974 issue: 5 year: 2018 ident: CR31 article-title: Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems: Coupled estimates of ET and GPP publication-title: Ecohydrology doi: 10.1002/eco.1974 – volume: 143 start-page: 286 issue: 3 year: 1994 end-page: 292 ident: CR35 article-title: Spectral reflectance changes associated with autumn senescence of L. and L. leaves. Spectral features and relation to chlorophyll estimation publication-title: Journal of Plant Physiology doi: 10.1016/S0176-1617(11)81633-0 – volume: 14 start-page: 415 issue: 2 year: 2022 ident: CR38 article-title: Leaf area index estimation of pergola-trained vineyards in arid regions based on UAV RGB and multispectral data using machine learning methods publication-title: Remote Sensing doi: 10.3390/rs14020415 – volume: 37 start-page: 198 issue: 1 year: 1997 end-page: 202 ident: CR60 article-title: Visible and near-infrared reflectance assessment of salinity effects on barley publication-title: Crop Science doi: 10.2135/cropsci1997.0011183X003700010033x – volume: 143 start-page: 105 issue: 1 year: 1999 end-page: 117 ident: CR30 article-title: Assessing leaf pigment content and activity with a reflectometer publication-title: New Phytologist doi: 10.1046/j.1469-8137.1999.00424.x – volume: 46 start-page: 84 issue: 1 year: 2020 end-page: 99 ident: CR69 article-title: Estimation of crop biomass and leaf area index from multitemporal and multispectral imagery using machine learning approaches publication-title: Canadian Journal of Remote Sensing doi: 10.1080/07038992.2020.1740584 – volume: 8 start-page: 351 issue: 4 year: 2016 ident: CR96 article-title: Retrieval of Leaf Area Index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR) from VIIRS time-series data publication-title: Remote Sensing doi: 10.3390/rs8040351 – volume: 31 start-page: 807 issue: 5 year: 2021 end-page: 821 ident: CR46 article-title: Sensitivity analysis of the SWAP (Soil-Water-Atmosphere-Plant) model under different nitrogen applications and root distributions in saline soils publication-title: Pedosphere doi: 10.1016/S1002-0160(21)60038-3 – volume: 102 start-page: 29429 issue: D24 year: 1997 end-page: 29443 ident: CR15 article-title: Leaf area index of boreal forests: Theory, techniques, and measurements publication-title: Journal of Geophysical Research: Atmospheres doi: 10.1029/97JD01107 – volume: 18 start-page: 185 issue: 3 year: 1998 end-page: 193 ident: CR7 article-title: Conversion of total leaf area to projected leaf area in lodgepole pine and Douglas-fir publication-title: Tree Physiology doi: 10.1093/treephys/18.3.185 – volume: 70 start-page: 52 issue: 1 year: 1999 end-page: 68 ident: CR82 article-title: Relationships between Leaf Area Index and Landsat TM Spectral Vegetation Indices across three temperate zone sites publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(99)00057-7 – volume: 13 start-page: 3663 issue: 18 year: 2021 ident: 10117_CR47 publication-title: Remote Sensing doi: 10.3390/rs13183663 – volume: 80 start-page: 187 year: 2019 ident: 10117_CR97 publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2019.04.019 – start-page: 93 volume-title: Oilseeds: Health attributes and food applications year: 2021 ident: 10117_CR80 doi: 10.1007/978-981-15-4194-0_4 – volume: 102 start-page: 29429 issue: D24 year: 1997 ident: 10117_CR15 publication-title: Journal of Geophysical Research: Atmospheres doi: 10.1029/97JD01107 – volume: 55 start-page: 95 issue: 2 year: 1996 ident: 10117_CR72 publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(95)00186-7 – volume: 37 start-page: 98 issue: 1 year: 2013 ident: 10117_CR76 publication-title: Progress in Physical Geography: Earth and Environment doi: 10.1177/0309133312471367 – volume: 108 start-page: 260 year: 2015 ident: 10117_CR89 publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2015.04.013 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10117_CR78 publication-title: Neural Processing Letters doi: 10.1023/A:1018628609742 – volume: 13 start-page: 4314 issue: 21 year: 2021 ident: 10117_CR43 publication-title: Remote Sensing doi: 10.3390/rs13214314 – volume: 6 start-page: 063557 issue: 1 year: 2012 ident: 10117_CR70 publication-title: Journal of Applied Remote Sensing doi: 10.1117/1.JRS.6.063557 – volume: 53 start-page: 31 issue: 1 year: 2016 ident: 10117_CR6 publication-title: Journal of Food Science and Technology doi: 10.1007/s13197-015-2007-9 – ident: 10117_CR56 doi: 10.1109/IGARSS.2008.4779128 – volume: 52 start-page: 3220 issue: 6 year: 2014 ident: 10117_CR91 publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2013.2271813 – volume: 13 start-page: 2404 issue: 12 year: 2021 ident: 10117_CR59 publication-title: Remote Sensing doi: 10.3390/rs13122404 – volume: 2 start-page: 000123 year: 2017 ident: 10117_CR51 publication-title: Open Access Journal of Agricultural Research – volume: 120 start-page: 91 year: 2012 ident: 10117_CR49 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.09.026 – volume: 50 start-page: 663 issue: 4 year: 1969 ident: 10117_CR40 publication-title: Ecology doi: 10.2307/1936256 – ident: 10117_CR83 doi: 10.22004/AG.ECON.156141 – volume: 12 start-page: 1357 issue: 9 year: 2020 ident: 10117_CR48 publication-title: Remote Sensing doi: 10.3390/rs12091357 – volume: 37 start-page: 198 issue: 1 year: 1997 ident: 10117_CR60 publication-title: Crop Science doi: 10.2135/cropsci1997.0011183X003700010033x – volume: 11 start-page: 7063 issue: 7 year: 2011 ident: 10117_CR20 publication-title: Sensors doi: 10.3390/s110707063 – volume: 61 start-page: 229 issue: 2 year: 1997 ident: 10117_CR26 publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(97)00005-9 – volume-title: Groundnut cropping guide. Africa soil health Consortium year: 2017 ident: 10117_CR21 – volume: 55 start-page: 331 issue: 3 year: 2018 ident: 10117_CR28 publication-title: GIScience & Remote Sensing doi: 10.1080/15481603.2017.1370169 – volume: 24 start-page: 2855 issue: 14 year: 2003 ident: 10117_CR52 publication-title: International Journal of Remote Sensing doi: 10.1080/01431160210163074 – volume: 222 start-page: 133 year: 2019 ident: 10117_CR22 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2018.12.032 – volume: 2007 start-page: 2677 year: 2007 ident: 10117_CR50 publication-title: IEEE International Geoscience and Remote Sensing Symposium doi: 10.1109/IGARSS.2007.4423394 – volume: 13 start-page: 1094 issue: 6 year: 2021 ident: 10117_CR58 publication-title: Remote Sensing doi: 10.3390/rs13061094 – volume: 7 start-page: 1249 issue: 4 year: 2014 ident: 10117_CR12 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2014.2298752 – volume: 78 start-page: 284 issue: 3 year: 2001 ident: 10117_CR53 publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(01)00223-1 – volume: 90 start-page: 337 issue: 3 year: 2004 ident: 10117_CR36 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2003.12.013 – volume: 23 start-page: 344 year: 2013 ident: 10117_CR17 publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2012.10.008 – volume: 6 start-page: 4927 issue: 6 year: 2014 ident: 10117_CR71 publication-title: Remote Sensing doi: 10.3390/rs6064927 – volume: 50 start-page: 1832 issue: 5 year: 2012 ident: 10117_CR84 publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2011.2168962 – volume: 14 start-page: 195 issue: 3 year: 2007 ident: 10117_CR94 publication-title: Rice Science doi: 10.1016/S1672-6308(07)60027-4 – volume: 228 start-page: 144 year: 2019 ident: 10117_CR41 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2019.04.005 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10117_CR9 publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 9 start-page: 1325 issue: 12 year: 2017 ident: 10117_CR73 publication-title: Remote Sensing doi: 10.3390/rs9121325 – volume: 118 start-page: 127 year: 2012 ident: 10117_CR87 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.11.002 – volume: 161 start-page: 165 issue: 2 year: 2004 ident: 10117_CR33 publication-title: Journal of Plant Physiology doi: 10.1078/0176-1617-01176 – ident: 10117_CR4 – volume: 112 start-page: 3833 issue: 10 year: 2008 ident: 10117_CR39 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2008.06.006 – volume: 8 start-page: 324 issue: 4 year: 2016 ident: 10117_CR55 publication-title: Remote Sensing doi: 10.3390/rs8040324 – volume: 58 start-page: 826 issue: 2 year: 2020 ident: 10117_CR77 publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2019.2940826 – volume: 9 start-page: 622 issue: 11 year: 2020 ident: 10117_CR16 publication-title: ISPRS International Journal of Geo-Information doi: 10.3390/ijgi9110622 – volume: 2 start-page: 559 year: 2010 ident: 10117_CR57 publication-title: The London, Edinburgh, and Dublin Philosophical Magazine Journal of Science doi: 10.1080/14786440109462720 – volume: 108 start-page: 273 year: 2015 ident: 10117_CR86 publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2015.05.005 – volume: 54 start-page: 123 issue: 1 year: 2020 ident: 10117_CR61 publication-title: OENO One doi: 10.20870/oeno-one.2020.54.1.2481 – volume: 11 start-page: e1974 issue: 5 year: 2018 ident: 10117_CR31 publication-title: Ecohydrology doi: 10.1002/eco.1974 – volume: 187 start-page: 102 year: 2016 ident: 10117_CR13 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2016.10.009 – volume: 10 start-page: 036015 issue: 3 year: 2016 ident: 10117_CR44 publication-title: Journal of Applied Remote Sensing doi: 10.1117/1.JRS.10.036015 – volume: 9 start-page: 111 year: 2016 ident: 10117_CR27 publication-title: J Sustain Develop. doi: 10.5539/jsd.v9n6p111 – volume: 198–199 start-page: 126 year: 2014 ident: 10117_CR25 publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2014.08.005 – volume: 13 start-page: 1427 issue: 8 year: 2021 ident: 10117_CR42 publication-title: Remote Sensing doi: 10.3390/rs13081427 – volume: 58 start-page: 289 issue: 3 year: 1996 ident: 10117_CR34 publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(96)00072-7 – volume: 13 start-page: e0207624 issue: 12 year: 2018 ident: 10117_CR93 publication-title: PLoS ONE doi: 10.1371/journal.pone.0207624 – volume: 46 start-page: 84 issue: 1 year: 2020 ident: 10117_CR69 publication-title: Canadian Journal of Remote Sensing doi: 10.1080/07038992.2020.1740584 – volume: 12 start-page: 1406 issue: 9 year: 2020 ident: 10117_CR18 publication-title: Remote Sensing doi: 10.3390/rs12091406 – ident: 10117_CR67 doi: 10.1007/978-3-540-28650-9_4 – volume: 143 start-page: 286 issue: 3 year: 1994 ident: 10117_CR35 publication-title: Journal of Plant Physiology doi: 10.1016/S0176-1617(11)81633-0 – volume: 3 start-page: 66 year: 2015 ident: 10117_CR29 publication-title: International Journal of Agronomy and Agricultural Research – volume: 52 start-page: 554 year: 2016 ident: 10117_CR88 publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2016.07.016 – volume: 8 start-page: 351 issue: 4 year: 2016 ident: 10117_CR96 publication-title: Remote Sensing doi: 10.3390/rs8040351 – ident: 10117_CR3 – volume: 56 start-page: 2365 issue: 11 year: 2015 ident: 10117_CR98 publication-title: Advances in Space Research doi: 10.1016/j.asr.2015.09.022 – volume: 135 start-page: 173 year: 2018 ident: 10117_CR37 publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2017.10.004 – volume: 20 start-page: 1296 issue: 5 year: 2020 ident: 10117_CR81 publication-title: Sensors doi: 10.3390/s20051296 – volume: 37 start-page: 1 issue: 1 year: 2012 ident: 10117_CR14 publication-title: European Journal of Agronomy doi: 10.1016/j.eja.2011.09.004 – volume: 9 start-page: 2719 issue: 4 year: 2009 ident: 10117_CR101 publication-title: Sensors doi: 10.3390/s90402719 – volume: 113 start-page: 10 issue: 1 year: 2009 ident: 10117_CR62 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2008.08.017 – volume: 154 start-page: 189 year: 2019 ident: 10117_CR95 publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2019.06.007 – ident: 10117_CR68 – ident: 10117_CR54 – volume: 143 start-page: 105 issue: 1 year: 1999 ident: 10117_CR30 publication-title: New Phytologist doi: 10.1046/j.1469-8137.1999.00424.x – volume: 9 start-page: 82 year: 2015 ident: 10117_CR19 publication-title: Afr J Plant Sci. doi: 10.5897/AJPS2014.1260 – volume: 19 start-page: 415 issue: 4 year: 1977 ident: 10117_CR75 publication-title: Technometrics doi: 10.1080/00401706.1977.10489581 – volume: 6 start-page: 867 issue: 2 year: 2013 ident: 10117_CR85 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2012.2222356 – volume: 14 start-page: 415 issue: 2 year: 2022 ident: 10117_CR38 publication-title: Remote Sensing doi: 10.3390/rs14020415 – volume: 69 start-page: 528 issue: 6 year: 2019 ident: 10117_CR1 publication-title: Acta Agriculturae Scandinavica, Section B—Soil & Plant Science doi: 10.1080/09064710.2019.1601252 – volume: 48 start-page: 119 issue: 2 year: 1994 ident: 10117_CR65 publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(94)90134-1 – volume: 115 start-page: 3468 issue: 12 year: 2011 ident: 10117_CR92 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.08.010 – volume: 52 start-page: 55 issue: 1 year: 1995 ident: 10117_CR63 publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(94)00111-Y – ident: 10117_CR100 doi: 10.5194/isprsarchives-XXXIX-B1-77-2012 – ident: 10117_CR5 – volume: 198 start-page: 1 year: 2016 ident: 10117_CR99 publication-title: Field Crops Research doi: 10.1016/j.fcr.2016.08.007 – volume: 70 start-page: 52 issue: 1 year: 1999 ident: 10117_CR82 publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(99)00057-7 – volume: 23 start-page: 876 issue: 7 year: 2008 ident: 10117_CR23 publication-title: Environmental Modelling & Software doi: 10.1016/j.envsoft.2007.10.003 – volume: 107 start-page: 348 issue: 1–2 year: 2007 ident: 10117_CR24 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.09.031 – volume: 20 start-page: 6732 issue: 23 year: 2020 ident: 10117_CR66 publication-title: Sensors doi: 10.3390/s20236732 – volume: 11 start-page: 21661 issue: 1 year: 2021 ident: 10117_CR74 publication-title: Scientific Reports doi: 10.1038/s41598-021-00936-w – volume: 247 start-page: 111935 year: 2020 ident: 10117_CR11 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2020.111935 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10117_CR8 publication-title: Machine Learning doi: 10.1007/BF00058655 – volume-title: Classification and regression trees year: 2017 ident: 10117_CR10 doi: 10.1201/9781315139470 – volume: 8 start-page: 172 issue: 9 year: 2018 ident: 10117_CR102 publication-title: Agronomy doi: 10.3390/agronomy8090172 – volume: 18 start-page: 185 issue: 3 year: 1998 ident: 10117_CR7 publication-title: Tree Physiology doi: 10.1093/treephys/18.3.185 – volume: 103 start-page: 108 year: 2019 ident: 10117_CR32 publication-title: European Journal of Agronomy doi: 10.1016/j.eja.2018.12.003 – volume: 166 start-page: 68 year: 2020 ident: 10117_CR79 publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2020.04.014 – volume: 31 start-page: 807 issue: 5 year: 2021 ident: 10117_CR46 publication-title: Pedosphere doi: 10.1016/S1002-0160(21)60038-3 – volume: 112 start-page: 2341 issue: 5 year: 2008 ident: 10117_CR90 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.11.001 – volume: 58 start-page: 177 year: 2017 ident: 10117_CR64 publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2017.02.013 – volume: 102 start-page: 102454 year: 2021 ident: 10117_CR2 publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2021.102454 – volume: 34 start-page: 235 year: 2015 ident: 10117_CR45 publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2014.08.002 |
| SSID | ssj0010042 |
| Score | 2.3805768 |
| Snippet | The leaf area index (LAI), a crucial biophysical indicator, is used to assess and monitor crop growth for effective agricultural management. This study... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1404 |
| SubjectTerms | Accuracy Agricultural management Agriculture Algorithms Atmospheric Sciences Biomedical and Life Sciences Chemistry and Earth Sciences Computer Science Crop growth Empirical analysis Estimation Gaussian process Groundnuts Kernel functions Leaf area Leaf area index Learning algorithms Leaves Life Sciences Machine learning Normalized difference vegetative index Physics Regression Regression analysis Remote Sensing/Photogrammetry Seedlings Soil Science & Conservation Statistics for Engineering Support vector machines Vegetation |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcKAH3qhLC5oDN7BI7GQTn6oV2opLq4qH1Fvk-BEqpd5lk_bcE_-Bv8cvYcbr7QokeiGXHJJYkebzvP0NY29Ua6YO_VCuyrbmRSskV0WmOZWYSj8ttfQ6DpuoTk7qszN1mhJuQ2qr3OjEqKjtwlCO_D3iUk4JYPJw-Z3T1CiqrqYRGnfZPfRscmrpOhanN1UEQmQMuOqSI26n6dDM-ugcXoqjhUJFlKOmzv40TFtv868CabQ7R4_-948fs4fJ44TZGiJP2B0XnrLdWbdKrBvuGfsxx41OrmvogEZGeGeBjnsEGy7HX9c_B-id9qDRwYRIrwjULt_BZ2o1Cq7nAsgaWlgEOI7dmQ4ScWsHn1y37rUNMOs7_MHx28UAOliYXyzPI0MJ0ES2fnjOvh7Nv3z4yNOABm5w547cKJsVPhPWW-nryle6rQ0GgLWQbW11Lii4wpspRFVVuXDCC6Fb6fKidF7V8gXbCYvg9hhQPkzXGB6h_ihs7pUSxqDz46TJnDNywvKNdBqT2MtpiEbfbHmXSaINSrSJEm2yCXt7881yzd1x69sHGzE2aR8PzVaGE_ZuA4Tt43-v9vL21fbZA0HYi-mcA7Yzri7dK3bfXI3nw-p1RPFvoar3yQ priority: 102 providerName: ProQuest |
| Title | Estimating rainfed groundnut’s leaf area index using Sentinel-2 based on Machine Learning Regression Algorithms and Empirical Models |
| URI | https://link.springer.com/article/10.1007/s11119-024-10117-0 https://www.proquest.com/docview/3053642573 |
| Volume | 25 |
| WOSCitedRecordID | wos001168634000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1573-1618 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010042 issn: 1385-2256 databaseCode: RSV dateStart: 19990101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Lb9Mw2IINJHbYoIAYjOo7cANLiZM09rFMnZDQqqrjMU6R40dWKXOnJtt5p_0H_h6_hM9usmoIkCAHR1Ycy9L39vci5I0o1cigHkpFVnKaliyhIo0k9S6mzI4ymVgZmk3k0yk_PRWzLims6aPde5dk4NSbZDd8BEWZgqwjRt6Khvo2ijvuGzbMT77c-g48HgYzi2cUsXXUpcr8fo-74mijY_7iFg3S5mjv_875mOx22iWM1-jwhNwzbkB2xtWqq7BhBmSv7-MAHVkPyMMQBqqap-RmghTvdVhXge8dYY0Gn_fhtLtsf1x_b6A20oJETRNCnUXwcfMVnPiYI2dqysCLRQ1LB8chTNNAV8G1grmp1kG3DsZ1tVwt2rPzBqTTMDm_WIRSJeBbs9XNM_L5aPLp8APtOjVQhSTcUiV0lNqIaasTy3Oby5IrtAQ5S0quZcy8lYUvlbI8z2NmmGVMlomJ08xYwZPnZMstnXlBwF-MSY52EjKSVMdWCKYUakEmUZExKtkncQ-wQnVlzH03jbrYFGD2ACgQAEUAQBHtk7e3_1ysi3j8dfVBjwdFR9BNgWwxGXn-hgd418N98_nPu738t-WvyCPmUSfc8xyQrXZ1aV6TB-qqXTSrIbmff_02JNvvJ9PZHGfH0WEYP_qRzYaBEH4CxH38TQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKQQIO_CMWCvgAJ7BI7GQTHxBawVat2q4qKFJvwfFPqJR6l00K4saJd-AleCiehBkn6QokeuuBXHJI4oPzzZ9n5htCnshSjy34oUymZc6Skgsmk0gxTDGlbpwq4VQYNpHNZvnhodxfIz-HXhgsqxx0YlDUZq7xjPwF4FKMEWDi1eITw6lRmF0dRmh0sNixX79AyNa83H4D__cp55vTg9dbrJ8qwDTArWVamihxETfOCJdnLlNlriFqybkoc6NijhEB3HTCsyyLueWOc1UKGyepdTIXsO4FcjFBZjEsFeT7p1kLlIAQ4OUpAzkZ9006XaseXJKBRQTFF4NliP40hCvv9q-EbLBzm9f_tx26Qa71HjWddCJwk6xZf4tcnVTLnlXE3ibfp6DI0DX3FcWRGM4aiu0s3viT9te3Hw2trXJUgQNNA30kxXaAir7DUipva8YpWntD557uhepTS3ti2oq-tVVXS-zppK5gQ9qPxw1V3tDp8eIoMLBQnDhXN3fI-3PZiLtk3c-9vUconvepHMI_0I-JiZ2UXGtw7qzQkbVajEg8oKHQPTs7DgmpixWvNCKoAAQVAUFFNCLPTr9ZdNwkZ769McCm6PVUU6wwMyLPB-CtHv97tftnr_aYXN462NstdrdnOw_IFY64D0dXG2S9XZ7Yh-SS_tweNctHQYIo-XDegPwN4OlT4g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQagceBZ1oYAPcAKriZ1skgOqVu2uqAqriofUW3D8CJVS77JJQdx66n_gr_Tn8EuYcZKuQKK3HsglhyQ-ON-8PDPfEPI8K9TQgB_KsrhIWVRwwbIokAxTTLEdxlJY6YdNJNNpeniYHayQ874XBssqe53oFbWeKTwj3wJciiECTGzZriziYHeyPf_KcIIUZlr7cRotRPbNj-8QvtWv93bhX7_gfDL-uPOGdRMGmALoNUxlOohswLXVwqaJTWSRKohgUi6KVMuQY3QANxXxJElCbrjlXBbChFFsbJYKWPcauZ5EYDaxbDDYuchgoDT4YC-NGcjMsGvYadv24MoYWEdQgiFYieBPo7j0dP9KznqbN7nzP-_WXXK787TpqBWNe2TFuPvk1qhcdGwj5gE5G4OCQ5fdlRRHZVijKba5OO1Oml-nP2taGWmpBMeaelpJim0CJf2AJVbOVIxT9AI0nTn6zlelGtoR1pb0vSnbGmNHR1UJG9J8Oa6pdJqOj-dHnpmF4iS6ql4nn65kIx6SVTdzZoNQPAeUKYSFoDcjHdos40qB02eECoxRYkDCHhm56ljbcXhIlS_5phFNOaAp92jKgwF5efHNvOUsufTtzR5Ceae_6nyJnwF51YNw-fjfqz26fLVn5CbgMH-7N91_TNY4ioA_0dokq83ixDwhN9S35qhePPXCRMnnq8bjbxu7XIQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+rainfed+groundnut%E2%80%99s+leaf+area+index+using+Sentinel-2+based+on+Machine+Learning+Regression+Algorithms+and+Empirical+Models&rft.jtitle=Precision+agriculture&rft.au=Ekwe%2C+Michael+Chibuike&rft.au=Adeluyi%2C+Oluseun&rft.au=Verrelst%2C+Jochem&rft.au=Kross%2C+Angela&rft.date=2024-06-01&rft.pub=Springer+US&rft.issn=1385-2256&rft.eissn=1573-1618&rft.volume=25&rft.issue=3&rft.spage=1404&rft.epage=1428&rft_id=info:doi/10.1007%2Fs11119-024-10117-0&rft.externalDocID=10_1007_s11119_024_10117_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-2256&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-2256&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-2256&client=summon |