Estimating rainfed groundnut’s leaf area index using Sentinel-2 based on Machine Learning Regression Algorithms and Empirical Models

The leaf area index (LAI), a crucial biophysical indicator, is used to assess and monitor crop growth for effective agricultural management. This study assessed the LAI at the seedling stage after conducting a field experiment with rainfed groundnut. The study tests the performance of multiple machi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Precision agriculture Ročník 25; číslo 3; s. 1404 - 1428
Hlavní autori: Ekwe, Michael Chibuike, Adeluyi, Oluseun, Verrelst, Jochem, Kross, Angela, Odiji, Caleb Akoji
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.06.2024
Springer Nature B.V
Predmet:
ISSN:1385-2256, 1573-1618
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The leaf area index (LAI), a crucial biophysical indicator, is used to assess and monitor crop growth for effective agricultural management. This study assessed the LAI at the seedling stage after conducting a field experiment with rainfed groundnut. The study tests the performance of multiple machine learning regression algorithms (MLRAs) and empirical vegetation indices (VIs) in retrieving groundnut's LAI using freely available Sentinel-2 data. The bands at 665 nm, 705 nm, 842 nm, and 2190 nm are the most sensitive for retrieving groundnut's LAI, according to an analysis of its band spectrum. Results suggest that VIs computed with wavebands centered at red (665 nm), red edge (705 nm), and near-infrared (842 nm) exhibited optimal R 2 with Sentinel-2 data. Normalized difference vegetation index (NDVI), red edge normalized difference vegetation index (NDVIre), simple ratio (SR), red edge simple ratio (SRre), and green normalized difference vegetation index (gNDVI) were utilized as predictors for LAI. Regarding the results of the validation between estimated and measured LAI, SR demonstrated the highest accuracy for groundnut LAI prediction (r 2  = 0.67, RMSE = 0.89). Ten MLRAs were tested, and results indicate from the perspective of the accuracy of models, the Gaussian processes regression, GPR (r 2  = 0.73 and RMSE = 0.81), Kernel ridge regression, KRR (r 2  = 0.72 and RMSE = 0.82) and Support vector regression, SVR (r 2  = 0.70 and RMSE = 0.85) demonstrated to be the most suitable for LAI estimation for rainfed groundnut at the seedling stage. The systematic analysis based on the regression approaches tested here revealed that the GPR outperformed other models combined, therefore, most suitable for estimating rainfed groundnut LAI at the seedling stage. These findings serve as a benchmark for obtaining crop biophysical parameters in the framework of groundnut traits monitoring in a tropical West Africa.
AbstractList The leaf area index (LAI), a crucial biophysical indicator, is used to assess and monitor crop growth for effective agricultural management. This study assessed the LAI at the seedling stage after conducting a field experiment with rainfed groundnut. The study tests the performance of multiple machine learning regression algorithms (MLRAs) and empirical vegetation indices (VIs) in retrieving groundnut's LAI using freely available Sentinel-2 data. The bands at 665 nm, 705 nm, 842 nm, and 2190 nm are the most sensitive for retrieving groundnut's LAI, according to an analysis of its band spectrum. Results suggest that VIs computed with wavebands centered at red (665 nm), red edge (705 nm), and near-infrared (842 nm) exhibited optimal R2 with Sentinel-2 data. Normalized difference vegetation index (NDVI), red edge normalized difference vegetation index (NDVIre), simple ratio (SR), red edge simple ratio (SRre), and green normalized difference vegetation index (gNDVI) were utilized as predictors for LAI. Regarding the results of the validation between estimated and measured LAI, SR demonstrated the highest accuracy for groundnut LAI prediction (r2 = 0.67, RMSE = 0.89). Ten MLRAs were tested, and results indicate from the perspective of the accuracy of models, the Gaussian processes regression, GPR (r2 = 0.73 and RMSE = 0.81), Kernel ridge regression, KRR (r2 = 0.72 and RMSE = 0.82) and Support vector regression, SVR (r2 = 0.70 and RMSE = 0.85) demonstrated to be the most suitable for LAI estimation for rainfed groundnut at the seedling stage. The systematic analysis based on the regression approaches tested here revealed that the GPR outperformed other models combined, therefore, most suitable for estimating rainfed groundnut LAI at the seedling stage. These findings serve as a benchmark for obtaining crop biophysical parameters in the framework of groundnut traits monitoring in a tropical West Africa.
The leaf area index (LAI), a crucial biophysical indicator, is used to assess and monitor crop growth for effective agricultural management. This study assessed the LAI at the seedling stage after conducting a field experiment with rainfed groundnut. The study tests the performance of multiple machine learning regression algorithms (MLRAs) and empirical vegetation indices (VIs) in retrieving groundnut's LAI using freely available Sentinel-2 data. The bands at 665 nm, 705 nm, 842 nm, and 2190 nm are the most sensitive for retrieving groundnut's LAI, according to an analysis of its band spectrum. Results suggest that VIs computed with wavebands centered at red (665 nm), red edge (705 nm), and near-infrared (842 nm) exhibited optimal R 2 with Sentinel-2 data. Normalized difference vegetation index (NDVI), red edge normalized difference vegetation index (NDVIre), simple ratio (SR), red edge simple ratio (SRre), and green normalized difference vegetation index (gNDVI) were utilized as predictors for LAI. Regarding the results of the validation between estimated and measured LAI, SR demonstrated the highest accuracy for groundnut LAI prediction (r 2  = 0.67, RMSE = 0.89). Ten MLRAs were tested, and results indicate from the perspective of the accuracy of models, the Gaussian processes regression, GPR (r 2  = 0.73 and RMSE = 0.81), Kernel ridge regression, KRR (r 2  = 0.72 and RMSE = 0.82) and Support vector regression, SVR (r 2  = 0.70 and RMSE = 0.85) demonstrated to be the most suitable for LAI estimation for rainfed groundnut at the seedling stage. The systematic analysis based on the regression approaches tested here revealed that the GPR outperformed other models combined, therefore, most suitable for estimating rainfed groundnut LAI at the seedling stage. These findings serve as a benchmark for obtaining crop biophysical parameters in the framework of groundnut traits monitoring in a tropical West Africa.
Author Ekwe, Michael Chibuike
Adeluyi, Oluseun
Verrelst, Jochem
Kross, Angela
Odiji, Caleb Akoji
Author_xml – sequence: 1
  givenname: Michael Chibuike
  surname: Ekwe
  fullname: Ekwe, Michael Chibuike
  organization: Department of Geography, Planning and Environment, Concordia University, Department of Strategic Space Applications, National Space Research and Development Agency (NASRDA)
– sequence: 2
  givenname: Oluseun
  surname: Adeluyi
  fullname: Adeluyi, Oluseun
  organization: Department of Strategic Space Applications, National Space Research and Development Agency (NASRDA)
– sequence: 3
  givenname: Jochem
  surname: Verrelst
  fullname: Verrelst, Jochem
  organization: Image Processing Laboratory (IPL), Parc Científic, Universitat de València
– sequence: 4
  givenname: Angela
  surname: Kross
  fullname: Kross, Angela
  organization: Department of Geography, Planning and Environment, Concordia University
– sequence: 5
  givenname: Caleb Akoji
  surname: Odiji
  fullname: Odiji, Caleb Akoji
  organization: Department of Strategic Space Applications, National Space Research and Development Agency (NASRDA)
BookMark eNp9kMlKBDEQhoMouL6Ap4DnaJbu6e6jyLjAiOByDplOpY30JGPSDXrz5Dv4ej6JNY4geLAuVST_VwnfLtkMMQAhh4IfC86rkyywGsZlwQQXomJ8g-yIslJMTES9ibOqSyZlOdkmuzk_cY5YIXfI-zQPfmEGHzqajA8OLO1SHIMN4_D59pFpD8ZRk8BQHyy80DGvsncQkIGeSTo3GaEY6LVpH_GMzsCksArdQpcgZ493p30Xkx8eF5maYOl0sfTJt6an19FCn_fJljN9hoOfvkcezqf3Z5dsdnNxdXY6Y60SzcDaxvLCcWmdVa6uXGXmdSsaUUs1r60RciLLBltbyKqqhATppDRzBaIowTW12iNH673LFJ9HyIN-imMK-KRWvFSTQqIzTNXrVJtizgmcbv2AjmIY0FGvBdcr63ptXaN1_W1dc0TlH3SZ0G96_R9SayhjOHSQfn_1D_UFEguYyw
CitedBy_id crossref_primary_10_3390_land14010171
crossref_primary_10_1016_j_eja_2025_127632
crossref_primary_10_1080_01431161_2024_2413027
crossref_primary_10_3390_s24206739
Cites_doi 10.1016/j.rse.2008.08.017
10.3390/rs13183663
10.20870/oeno-one.2020.54.1.2481
10.1016/j.jag.2021.102454
10.1109/TGRS.2019.2940826
10.1023/A:1018628609742
10.1007/978-981-15-4194-0_4
10.1016/j.eja.2018.12.003
10.1016/S0034-4257(96)00072-7
10.1023/A:1010933404324
10.1016/j.jag.2017.02.013
10.1016/j.rse.2019.04.005
10.3390/s110707063
10.1177/0309133312471367
10.1078/0176-1617-01176
10.3390/rs9121325
10.1016/j.rse.2011.09.026
10.1016/j.rse.2011.11.002
10.3390/rs13214314
10.1109/TGRS.2011.2168962
10.3390/s20051296
10.3390/agronomy8090172
10.1109/JSTARS.2012.2222356
10.1016/j.eja.2011.09.004
10.1016/S1672-6308(07)60027-4
10.5897/AJPS2014.1260
10.3390/s20236732
10.1016/j.jag.2019.04.019
10.1016/j.rse.2016.10.009
10.1016/j.agrformet.2014.08.005
10.2307/1936256
10.1109/TGRS.2013.2271813
10.1109/JSTARS.2014.2298752
10.1016/j.rse.2006.09.031
10.1038/s41598-021-00936-w
10.3390/rs13061094
10.1016/j.jag.2014.08.002
10.3390/rs13081427
10.3390/ijgi9110622
10.1016/j.rse.2008.06.006
10.1016/S0034-4257(01)00223-1
10.1080/01431160210163074
10.1016/j.jag.2016.07.016
10.3390/rs8040324
10.1016/j.jag.2012.10.008
10.1371/journal.pone.0207624
10.1007/BF00058655
10.1016/j.rse.2003.12.013
10.1117/1.JRS.10.036015
10.1016/j.asr.2015.09.022
10.1109/IGARSS.2007.4423394
10.1117/1.JRS.6.063557
10.1016/j.rse.2020.111935
10.1016/j.isprsjprs.2020.04.014
10.5539/jsd.v9n6p111
10.3390/rs12091406
10.1080/15481603.2017.1370169
10.1007/s13197-015-2007-9
10.3390/rs12091357
10.1016/j.isprsjprs.2015.05.005
10.1080/09064710.2019.1601252
10.3390/s90402719
10.1016/j.isprsjprs.2017.10.004
10.1080/14786440109462720
10.1016/j.rse.2018.12.032
10.1016/j.envsoft.2007.10.003
10.1016/j.rse.2007.11.001
10.1016/j.fcr.2016.08.007
10.1016/j.rse.2011.08.010
10.1016/j.isprsjprs.2019.06.007
10.1016/S0034-4257(97)00005-9
10.3390/rs6064927
10.1016/0034-4257(95)00186-7
10.1201/9781315139470
10.1016/0034-4257(94)00111-Y
10.3390/rs13122404
10.1080/00401706.1977.10489581
10.1016/j.isprsjprs.2015.04.013
10.1016/0034-4257(94)90134-1
10.1002/eco.1974
10.1016/S0176-1617(11)81633-0
10.3390/rs14020415
10.2135/cropsci1997.0011183X003700010033x
10.1046/j.1469-8137.1999.00424.x
10.1080/07038992.2020.1740584
10.3390/rs8040351
10.1016/S1002-0160(21)60038-3
10.1029/97JD01107
10.1093/treephys/18.3.185
10.1016/S0034-4257(99)00057-7
10.1109/IGARSS.2008.4779128
10.22004/AG.ECON.156141
10.1007/978-3-540-28650-9_4
10.5194/isprsarchives-XXXIX-B1-77-2012
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7ST
7WY
7WZ
7X2
7XB
87Z
88I
8FE
8FH
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
K60
K6~
L.-
M0C
M0K
M2P
PATMY
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
DOI 10.1007/s11119-024-10117-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global (OCUL)
Agricultural Science Database
Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Agricultural Science Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Agricultural Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Physics
Computer Science
EISSN 1573-1618
EndPage 1428
ExternalDocumentID 10_1007_s11119_024_10117_0
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67M
67Z
6NX
78A
7WY
7X2
7XC
88I
8FE
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAK
LLZTM
M0C
M0K
M2P
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOR
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
Y6R
YLTOR
Z45
Z7R
Z7U
Z7V
Z7W
Z7Y
Z83
ZMTXR
ZOVNA
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7ST
7XB
8FK
C1K
ESTFP
L.-
PKEHL
PQEST
PQUKI
Q9U
SOI
ID FETCH-LOGICAL-c319t-c9d04f02dfd3f87f7ab8c191823b8da126259a12c4277712e2f22ab3e145ef983
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001168634000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1385-2256
IngestDate Mon Nov 24 18:14:14 EST 2025
Tue Nov 18 21:39:34 EST 2025
Sat Nov 29 01:49:55 EST 2025
Fri Feb 21 02:38:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Seedling stage
Machine learning algorithms
LAI
Vegetation indices
Sentinel-2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c9d04f02dfd3f87f7ab8c191823b8da126259a12c4277712e2f22ab3e145ef983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3053642573
PQPubID 54630
PageCount 25
ParticipantIDs proquest_journals_3053642573
crossref_citationtrail_10_1007_s11119_024_10117_0
crossref_primary_10_1007_s11119_024_10117_0
springer_journals_10_1007_s11119_024_10117_0
PublicationCentury 2000
PublicationDate 20240600
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal on Advances in Precision Agriculture
PublicationTitle Precision agriculture
PublicationTitleAbbrev Precision Agric
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Peng, Han, Ao, Wang (CR58) 2021; 13
Kganyago, Mhangara, Adjorlolo (CR43) 2021; 13
Verrelst, Muñoz, Alonso, Delegido, Rivera, Camps-Valls, Moreno (CR87) 2012; 118
Gitelson, Merzlyak (CR35) 1994; 143
Snee (CR75) 1977; 19
Fassnacht, Gower, MacKenzie, Nordheim, Lillesand (CR26) 1997; 61
Syed, Arif, Ahmed, Khalid, Tanwar, Goyal (CR80) 2021
Xie, Huang, Dash, Song, Huang, Zhao, Wang (CR98) 2015; 56
Metternicht (CR52) 2003; 24
Jiang, Huete, Didan, Miura (CR39) 2008; 112
Haboudane (CR36) 2004; 90
Dong, Liu, Shang, Qian, Ma, Kovacs, Walters, Jiao, Geng, Shi (CR22) 2019; 222
Forkuor, Dimobe, Serme, Tondoh (CR28) 2018; 55
Faye, Webber, Gaiser, Diop, Owusu-Sekyere, Naab (CR27) 2016; 9
Price (CR63) 1995; 52
Sun, Qin, Ren, Zhang, Chen (CR77) 2020; 58
Omer, Mutanga, Abdel-Rahman, Adam (CR55) 2016; 8
Pichon, Taylor, Tisseyre (CR61) 2020; 54
Kiala, Odindi, Mutanga, Peerbhay (CR44) 2016; 10
Breiman (CR8) 1996; 24
Tao, Feng, Xu, Miao, Long, Yue, Li, Yang, Yang, Fan (CR81) 2020; 20
Pinty, Lavergne, Widlowski, Gobron, Verstraete (CR62) 2009; 113
Peñuelas, Isla, Filella, Araus (CR60) 1997; 37
Mastewal, Sakhuja, Mashilla (CR51) 2017; 2
Miura, Huete, Yoshioka, Holben (CR53) 2001; 78
Jordan (CR40) 1969; 50
Martimort, Arino, Berger, Biasutti, Carnicero, Del Bello, Fernandez, Gascon, Greco, Silvestrin, Spoto, Sy (CR50) 2007; 2007
Wang, Xiao, Bajgain, Starks, Steiner, Doughty, Chang (CR95) 2019; 154
Gitelson, Kaufman, Merzlyak (CR34) 1996; 58
Pôças, Gonçalves, Costa, Gonçalves, Pereira, Cunha (CR64) 2017; 58
Zeng, Xu, Wu, Huang (CR99) 2016; 198
Campos-Taberner, García-Haro, Camps-Valls, Grau-Muedra, Nutini, Crema, Boschetti (CR13) 2016; 187
Kang, Özdoğan (CR41) 2019; 228
Brown, Meier, Morris, Pastor-Guzman, Bai, Lerebourg, Gobron, Lanconelli, Clerici, Dash (CR11) 2020; 247
Pearson (CR57) 2010; 2
Svendsen, Morales-Álvarez, Ruescas, Molina, Camps-Valls (CR79) 2020; 166
CR56
CR54
Cohrs, Cook, Gray, Albaugh (CR18) 2020; 12
Malenovský, Rott, Cihlar, Schaepman, García-Santos, Fernandes, Berger (CR49) 2012; 120
Casa, Varella, Buis, Guérif, De Solan, Baret (CR14) 2012; 37
Verrelst, Schaepman, Koetz, Kneubühler (CR90) 2008; 112
Adeluyi, Harris, Verrelst, Foster, Clay (CR2) 2021; 102
Perich, Aasen, Verrelst, Argento, Walter, Liebisch (CR59) 2021; 13
Arya, Salve, Chauhan (CR6) 2016; 53
Chrysafis, Korakis, Kyriazopoulos, Mallinis (CR16) 2020; 9
Xie, Dash, Huete, Jiang, Yin, Ding, Peng, Hall, Brown, Shi, Ye, Dong, Huang (CR97) 2019; 80
Chen, Rich, Gower, Norman, Plummer (CR15) 1997; 102
CR68
Reisi Gahrouei, McNairn, Hosseini, Homayouni (CR69) 2020; 46
CR67
Verrelst, Alonso, Camps-Valls, Delegido, Moreno (CR84) 2012; 50
Duchemin, Maisongrande, Boulet, Benhadj (CR23) 2008; 23
Qi, Zhu, Wu, Liang, Li, Wang, Chen, Lan, Zhang (CR66) 2020; 20
Rivera, Verrelst, Delegido, Veroustraete, Moreno (CR71) 2014; 6
Roy, Li, Zhang (CR73) 2017; 9
Kanniah, Kang, Sharma, Amir (CR42) 2021; 13
Turner, Cohen, Kennedy, Fassnacht, Briggs (CR82) 1999; 70
Clevers, Gitelson (CR17) 2013; 23
Viña, Gitelson, Nguy-Robertson, Peng (CR92) 2011; 115
Debele, Amare (CR19) 2015; 9
Zheng, Moskal (CR101) 2009; 9
Barclay (CR7) 1998; 18
Gilardelli, Stella, Confalonieri, Ranghetti, Campos-Taberner, García-Haro, Boschetti (CR32) 2019; 103
Breiman (CR9) 2001; 45
Richter, Atzberger, Hank, Mauser (CR70) 2012; 6
CR4
CR3
CR5
Delegido, Verrelst, Alonso, Moreno (CR20) 2011; 11
Gan, Zhang, Shi, Yang, Eamus, Cheng, Chiew, Yu (CR31) 2018; 11
Qi, Chehbouni, Huete, Kerr, Sorooshian (CR65) 1994; 48
Gamon, Surfus (CR30) 1999; 143
CR83
Liu, Zeng, Wu, Lei, Chen, Gaiser, Srivastava (CR47) 2021; 13
Gitelson (CR33) 2004; 161
Fang, Li, Wei, Jiang (CR25) 2014; 198–199
Verrelst, Rivera, Gitelson, Delegido, Moreno, Camps-Valls (CR88) 2016; 52
Wang, Chang, Yang, Zhang, Li (CR93) 2018; 13
Lei, Zeng, Jiang, Ao, Wu, Huang (CR46) 2021; 31
Xiao, Liang, Wang, Jiang (CR96) 2016; 8
Wang, Huang, Tang, Wang (CR94) 2007; 14
Gaikpa, Akromah, Asibuo, Appiah-Kubi, Nyadanu (CR29) 2015; 3
Rondeaux, Steven, Baret (CR72) 1996; 55
Kross, McNairn, Lapen, Sunohara, Champagne (CR45) 2015; 34
Verrelst, Rivera, Veroustraete, Muñoz-Marí, Clevers, Camps-Valls, Moreno (CR89) 2015; 108
Verrelst, Alonso, Rivera Caicedo, Moreno, Camps-Valls (CR85) 2013; 6
Suykens, Vandewalle (CR78) 1999; 9
Song (CR76) 2013; 37
Maimaitijiang, Sagan, Sidike, Daloye, Erkbol, Fritschi (CR48) 2020; 12
Abady, Shimelis, Janila, Mashilo (CR1) 2019; 69
Verrelst, Camps-Valls, Muñoz-Marí, Rivera, Veroustraete, Clevers, Moreno (CR86) 2015; 108
Durbha, King, Younan (CR24) 2007; 107
Vincini, Amaducci, Frazzi (CR91) 2014; 52
Sarkar, Cazenave, Oakes, McCall, Thomason, Abbott, Balota (CR74) 2021; 11
Breiman, Friedman, Olshen, Stone (CR10) 2017
CR100
Desmae, Sones (CR21) 2017
Houborg, McCabe (CR37) 2018; 135
Zhu, Zeng, Ma, Lei, Zha, Fang, Wu, Huang (CR102) 2018; 8
Caicedo, Verrelst, Munoz-Mari, Moreno, Camps-Valls (CR12) 2014; 7
Ilniyaz, Kurban, Du (CR38) 2022; 14
M Kganyago (10117_CR43) 2021; 13
J Qi (10117_CR65) 1994; 48
AA Gitelson (10117_CR34) 1996; 58
S Sarkar (10117_CR74) 2021; 11
KS Fassnacht (10117_CR26) 1997; 61
J Verrelst (10117_CR85) 2013; 6
G Omer (10117_CR55) 2016; 8
F Wang (10117_CR94) 2007; 14
KD Kanniah (10117_CR42) 2021; 13
JA Gamon (10117_CR30) 1999; 143
Q Xie (10117_CR97) 2019; 80
B Duchemin (10117_CR23) 2008; 23
C Gilardelli (10117_CR32) 2019; 103
J Peñuelas (10117_CR60) 1997; 37
A Gitelson (10117_CR35) 1994; 143
M Vincini (10117_CR91) 2014; 52
KLIII Pearson (10117_CR57) 2010; 2
G Perich (10117_CR59) 2021; 13
D Roy (10117_CR73) 2017; 9
X Peng (10117_CR58) 2021; 13
10117_CR5
10117_CR4
10117_CR3
S Liu (10117_CR47) 2021; 13
J Verrelst (10117_CR86) 2015; 108
M Campos-Taberner (10117_CR13) 2016; 187
G Lei (10117_CR46) 2021; 31
Z Malenovský (10117_CR49) 2012; 120
H Qi (10117_CR66) 2020; 20
L Breiman (10117_CR8) 1996; 24
L Breiman (10117_CR10) 2017
J Delegido (10117_CR20) 2011; 11
Z Kiala (10117_CR44) 2016; 10
L Pichon (10117_CR61) 2020; 54
H Tao (10117_CR81) 2020; 20
G Metternicht (10117_CR52) 2003; 24
H Desmae (10117_CR21) 2017
T Dong (10117_CR22) 2019; 222
Y Kang (10117_CR41) 2019; 228
RD Snee (10117_CR75) 1977; 19
W Zeng (10117_CR99) 2016; 198
C Song (10117_CR76) 2013; 37
Z Xiao (10117_CR96) 2016; 8
B Faye (10117_CR27) 2016; 9
R Casa (10117_CR14) 2012; 37
LA Brown (10117_CR11) 2020; 247
CF Jordan (10117_CR40) 1969; 50
J Zhu (10117_CR102) 2018; 8
O Ilniyaz (10117_CR38) 2022; 14
SS Arya (10117_CR6) 2016; 53
HJ Barclay (10117_CR7) 1998; 18
JGPW Clevers (10117_CR17) 2013; 23
T Miura (10117_CR53) 2001; 78
Z Jiang (10117_CR39) 2008; 112
G Zheng (10117_CR101) 2009; 9
DH Svendsen (10117_CR79) 2020; 166
CW Cohrs (10117_CR18) 2020; 12
J Price (10117_CR63) 1995; 52
JM Chen (10117_CR15) 1997; 102
10117_CR100
JPR Caicedo (10117_CR12) 2014; 7
DS Gaikpa (10117_CR29) 2015; 3
O Reisi Gahrouei (10117_CR69) 2020; 46
Y Sun (10117_CR77) 2020; 58
G Rondeaux (10117_CR72) 1996; 55
L Breiman (10117_CR9) 2001; 45
J Verrelst (10117_CR87) 2012; 118
P Martimort (10117_CR50) 2007; 2007
SS Durbha (10117_CR24) 2007; 107
H Fang (10117_CR25) 2014; 198–199
10117_CR83
J Verrelst (10117_CR89) 2015; 108
I Chrysafis (10117_CR16) 2020; 9
S Debele (10117_CR19) 2015; 9
A Kross (10117_CR45) 2015; 34
JAK Suykens (10117_CR78) 1999; 9
I Pôças (10117_CR64) 2017; 58
J Rivera (10117_CR71) 2014; 6
DP Turner (10117_CR82) 1999; 70
R Houborg (10117_CR37) 2018; 135
J Wang (10117_CR95) 2019; 154
10117_CR56
D Haboudane (10117_CR36) 2004; 90
10117_CR54
J Verrelst (10117_CR90) 2008; 112
B Pinty (10117_CR62) 2009; 113
J Verrelst (10117_CR88) 2016; 52
G Forkuor (10117_CR28) 2018; 55
A Mastewal (10117_CR51) 2017; 2
L Wang (10117_CR93) 2018; 13
M Maimaitijiang (10117_CR48) 2020; 12
J Verrelst (10117_CR84) 2012; 50
F Syed (10117_CR80) 2021
Q Xie (10117_CR98) 2015; 56
A Viña (10117_CR92) 2011; 115
10117_CR67
K Richter (10117_CR70) 2012; 6
S Abady (10117_CR1) 2019; 69
O Adeluyi (10117_CR2) 2021; 102
AA Gitelson (10117_CR33) 2004; 161
10117_CR68
R Gan (10117_CR31) 2018; 11
References_xml – volume: 113
  start-page: 10
  issue: 1
  year: 2009
  end-page: 23
  ident: CR62
  article-title: On the need to observe vegetation canopies in the near-infrared to estimate visible light absorption
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2008.08.017
– ident: CR68
– volume: 13
  start-page: 3663
  issue: 18
  year: 2021
  ident: CR47
  article-title: Simulating the leaf area index of rice from multispectral images
  publication-title: Remote Sensing
  doi: 10.3390/rs13183663
– volume: 54
  start-page: 123
  issue: 1
  year: 2020
  end-page: 130
  ident: CR61
  article-title: Using smartphone leaf area index data acquired in a collaborative context within vineyards in southern France
  publication-title: OENO One
  doi: 10.20870/oeno-one.2020.54.1.2481
– volume: 102
  start-page: 102454
  year: 2021
  ident: CR2
  article-title: Estimating the phenological dynamics of irrigated rice leaf area index using the combination of PROSAIL and Gaussian Process Regression
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2021.102454
– volume: 58
  start-page: 826
  issue: 2
  year: 2020
  end-page: 840
  ident: CR77
  article-title: Red-Edge Band Vegetation Indices for Leaf Area Index estimation from sentinel-2/MSI imagery
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2019.2940826
– ident: CR54
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  end-page: 300
  ident: CR78
  article-title: No title found
  publication-title: Neural Processing Letters
  doi: 10.1023/A:1018628609742
– start-page: 93
  year: 2021
  end-page: 122
  ident: CR80
  article-title: Groundnut (Peanut) (Arachis hypogaea)
  publication-title: Oilseeds: Health attributes and food applications
  doi: 10.1007/978-981-15-4194-0_4
– volume: 103
  start-page: 108
  year: 2019
  end-page: 116
  ident: CR32
  article-title: Downscaling rice yield simulation at sub-field scale using remotely sensed LAI data
  publication-title: European Journal of Agronomy
  doi: 10.1016/j.eja.2018.12.003
– volume: 58
  start-page: 289
  issue: 3
  year: 1996
  end-page: 298
  ident: CR34
  article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(96)00072-7
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR9
  article-title: No title found
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 2
  start-page: 000123
  year: 2017
  ident: CR51
  article-title: Evaluation of released and local groundnut varieties against groundnut rust ( ) at Babile, Eastern Ethiopia
  publication-title: Open Access Journal of Agricultural Research
– volume: 58
  start-page: 177
  year: 2017
  end-page: 190
  ident: CR64
  article-title: Hyperspectral-based predictive modelling of grapevine water status in the Portuguese Douro wine region
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2017.02.013
– volume: 228
  start-page: 144
  year: 2019
  end-page: 163
  ident: CR41
  article-title: Field-level crop yield mapping with Landsat using a hierarchical data assimilation approach
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2019.04.005
– volume: 11
  start-page: 7063
  issue: 7
  year: 2011
  end-page: 7081
  ident: CR20
  article-title: Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content
  publication-title: Sensors
  doi: 10.3390/s110707063
– volume: 37
  start-page: 98
  issue: 1
  year: 2013
  end-page: 113
  ident: CR76
  article-title: Optical remote sensing of forest leaf area index and biomass
  publication-title: Progress in Physical Geography: Earth and Environment
  doi: 10.1177/0309133312471367
– volume: 161
  start-page: 165
  issue: 2
  year: 2004
  end-page: 173
  ident: CR33
  article-title: Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation
  publication-title: Journal of Plant Physiology
  doi: 10.1078/0176-1617-01176
– volume: 3
  start-page: 66
  year: 2015
  end-page: 75
  ident: CR29
  article-title: Evaluation of yield and yield components of groundnut genotypes under Cercospora leaf spots disease pressure
  publication-title: International Journal of Agronomy and Agricultural Research
– volume: 9
  start-page: 1325
  issue: 12
  year: 2017
  ident: CR73
  article-title: Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI) Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR) and Quantification of Red-Edge Band BRDF Effects
  publication-title: Remote Sensing
  doi: 10.3390/rs9121325
– volume: 120
  start-page: 91
  year: 2012
  end-page: 101
  ident: CR49
  article-title: Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.09.026
– ident: CR5
– volume: 118
  start-page: 127
  year: 2012
  end-page: 139
  ident: CR87
  article-title: Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.11.002
– volume: 13
  start-page: 4314
  issue: 21
  year: 2021
  ident: CR43
  article-title: Estimating crop biophysical parameters using machine learning algorithms and sentinel-2 imagery
  publication-title: Remote Sensing
  doi: 10.3390/rs13214314
– volume: 50
  start-page: 1832
  issue: 5
  year: 2012
  end-page: 1843
  ident: CR84
  article-title: Retrieval of vegetation biophysical parameters using Gaussian process techniques
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2011.2168962
– volume: 20
  start-page: 1296
  issue: 5
  year: 2020
  ident: CR81
  article-title: Estimation of crop growth parameters using UAV-based hyperspectral remote sensing data
  publication-title: Sensors
  doi: 10.3390/s20051296
– volume: 8
  start-page: 172
  issue: 9
  year: 2018
  ident: CR102
  article-title: Testing and improving the WOFOST model for sunflower simulation on saline soils of inner Mongolia, China
  publication-title: Agronomy
  doi: 10.3390/agronomy8090172
– volume: 6
  start-page: 867
  issue: 2
  year: 2013
  end-page: 874
  ident: CR85
  article-title: Gaussian process retrieval of chlorophyll content from imaging spectroscopy data
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2012.2222356
– ident: CR100
– volume: 37
  start-page: 1
  issue: 1
  year: 2012
  end-page: 10
  ident: CR14
  article-title: Forcing a wheat crop model with LAI data to access agronomic variables: Evaluation of the impact of model and LAI uncertainties and comparison with an empirical approach
  publication-title: European Journal of Agronomy
  doi: 10.1016/j.eja.2011.09.004
– volume: 14
  start-page: 195
  issue: 3
  year: 2007
  end-page: 203
  ident: CR94
  article-title: New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice
  publication-title: Rice Science
  doi: 10.1016/S1672-6308(07)60027-4
– volume: 9
  start-page: 82
  year: 2015
  end-page: 89
  ident: CR19
  article-title: Integrated management of Cercospora leaf spots of groundnut ( L.) through host resistance and fungicides in Eastern Ethiopia
  publication-title: Afr J Plant Sci.
  doi: 10.5897/AJPS2014.1260
– volume: 20
  start-page: 6732
  issue: 23
  year: 2020
  ident: CR66
  article-title: Estimation of Peanut Leaf Area Index from Unmanned Aerial Vehicle Multispectral Images
  publication-title: Sensors
  doi: 10.3390/s20236732
– volume: 80
  start-page: 187
  year: 2019
  end-page: 195
  ident: CR97
  article-title: Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2019.04.019
– volume: 187
  start-page: 102
  year: 2016
  end-page: 118
  ident: CR13
  article-title: Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2016.10.009
– volume: 198–199
  start-page: 126
  year: 2014
  end-page: 141
  ident: CR25
  article-title: Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/j.agrformet.2014.08.005
– volume: 50
  start-page: 663
  issue: 4
  year: 1969
  end-page: 666
  ident: CR40
  article-title: Derivation of leaf-area index from quality of light on the forest floor
  publication-title: Ecology
  doi: 10.2307/1936256
– volume: 52
  start-page: 3220
  issue: 6
  year: 2014
  end-page: 3235
  ident: CR91
  article-title: Empirical estimation of leaf chlorophyll density in winter wheat canopies using sentinel-2 spectral resolution
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2013.2271813
– volume: 7
  start-page: 1249
  issue: 4
  year: 2014
  end-page: 1259
  ident: CR12
  article-title: Toward a semiautomatic machine learning retrieval of biophysical parameters
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2014.2298752
– volume: 107
  start-page: 348
  issue: 1–2
  year: 2007
  end-page: 361
  ident: CR24
  article-title: Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.09.031
– volume: 11
  start-page: 21661
  issue: 1
  year: 2021
  ident: CR74
  article-title: Aerial high-throughput phenotyping of peanut leaf area index and lateral growth
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-00936-w
– volume: 13
  start-page: 1094
  issue: 6
  year: 2021
  ident: CR58
  article-title: Assimilation of LAI derived from UAV multispectral data into the SAFY model to estimate maize yield
  publication-title: Remote Sensing
  doi: 10.3390/rs13061094
– volume: 34
  start-page: 235
  year: 2015
  end-page: 248
  ident: CR45
  article-title: Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2014.08.002
– volume: 13
  start-page: 1427
  issue: 8
  year: 2021
  ident: CR42
  article-title: Remote sensing to study Mangrove fragmentation and its impacts on leaf area index and gross primary productivity in the South of Peninsular Malaysia
  publication-title: Remote Sensing
  doi: 10.3390/rs13081427
– volume: 9
  start-page: 622
  issue: 11
  year: 2020
  ident: CR16
  article-title: Retrieval of leaf area index using sentinel-2 imagery in a mixed mediterranean forest area
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi9110622
– ident: CR3
– year: 2017
  ident: CR21
  publication-title: Groundnut cropping guide. Africa soil health Consortium
– ident: CR83
– volume: 112
  start-page: 3833
  issue: 10
  year: 2008
  end-page: 3845
  ident: CR39
  article-title: Development of a two-band enhanced vegetation index without a blue band
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2008.06.006
– volume: 78
  start-page: 284
  issue: 3
  year: 2001
  end-page: 298
  ident: CR53
  article-title: An error and sensitivity analysis of atmospheric resistant vegetation indices derived from dark target-based atmospheric correction
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(01)00223-1
– volume: 24
  start-page: 2855
  issue: 14
  year: 2003
  end-page: 2877
  ident: CR52
  article-title: Vegetation indices derived from high-resolution airborne videography for precision crop management
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160210163074
– ident: CR4
– volume: 52
  start-page: 554
  year: 2016
  end-page: 567
  ident: CR88
  article-title: Spectral band selection for vegetation properties retrieval using Gaussian processes regression
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2016.07.016
– volume: 8
  start-page: 324
  issue: 4
  year: 2016
  ident: CR55
  article-title: Empirical prediction of leaf area index (LAI) of Endangered tree species in intact and fragmented indigenous forests ecosystems using WorldView-2 data and two robust machine learning algorithms
  publication-title: Remote Sensing
  doi: 10.3390/rs8040324
– volume: 23
  start-page: 344
  year: 2013
  end-page: 351
  ident: CR17
  article-title: Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2012.10.008
– volume: 13
  start-page: e0207624
  issue: 12
  year: 2018
  ident: CR93
  article-title: Estimation of paddy rice leaf area index using machine learning methods based on hyperspectral data from multi-year experiments
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0207624
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  end-page: 140
  ident: CR8
  article-title: Bagging predictors
  publication-title: Machine Learning
  doi: 10.1007/BF00058655
– volume: 90
  start-page: 337
  issue: 3
  year: 2004
  end-page: 352
  ident: CR36
  article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2003.12.013
– volume: 10
  start-page: 036015
  issue: 3
  year: 2016
  ident: CR44
  article-title: Comparison of partial least squares and support vector regressions for predicting leaf area index on a tropical grassland using hyperspectral data
  publication-title: Journal of Applied Remote Sensing
  doi: 10.1117/1.JRS.10.036015
– volume: 56
  start-page: 2365
  issue: 11
  year: 2015
  end-page: 2373
  ident: CR98
  article-title: Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and water conditions
  publication-title: Advances in Space Research
  doi: 10.1016/j.asr.2015.09.022
– volume: 2007
  start-page: 2677
  year: 2007
  end-page: 2680
  ident: CR50
  article-title: Sentinel-2 optical high resolution mission for GMES operational services
  publication-title: IEEE International Geoscience and Remote Sensing Symposium
  doi: 10.1109/IGARSS.2007.4423394
– volume: 6
  start-page: 063557
  issue: 1
  year: 2012
  end-page: 63561
  ident: CR70
  article-title: Derivation of biophysical variables from Earth observation data: Validation and statistical measures
  publication-title: Journal of Applied Remote Sensing
  doi: 10.1117/1.JRS.6.063557
– volume: 247
  start-page: 111935
  year: 2020
  ident: CR11
  article-title: Evaluation of global leaf area index and fraction of absorbed photosynthetically active radiation products over North America using Copernicus Ground Based Observations for Validation data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2020.111935
– volume: 166
  start-page: 68
  year: 2020
  end-page: 81
  ident: CR79
  article-title: Deep Gaussian processes for biogeophysical parameter retrieval and model inversion
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2020.04.014
– volume: 9
  start-page: 111
  year: 2016
  end-page: 131
  ident: CR27
  article-title: Effects of fertilization rate and water availability on peanut growth and yield in Senegal (West Africa)
  publication-title: J Sustain Develop.
  doi: 10.5539/jsd.v9n6p111
– ident: CR67
– volume: 12
  start-page: 1406
  issue: 9
  year: 2020
  ident: CR18
  article-title: Sentinel-2 leaf area index estimation for pine plantations in the Southeastern United States
  publication-title: Remote Sensing
  doi: 10.3390/rs12091406
– volume: 55
  start-page: 331
  issue: 3
  year: 2018
  end-page: 354
  ident: CR28
  article-title: Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso
  publication-title: GIScience & Remote Sensing
  doi: 10.1080/15481603.2017.1370169
– volume: 53
  start-page: 31
  issue: 1
  year: 2016
  end-page: 41
  ident: CR6
  article-title: Peanuts as functional food: A review
  publication-title: Journal of Food Science and Technology
  doi: 10.1007/s13197-015-2007-9
– volume: 12
  start-page: 1357
  issue: 9
  year: 2020
  ident: CR48
  article-title: Crop monitoring using satellite/UAV data fusion and machine learning
  publication-title: Remote Sensing
  doi: 10.3390/rs12091357
– volume: 108
  start-page: 273
  year: 2015
  end-page: 290
  ident: CR86
  article-title: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2015.05.005
– volume: 69
  start-page: 528
  issue: 6
  year: 2019
  end-page: 545
  ident: CR1
  article-title: Groundnut ( L.) improvement in sub-Saharan Africa: A review
  publication-title: Acta Agriculturae Scandinavica, Section B—Soil & Plant Science
  doi: 10.1080/09064710.2019.1601252
– volume: 9
  start-page: 2719
  issue: 4
  year: 2009
  end-page: 2745
  ident: CR101
  article-title: Retrieving Leaf Area Index (LAI) using remote sensing: Theories. Methods and sensors
  publication-title: Sensors
  doi: 10.3390/s90402719
– volume: 135
  start-page: 173
  year: 2018
  end-page: 188
  ident: CR37
  article-title: A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2017.10.004
– volume: 2
  start-page: 559
  year: 2010
  end-page: 572
  ident: CR57
  article-title: On lines and planes of closest fit to systems of points in space
  publication-title: The London, Edinburgh, and Dublin Philosophical Magazine Journal of Science
  doi: 10.1080/14786440109462720
– volume: 222
  start-page: 133
  year: 2019
  end-page: 143
  ident: CR22
  article-title: Assessment of red-edge vegetation indices for crop leaf area index estimation
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2018.12.032
– volume: 23
  start-page: 876
  issue: 7
  year: 2008
  end-page: 892
  ident: CR23
  article-title: A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index
  publication-title: Environmental Modelling & Software
  doi: 10.1016/j.envsoft.2007.10.003
– volume: 112
  start-page: 2341
  issue: 5
  year: 2008
  end-page: 2353
  ident: CR90
  article-title: Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2007.11.001
– volume: 198
  start-page: 1
  year: 2016
  end-page: 15
  ident: CR99
  article-title: Sunflower seed yield estimation under the interaction of soil salinity and nitrogen application
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2016.08.007
– volume: 115
  start-page: 3468
  issue: 12
  year: 2011
  end-page: 3478
  ident: CR92
  article-title: Comparison of different vegetation indices for the remote assessment of green leaf area index of crops
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.08.010
– volume: 154
  start-page: 189
  year: 2019
  end-page: 201
  ident: CR95
  article-title: Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2019.06.007
– volume: 61
  start-page: 229
  issue: 2
  year: 1997
  end-page: 245
  ident: CR26
  article-title: Estimating the leaf area index of North Central Wisconsin forests using the landsat thematic mapper
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(97)00005-9
– volume: 6
  start-page: 4927
  issue: 6
  year: 2014
  end-page: 4951
  ident: CR71
  article-title: On the semi-automatic retrieval of biophysical parameters based on spectral index optimization
  publication-title: Remote Sensing
  doi: 10.3390/rs6064927
– volume: 55
  start-page: 95
  issue: 2
  year: 1996
  end-page: 107
  ident: CR72
  article-title: Optimization of soil-adjusted vegetation indices
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(95)00186-7
– year: 2017
  ident: CR10
  publication-title: Classification and regression trees
  doi: 10.1201/9781315139470
– volume: 52
  start-page: 55
  issue: 1
  year: 1995
  end-page: 65
  ident: CR63
  article-title: Leaf area index estimation from visible and near-infrared reflectance data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(94)00111-Y
– volume: 13
  start-page: 2404
  issue: 12
  year: 2021
  ident: CR59
  article-title: Crop nitrogen retrieval methods for simulated sentinel-2 data using in-field spectrometer data
  publication-title: Remote Sensing
  doi: 10.3390/rs13122404
– volume: 19
  start-page: 415
  issue: 4
  year: 1977
  end-page: 428
  ident: CR75
  article-title: Validation of regression models: Methods and examples
  publication-title: Technometrics
  doi: 10.1080/00401706.1977.10489581
– volume: 108
  start-page: 260
  year: 2015
  end-page: 272
  ident: CR89
  article-title: Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A comparison
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2015.04.013
– ident: CR56
– volume: 48
  start-page: 119
  issue: 2
  year: 1994
  end-page: 126
  ident: CR65
  article-title: A modified soil adjusted vegetation index
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(94)90134-1
– volume: 11
  start-page: e1974
  issue: 5
  year: 2018
  ident: CR31
  article-title: Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems: Coupled estimates of ET and GPP
  publication-title: Ecohydrology
  doi: 10.1002/eco.1974
– volume: 143
  start-page: 286
  issue: 3
  year: 1994
  end-page: 292
  ident: CR35
  article-title: Spectral reflectance changes associated with autumn senescence of L. and L. leaves. Spectral features and relation to chlorophyll estimation
  publication-title: Journal of Plant Physiology
  doi: 10.1016/S0176-1617(11)81633-0
– volume: 14
  start-page: 415
  issue: 2
  year: 2022
  ident: CR38
  article-title: Leaf area index estimation of pergola-trained vineyards in arid regions based on UAV RGB and multispectral data using machine learning methods
  publication-title: Remote Sensing
  doi: 10.3390/rs14020415
– volume: 37
  start-page: 198
  issue: 1
  year: 1997
  end-page: 202
  ident: CR60
  article-title: Visible and near-infrared reflectance assessment of salinity effects on barley
  publication-title: Crop Science
  doi: 10.2135/cropsci1997.0011183X003700010033x
– volume: 143
  start-page: 105
  issue: 1
  year: 1999
  end-page: 117
  ident: CR30
  article-title: Assessing leaf pigment content and activity with a reflectometer
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.1999.00424.x
– volume: 46
  start-page: 84
  issue: 1
  year: 2020
  end-page: 99
  ident: CR69
  article-title: Estimation of crop biomass and leaf area index from multitemporal and multispectral imagery using machine learning approaches
  publication-title: Canadian Journal of Remote Sensing
  doi: 10.1080/07038992.2020.1740584
– volume: 8
  start-page: 351
  issue: 4
  year: 2016
  ident: CR96
  article-title: Retrieval of Leaf Area Index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR) from VIIRS time-series data
  publication-title: Remote Sensing
  doi: 10.3390/rs8040351
– volume: 31
  start-page: 807
  issue: 5
  year: 2021
  end-page: 821
  ident: CR46
  article-title: Sensitivity analysis of the SWAP (Soil-Water-Atmosphere-Plant) model under different nitrogen applications and root distributions in saline soils
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(21)60038-3
– volume: 102
  start-page: 29429
  issue: D24
  year: 1997
  end-page: 29443
  ident: CR15
  article-title: Leaf area index of boreal forests: Theory, techniques, and measurements
  publication-title: Journal of Geophysical Research: Atmospheres
  doi: 10.1029/97JD01107
– volume: 18
  start-page: 185
  issue: 3
  year: 1998
  end-page: 193
  ident: CR7
  article-title: Conversion of total leaf area to projected leaf area in lodgepole pine and Douglas-fir
  publication-title: Tree Physiology
  doi: 10.1093/treephys/18.3.185
– volume: 70
  start-page: 52
  issue: 1
  year: 1999
  end-page: 68
  ident: CR82
  article-title: Relationships between Leaf Area Index and Landsat TM Spectral Vegetation Indices across three temperate zone sites
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(99)00057-7
– volume: 13
  start-page: 3663
  issue: 18
  year: 2021
  ident: 10117_CR47
  publication-title: Remote Sensing
  doi: 10.3390/rs13183663
– volume: 80
  start-page: 187
  year: 2019
  ident: 10117_CR97
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2019.04.019
– start-page: 93
  volume-title: Oilseeds: Health attributes and food applications
  year: 2021
  ident: 10117_CR80
  doi: 10.1007/978-981-15-4194-0_4
– volume: 102
  start-page: 29429
  issue: D24
  year: 1997
  ident: 10117_CR15
  publication-title: Journal of Geophysical Research: Atmospheres
  doi: 10.1029/97JD01107
– volume: 55
  start-page: 95
  issue: 2
  year: 1996
  ident: 10117_CR72
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(95)00186-7
– volume: 37
  start-page: 98
  issue: 1
  year: 2013
  ident: 10117_CR76
  publication-title: Progress in Physical Geography: Earth and Environment
  doi: 10.1177/0309133312471367
– volume: 108
  start-page: 260
  year: 2015
  ident: 10117_CR89
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2015.04.013
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 10117_CR78
  publication-title: Neural Processing Letters
  doi: 10.1023/A:1018628609742
– volume: 13
  start-page: 4314
  issue: 21
  year: 2021
  ident: 10117_CR43
  publication-title: Remote Sensing
  doi: 10.3390/rs13214314
– volume: 6
  start-page: 063557
  issue: 1
  year: 2012
  ident: 10117_CR70
  publication-title: Journal of Applied Remote Sensing
  doi: 10.1117/1.JRS.6.063557
– volume: 53
  start-page: 31
  issue: 1
  year: 2016
  ident: 10117_CR6
  publication-title: Journal of Food Science and Technology
  doi: 10.1007/s13197-015-2007-9
– ident: 10117_CR56
  doi: 10.1109/IGARSS.2008.4779128
– volume: 52
  start-page: 3220
  issue: 6
  year: 2014
  ident: 10117_CR91
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2013.2271813
– volume: 13
  start-page: 2404
  issue: 12
  year: 2021
  ident: 10117_CR59
  publication-title: Remote Sensing
  doi: 10.3390/rs13122404
– volume: 2
  start-page: 000123
  year: 2017
  ident: 10117_CR51
  publication-title: Open Access Journal of Agricultural Research
– volume: 120
  start-page: 91
  year: 2012
  ident: 10117_CR49
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.09.026
– volume: 50
  start-page: 663
  issue: 4
  year: 1969
  ident: 10117_CR40
  publication-title: Ecology
  doi: 10.2307/1936256
– ident: 10117_CR83
  doi: 10.22004/AG.ECON.156141
– volume: 12
  start-page: 1357
  issue: 9
  year: 2020
  ident: 10117_CR48
  publication-title: Remote Sensing
  doi: 10.3390/rs12091357
– volume: 37
  start-page: 198
  issue: 1
  year: 1997
  ident: 10117_CR60
  publication-title: Crop Science
  doi: 10.2135/cropsci1997.0011183X003700010033x
– volume: 11
  start-page: 7063
  issue: 7
  year: 2011
  ident: 10117_CR20
  publication-title: Sensors
  doi: 10.3390/s110707063
– volume: 61
  start-page: 229
  issue: 2
  year: 1997
  ident: 10117_CR26
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(97)00005-9
– volume-title: Groundnut cropping guide. Africa soil health Consortium
  year: 2017
  ident: 10117_CR21
– volume: 55
  start-page: 331
  issue: 3
  year: 2018
  ident: 10117_CR28
  publication-title: GIScience & Remote Sensing
  doi: 10.1080/15481603.2017.1370169
– volume: 24
  start-page: 2855
  issue: 14
  year: 2003
  ident: 10117_CR52
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160210163074
– volume: 222
  start-page: 133
  year: 2019
  ident: 10117_CR22
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2018.12.032
– volume: 2007
  start-page: 2677
  year: 2007
  ident: 10117_CR50
  publication-title: IEEE International Geoscience and Remote Sensing Symposium
  doi: 10.1109/IGARSS.2007.4423394
– volume: 13
  start-page: 1094
  issue: 6
  year: 2021
  ident: 10117_CR58
  publication-title: Remote Sensing
  doi: 10.3390/rs13061094
– volume: 7
  start-page: 1249
  issue: 4
  year: 2014
  ident: 10117_CR12
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2014.2298752
– volume: 78
  start-page: 284
  issue: 3
  year: 2001
  ident: 10117_CR53
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(01)00223-1
– volume: 90
  start-page: 337
  issue: 3
  year: 2004
  ident: 10117_CR36
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2003.12.013
– volume: 23
  start-page: 344
  year: 2013
  ident: 10117_CR17
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2012.10.008
– volume: 6
  start-page: 4927
  issue: 6
  year: 2014
  ident: 10117_CR71
  publication-title: Remote Sensing
  doi: 10.3390/rs6064927
– volume: 50
  start-page: 1832
  issue: 5
  year: 2012
  ident: 10117_CR84
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2011.2168962
– volume: 14
  start-page: 195
  issue: 3
  year: 2007
  ident: 10117_CR94
  publication-title: Rice Science
  doi: 10.1016/S1672-6308(07)60027-4
– volume: 228
  start-page: 144
  year: 2019
  ident: 10117_CR41
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2019.04.005
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10117_CR9
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 9
  start-page: 1325
  issue: 12
  year: 2017
  ident: 10117_CR73
  publication-title: Remote Sensing
  doi: 10.3390/rs9121325
– volume: 118
  start-page: 127
  year: 2012
  ident: 10117_CR87
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.11.002
– volume: 161
  start-page: 165
  issue: 2
  year: 2004
  ident: 10117_CR33
  publication-title: Journal of Plant Physiology
  doi: 10.1078/0176-1617-01176
– ident: 10117_CR4
– volume: 112
  start-page: 3833
  issue: 10
  year: 2008
  ident: 10117_CR39
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2008.06.006
– volume: 8
  start-page: 324
  issue: 4
  year: 2016
  ident: 10117_CR55
  publication-title: Remote Sensing
  doi: 10.3390/rs8040324
– volume: 58
  start-page: 826
  issue: 2
  year: 2020
  ident: 10117_CR77
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2019.2940826
– volume: 9
  start-page: 622
  issue: 11
  year: 2020
  ident: 10117_CR16
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi9110622
– volume: 2
  start-page: 559
  year: 2010
  ident: 10117_CR57
  publication-title: The London, Edinburgh, and Dublin Philosophical Magazine Journal of Science
  doi: 10.1080/14786440109462720
– volume: 108
  start-page: 273
  year: 2015
  ident: 10117_CR86
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2015.05.005
– volume: 54
  start-page: 123
  issue: 1
  year: 2020
  ident: 10117_CR61
  publication-title: OENO One
  doi: 10.20870/oeno-one.2020.54.1.2481
– volume: 11
  start-page: e1974
  issue: 5
  year: 2018
  ident: 10117_CR31
  publication-title: Ecohydrology
  doi: 10.1002/eco.1974
– volume: 187
  start-page: 102
  year: 2016
  ident: 10117_CR13
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2016.10.009
– volume: 10
  start-page: 036015
  issue: 3
  year: 2016
  ident: 10117_CR44
  publication-title: Journal of Applied Remote Sensing
  doi: 10.1117/1.JRS.10.036015
– volume: 9
  start-page: 111
  year: 2016
  ident: 10117_CR27
  publication-title: J Sustain Develop.
  doi: 10.5539/jsd.v9n6p111
– volume: 198–199
  start-page: 126
  year: 2014
  ident: 10117_CR25
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/j.agrformet.2014.08.005
– volume: 13
  start-page: 1427
  issue: 8
  year: 2021
  ident: 10117_CR42
  publication-title: Remote Sensing
  doi: 10.3390/rs13081427
– volume: 58
  start-page: 289
  issue: 3
  year: 1996
  ident: 10117_CR34
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(96)00072-7
– volume: 13
  start-page: e0207624
  issue: 12
  year: 2018
  ident: 10117_CR93
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0207624
– volume: 46
  start-page: 84
  issue: 1
  year: 2020
  ident: 10117_CR69
  publication-title: Canadian Journal of Remote Sensing
  doi: 10.1080/07038992.2020.1740584
– volume: 12
  start-page: 1406
  issue: 9
  year: 2020
  ident: 10117_CR18
  publication-title: Remote Sensing
  doi: 10.3390/rs12091406
– ident: 10117_CR67
  doi: 10.1007/978-3-540-28650-9_4
– volume: 143
  start-page: 286
  issue: 3
  year: 1994
  ident: 10117_CR35
  publication-title: Journal of Plant Physiology
  doi: 10.1016/S0176-1617(11)81633-0
– volume: 3
  start-page: 66
  year: 2015
  ident: 10117_CR29
  publication-title: International Journal of Agronomy and Agricultural Research
– volume: 52
  start-page: 554
  year: 2016
  ident: 10117_CR88
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2016.07.016
– volume: 8
  start-page: 351
  issue: 4
  year: 2016
  ident: 10117_CR96
  publication-title: Remote Sensing
  doi: 10.3390/rs8040351
– ident: 10117_CR3
– volume: 56
  start-page: 2365
  issue: 11
  year: 2015
  ident: 10117_CR98
  publication-title: Advances in Space Research
  doi: 10.1016/j.asr.2015.09.022
– volume: 135
  start-page: 173
  year: 2018
  ident: 10117_CR37
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2017.10.004
– volume: 20
  start-page: 1296
  issue: 5
  year: 2020
  ident: 10117_CR81
  publication-title: Sensors
  doi: 10.3390/s20051296
– volume: 37
  start-page: 1
  issue: 1
  year: 2012
  ident: 10117_CR14
  publication-title: European Journal of Agronomy
  doi: 10.1016/j.eja.2011.09.004
– volume: 9
  start-page: 2719
  issue: 4
  year: 2009
  ident: 10117_CR101
  publication-title: Sensors
  doi: 10.3390/s90402719
– volume: 113
  start-page: 10
  issue: 1
  year: 2009
  ident: 10117_CR62
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2008.08.017
– volume: 154
  start-page: 189
  year: 2019
  ident: 10117_CR95
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2019.06.007
– ident: 10117_CR68
– ident: 10117_CR54
– volume: 143
  start-page: 105
  issue: 1
  year: 1999
  ident: 10117_CR30
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.1999.00424.x
– volume: 9
  start-page: 82
  year: 2015
  ident: 10117_CR19
  publication-title: Afr J Plant Sci.
  doi: 10.5897/AJPS2014.1260
– volume: 19
  start-page: 415
  issue: 4
  year: 1977
  ident: 10117_CR75
  publication-title: Technometrics
  doi: 10.1080/00401706.1977.10489581
– volume: 6
  start-page: 867
  issue: 2
  year: 2013
  ident: 10117_CR85
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2012.2222356
– volume: 14
  start-page: 415
  issue: 2
  year: 2022
  ident: 10117_CR38
  publication-title: Remote Sensing
  doi: 10.3390/rs14020415
– volume: 69
  start-page: 528
  issue: 6
  year: 2019
  ident: 10117_CR1
  publication-title: Acta Agriculturae Scandinavica, Section B—Soil & Plant Science
  doi: 10.1080/09064710.2019.1601252
– volume: 48
  start-page: 119
  issue: 2
  year: 1994
  ident: 10117_CR65
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(94)90134-1
– volume: 115
  start-page: 3468
  issue: 12
  year: 2011
  ident: 10117_CR92
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.08.010
– volume: 52
  start-page: 55
  issue: 1
  year: 1995
  ident: 10117_CR63
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(94)00111-Y
– ident: 10117_CR100
  doi: 10.5194/isprsarchives-XXXIX-B1-77-2012
– ident: 10117_CR5
– volume: 198
  start-page: 1
  year: 2016
  ident: 10117_CR99
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2016.08.007
– volume: 70
  start-page: 52
  issue: 1
  year: 1999
  ident: 10117_CR82
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(99)00057-7
– volume: 23
  start-page: 876
  issue: 7
  year: 2008
  ident: 10117_CR23
  publication-title: Environmental Modelling & Software
  doi: 10.1016/j.envsoft.2007.10.003
– volume: 107
  start-page: 348
  issue: 1–2
  year: 2007
  ident: 10117_CR24
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.09.031
– volume: 20
  start-page: 6732
  issue: 23
  year: 2020
  ident: 10117_CR66
  publication-title: Sensors
  doi: 10.3390/s20236732
– volume: 11
  start-page: 21661
  issue: 1
  year: 2021
  ident: 10117_CR74
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-00936-w
– volume: 247
  start-page: 111935
  year: 2020
  ident: 10117_CR11
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2020.111935
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10117_CR8
  publication-title: Machine Learning
  doi: 10.1007/BF00058655
– volume-title: Classification and regression trees
  year: 2017
  ident: 10117_CR10
  doi: 10.1201/9781315139470
– volume: 8
  start-page: 172
  issue: 9
  year: 2018
  ident: 10117_CR102
  publication-title: Agronomy
  doi: 10.3390/agronomy8090172
– volume: 18
  start-page: 185
  issue: 3
  year: 1998
  ident: 10117_CR7
  publication-title: Tree Physiology
  doi: 10.1093/treephys/18.3.185
– volume: 103
  start-page: 108
  year: 2019
  ident: 10117_CR32
  publication-title: European Journal of Agronomy
  doi: 10.1016/j.eja.2018.12.003
– volume: 166
  start-page: 68
  year: 2020
  ident: 10117_CR79
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2020.04.014
– volume: 31
  start-page: 807
  issue: 5
  year: 2021
  ident: 10117_CR46
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(21)60038-3
– volume: 112
  start-page: 2341
  issue: 5
  year: 2008
  ident: 10117_CR90
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2007.11.001
– volume: 58
  start-page: 177
  year: 2017
  ident: 10117_CR64
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2017.02.013
– volume: 102
  start-page: 102454
  year: 2021
  ident: 10117_CR2
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2021.102454
– volume: 34
  start-page: 235
  year: 2015
  ident: 10117_CR45
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2014.08.002
SSID ssj0010042
Score 2.3805768
Snippet The leaf area index (LAI), a crucial biophysical indicator, is used to assess and monitor crop growth for effective agricultural management. This study...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1404
SubjectTerms Accuracy
Agricultural management
Agriculture
Algorithms
Atmospheric Sciences
Biomedical and Life Sciences
Chemistry and Earth Sciences
Computer Science
Crop growth
Empirical analysis
Estimation
Gaussian process
Groundnuts
Kernel functions
Leaf area
Leaf area index
Learning algorithms
Leaves
Life Sciences
Machine learning
Normalized difference vegetative index
Physics
Regression
Regression analysis
Remote Sensing/Photogrammetry
Seedlings
Soil Science & Conservation
Statistics for Engineering
Support vector machines
Vegetation
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcKAH3qhLC5oDN7BI7GQTn6oV2opLq4qH1Fvk-BEqpd5lk_bcE_-Bv8cvYcbr7QokeiGXHJJYkebzvP0NY29Ua6YO_VCuyrbmRSskV0WmOZWYSj8ttfQ6DpuoTk7qszN1mhJuQ2qr3OjEqKjtwlCO_D3iUk4JYPJw-Z3T1CiqrqYRGnfZPfRscmrpOhanN1UEQmQMuOqSI26n6dDM-ugcXoqjhUJFlKOmzv40TFtv868CabQ7R4_-948fs4fJ44TZGiJP2B0XnrLdWbdKrBvuGfsxx41OrmvogEZGeGeBjnsEGy7HX9c_B-id9qDRwYRIrwjULt_BZ2o1Cq7nAsgaWlgEOI7dmQ4ScWsHn1y37rUNMOs7_MHx28UAOliYXyzPI0MJ0ES2fnjOvh7Nv3z4yNOABm5w547cKJsVPhPWW-nryle6rQ0GgLWQbW11Lii4wpspRFVVuXDCC6Fb6fKidF7V8gXbCYvg9hhQPkzXGB6h_ihs7pUSxqDz46TJnDNywvKNdBqT2MtpiEbfbHmXSaINSrSJEm2yCXt7881yzd1x69sHGzE2aR8PzVaGE_ZuA4Tt43-v9vL21fbZA0HYi-mcA7Yzri7dK3bfXI3nw-p1RPFvoar3yQ
  priority: 102
  providerName: ProQuest
Title Estimating rainfed groundnut’s leaf area index using Sentinel-2 based on Machine Learning Regression Algorithms and Empirical Models
URI https://link.springer.com/article/10.1007/s11119-024-10117-0
https://www.proquest.com/docview/3053642573
Volume 25
WOSCitedRecordID wos001168634000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-1618
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010042
  issn: 1385-2256
  databaseCode: RSV
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Lb9Mw2IINJHbYoIAYjOo7cANLiZM09rFMnZDQqqrjMU6R40dWKXOnJtt5p_0H_h6_hM9usmoIkCAHR1Ycy9L39vci5I0o1cigHkpFVnKaliyhIo0k9S6mzI4ymVgZmk3k0yk_PRWzLims6aPde5dk4NSbZDd8BEWZgqwjRt6Khvo2ijvuGzbMT77c-g48HgYzi2cUsXXUpcr8fo-74mijY_7iFg3S5mjv_875mOx22iWM1-jwhNwzbkB2xtWqq7BhBmSv7-MAHVkPyMMQBqqap-RmghTvdVhXge8dYY0Gn_fhtLtsf1x_b6A20oJETRNCnUXwcfMVnPiYI2dqysCLRQ1LB8chTNNAV8G1grmp1kG3DsZ1tVwt2rPzBqTTMDm_WIRSJeBbs9XNM_L5aPLp8APtOjVQhSTcUiV0lNqIaasTy3Oby5IrtAQ5S0quZcy8lYUvlbI8z2NmmGVMlomJ08xYwZPnZMstnXlBwF-MSY52EjKSVMdWCKYUakEmUZExKtkncQ-wQnVlzH03jbrYFGD2ACgQAEUAQBHtk7e3_1ysi3j8dfVBjwdFR9BNgWwxGXn-hgd418N98_nPu738t-WvyCPmUSfc8xyQrXZ1aV6TB-qqXTSrIbmff_02JNvvJ9PZHGfH0WEYP_qRzYaBEH4CxH38TQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKQQIO_CMWCvgAJ7BI7GQTHxBawVat2q4qKFJvwfFPqJR6l00K4saJd-AleCiehBkn6QokeuuBXHJI4oPzzZ9n5htCnshSjy34oUymZc6Skgsmk0gxTDGlbpwq4VQYNpHNZvnhodxfIz-HXhgsqxx0YlDUZq7xjPwF4FKMEWDi1eITw6lRmF0dRmh0sNixX79AyNa83H4D__cp55vTg9dbrJ8qwDTArWVamihxETfOCJdnLlNlriFqybkoc6NijhEB3HTCsyyLueWOc1UKGyepdTIXsO4FcjFBZjEsFeT7p1kLlIAQ4OUpAzkZ9006XaseXJKBRQTFF4NliP40hCvv9q-EbLBzm9f_tx26Qa71HjWddCJwk6xZf4tcnVTLnlXE3ibfp6DI0DX3FcWRGM4aiu0s3viT9te3Hw2trXJUgQNNA30kxXaAir7DUipva8YpWntD557uhepTS3ti2oq-tVVXS-zppK5gQ9qPxw1V3tDp8eIoMLBQnDhXN3fI-3PZiLtk3c-9vUconvepHMI_0I-JiZ2UXGtw7qzQkbVajEg8oKHQPTs7DgmpixWvNCKoAAQVAUFFNCLPTr9ZdNwkZ769McCm6PVUU6wwMyLPB-CtHv97tftnr_aYXN462NstdrdnOw_IFY64D0dXG2S9XZ7Yh-SS_tweNctHQYIo-XDegPwN4OlT4g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQagceBZ1oYAPcAKriZ1skgOqVu2uqAqriofUW3D8CJVS77JJQdx66n_gr_Tn8EuYcZKuQKK3HsglhyQ-ON-8PDPfEPI8K9TQgB_KsrhIWVRwwbIokAxTTLEdxlJY6YdNJNNpeniYHayQ874XBssqe53oFbWeKTwj3wJciiECTGzZriziYHeyPf_KcIIUZlr7cRotRPbNj-8QvtWv93bhX7_gfDL-uPOGdRMGmALoNUxlOohswLXVwqaJTWSRKohgUi6KVMuQY3QANxXxJElCbrjlXBbChFFsbJYKWPcauZ5EYDaxbDDYuchgoDT4YC-NGcjMsGvYadv24MoYWEdQgiFYieBPo7j0dP9KznqbN7nzP-_WXXK787TpqBWNe2TFuPvk1qhcdGwj5gE5G4OCQ5fdlRRHZVijKba5OO1Oml-nP2taGWmpBMeaelpJim0CJf2AJVbOVIxT9AI0nTn6zlelGtoR1pb0vSnbGmNHR1UJG9J8Oa6pdJqOj-dHnpmF4iS6ql4nn65kIx6SVTdzZoNQPAeUKYSFoDcjHdos40qB02eECoxRYkDCHhm56ljbcXhIlS_5phFNOaAp92jKgwF5efHNvOUsufTtzR5Ceae_6nyJnwF51YNw-fjfqz26fLVn5CbgMH-7N91_TNY4ioA_0dokq83ixDwhN9S35qhePPXCRMnnq8bjbxu7XIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+rainfed+groundnut%E2%80%99s+leaf+area+index+using+Sentinel-2+based+on+Machine+Learning+Regression+Algorithms+and+Empirical+Models&rft.jtitle=Precision+agriculture&rft.au=Ekwe%2C+Michael+Chibuike&rft.au=Adeluyi%2C+Oluseun&rft.au=Verrelst%2C+Jochem&rft.au=Kross%2C+Angela&rft.date=2024-06-01&rft.pub=Springer+US&rft.issn=1385-2256&rft.eissn=1573-1618&rft.volume=25&rft.issue=3&rft.spage=1404&rft.epage=1428&rft_id=info:doi/10.1007%2Fs11119-024-10117-0&rft.externalDocID=10_1007_s11119_024_10117_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-2256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-2256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-2256&client=summon