A constant FPT approximation algorithm for hard-capacitated k-means
Hard-capacitated k -means (HCKM) is one of the fundamental problems remaining open in combinatorial optimization and engineering. In HCKM, one is required to partition a given n -point set into k disjoint clusters with known capacity so as to minimize the sum of within-cluster variances. It is known...
Uloženo v:
| Vydáno v: | Optimization and engineering Ročník 21; číslo 3; s. 709 - 722 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 1389-4420, 1573-2924 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Hard-capacitated
k
-means (HCKM) is one of the fundamental problems remaining open in combinatorial optimization and engineering. In HCKM, one is required to partition a given
n
-point set into
k
disjoint clusters with known capacity so as to minimize the sum of within-cluster variances. It is known to be at least APX-hard, and most of the work on it has been done from a meta heuristic or bi-criteria approximation perspective. To the best our knowledge, no constant approximation algorithm or existence proof of such an algorithm is known. As our main contribution, we propose an FPT(
k
) approximation algorithm with constant performance guarantee for HCKM in this paper. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1389-4420 1573-2924 |
| DOI: | 10.1007/s11081-020-09503-0 |