Weather Forecasting for Renewable Energy System: A Review

Energy crisis and climate change are the major concerns which has led to a significant growth in the renewable energy resources which includes mainly the solar and wind power generation. In smart grid, there is a increase in the penetration level of solar PV and wind power generation. The solar radi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of computational methods in engineering Jg. 29; H. 5; S. 2875 - 2891
Hauptverfasser: Meenal, R., Binu, D., Ramya, K. C., Michael, Prawin Angel, Vinoth Kumar, K., Rajasekaran, E., Sangeetha, B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.08.2022
Springer Nature B.V
Schlagworte:
ISSN:1134-3060, 1886-1784
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Energy crisis and climate change are the major concerns which has led to a significant growth in the renewable energy resources which includes mainly the solar and wind power generation. In smart grid, there is a increase in the penetration level of solar PV and wind power generation. The solar radiation received at the earth surface is greatly dependent on various atmospheric parameters. Forecasting of solar radiation and photovoltaic power is a major concern in terms of efficient integration of solar PV plants in the power grid. There are significant challenges in smart grid energy management due to the variability of large-scale renewable energy generation. Renewable energy forecasting is critical to reduce the uncertainty related to renewable energy generation for a wide range of planning, investment and decision-making purposes. As renewable energy sources are highly intermittent and variable, all the forecasting models available in the literature contain errors. This paper presents an overview of current and new development of weather forecasting such as solar and wind forecasting techniques for renewable energy system in smart grid. Many forecasting models such as physical models, statistical models, artificial intelligence based models, machine learning and deep learning based models were discussed. It is observed that, despite having no clear understanding on atmospheric physics, the artificial intelligence based methods such as machine learning and deep learning method produces reasonable weather forecasting results.
AbstractList Energy crisis and climate change are the major concerns which has led to a significant growth in the renewable energy resources which includes mainly the solar and wind power generation. In smart grid, there is a increase in the penetration level of solar PV and wind power generation. The solar radiation received at the earth surface is greatly dependent on various atmospheric parameters. Forecasting of solar radiation and photovoltaic power is a major concern in terms of efficient integration of solar PV plants in the power grid. There are significant challenges in smart grid energy management due to the variability of large-scale renewable energy generation. Renewable energy forecasting is critical to reduce the uncertainty related to renewable energy generation for a wide range of planning, investment and decision-making purposes. As renewable energy sources are highly intermittent and variable, all the forecasting models available in the literature contain errors. This paper presents an overview of current and new development of weather forecasting such as solar and wind forecasting techniques for renewable energy system in smart grid. Many forecasting models such as physical models, statistical models, artificial intelligence based models, machine learning and deep learning based models were discussed. It is observed that, despite having no clear understanding on atmospheric physics, the artificial intelligence based methods such as machine learning and deep learning method produces reasonable weather forecasting results.
Author Michael, Prawin Angel
Binu, D.
Meenal, R.
Vinoth Kumar, K.
Rajasekaran, E.
Sangeetha, B.
Ramya, K. C.
Author_xml – sequence: 1
  givenname: R.
  surname: Meenal
  fullname: Meenal, R.
  organization: Department of Electrical and Electronics Engineering, Karunya Institute of Technology and Sciences
– sequence: 2
  givenname: D.
  surname: Binu
  fullname: Binu, D.
  organization: Department of Electronics and Communications, Sri Ramakrishna Institute of Technology
– sequence: 3
  givenname: K. C.
  surname: Ramya
  fullname: Ramya, K. C.
  organization: Department of Electrical and Electronics Engineering, Sri Krishna College of Engineering and Technology
– sequence: 4
  givenname: Prawin Angel
  surname: Michael
  fullname: Michael, Prawin Angel
  organization: Department of Electrical and Electronics Engineering, Karunya Institute of Technology and Sciences
– sequence: 5
  givenname: K.
  surname: Vinoth Kumar
  fullname: Vinoth Kumar, K.
  organization: Department of Electrical and Electronics Engineering, New Horizon College of Engineering
– sequence: 6
  givenname: E.
  surname: Rajasekaran
  fullname: Rajasekaran, E.
  organization: Department of Science and Humanities, VSB Engineering College
– sequence: 7
  givenname: B.
  surname: Sangeetha
  fullname: Sangeetha, B.
  email: ssa_geetha@yahoo.com
  organization: Department of Electrical and Electronics Engineering, AVS Engineering College
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnlfztdnEWymtCgXBDzyGJJ3WLW22Jqml_97oCoKHHsIE5n1mhmeAer71gNAlwdcE4_omEiIZKTHNTwlVlewE9YmUoiS15L38J4yXDAt8hgYxrjCuuFK0j9QbmPQOoZi2AZyJqfHLYtGG4gk87I1dQzHxEJaH4vkQE2xui1FufTawP0enC7OOcPFbh-h1OnkZ35ezx7uH8WhWOkZUKp1cWDt3nOLKWQucuAoMdVZWjFviLDgp-Byk5QpDzRSeA62FE67CtcCOsCG66uZuQ_uxg5j0qt0Fn1dqKhSmrK4kzSnZpVxoYwyw0K5JJjWtT8E0a02w_halO1E6i9I_ojTLKP2HbkOzMeFwHGIdFHPYLyH8XXWE-gIESHxa
CitedBy_id crossref_primary_10_1016_j_jclepro_2022_135490
crossref_primary_10_3390_smartcities8020067
crossref_primary_10_1016_j_egyr_2024_01_011
crossref_primary_10_3390_s25134070
crossref_primary_10_3390_app122111064
crossref_primary_10_1016_j_enconman_2023_117762
crossref_primary_10_3390_en16248057
crossref_primary_10_1051_e3sconf_202561902003
crossref_primary_10_1051_e3sconf_202561902002
crossref_primary_10_3390_en18092149
crossref_primary_10_1016_j_jece_2022_109085
crossref_primary_10_32604_ee_2024_046644
crossref_primary_10_1016_j_knosys_2024_111556
crossref_primary_10_1016_j_applthermaleng_2025_127340
crossref_primary_10_1016_j_ref_2023_100529
crossref_primary_10_3390_atmos14111635
crossref_primary_10_3390_en17112730
crossref_primary_10_1016_j_cherd_2024_07_008
crossref_primary_10_1016_j_psep_2023_12_054
crossref_primary_10_1007_s10668_025_06386_y
crossref_primary_10_1016_j_jwpe_2023_104304
crossref_primary_10_1051_e3sconf_202561901001
crossref_primary_10_1016_j_rser_2025_115980
crossref_primary_10_1016_j_egyr_2023_12_031
crossref_primary_10_3390_rs15235597
crossref_primary_10_1109_ACCESS_2024_3420693
crossref_primary_10_1007_s42835_024_01943_3
crossref_primary_10_1016_j_asoc_2024_112055
crossref_primary_10_3390_rs15082076
crossref_primary_10_3390_en17102424
crossref_primary_10_1016_j_heliyon_2024_e26088
crossref_primary_10_29137_umagd_1476299
crossref_primary_10_1051_e3sconf_202561603011
crossref_primary_10_7717_peerj_cs_3001
crossref_primary_10_1051_e3sconf_202561603018
crossref_primary_10_1038_s41598_025_09366_4
crossref_primary_10_1016_j_ijhydene_2024_01_214
crossref_primary_10_1038_s41598_025_97109_w
crossref_primary_10_1051_e3sconf_202455201111
crossref_primary_10_3390_designs8010010
crossref_primary_10_1016_j_ref_2024_100615
crossref_primary_10_1016_j_scca_2025_100099
crossref_primary_10_1080_01431161_2024_2431184
crossref_primary_10_3389_fphy_2024_1439180
crossref_primary_10_1016_j_compag_2025_110027
crossref_primary_10_1007_s42452_025_06895_5
crossref_primary_10_3390_en17235965
crossref_primary_10_1007_s40899_024_01035_0
crossref_primary_10_3390_atmos16010082
crossref_primary_10_1051_e3sconf_202455201103
crossref_primary_10_1051_e3sconf_202455201105
crossref_primary_10_1051_e3sconf_202455201107
crossref_primary_10_1051_e3sconf_202561903004
crossref_primary_10_1051_e3sconf_202455201108
crossref_primary_10_1051_e3sconf_202561903003
crossref_primary_10_1007_s42835_023_01378_2
crossref_primary_10_1051_e3sconf_202561903002
crossref_primary_10_5194_wes_10_483_2025
crossref_primary_10_1016_j_engappai_2025_110295
crossref_primary_10_3390_pr13082516
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123756
Cites_doi 10.3390/en5051355
10.1016/j.energy.2019.05.230
10.3389/fceng.2021.665415
10.1016/j.renene.2020.05.150
10.1016/j.energy.2018.01.177
10.1175/MWR-D-20-0219.1
10.3390/en14020436
10.1016/j.trc.2020.01.010
10.1007/s00521-020-04867-x
10.3390/sym12111830
10.1080/15567036.2019.1649756
10.3390/en13246623
10.3390/app8081286
10.1016/j.procs.2017.09.045
10.1109/ACCESS.2019.2897028
10.1007/s11708-021-0722-7
10.1007/978-981-15-6876-3_25
10.1016/j.egyr.2019.05.007
10.1089/big.2020.0159
10.1016/j.renene.2020.11.089
10.1109/ACCESS.2021.3062205
10.25046/aj060140
10.1029/2019MS001705
10.1016/j.chaos.2020.110227
10.1088/1755-1315/168/1/012012
10.1016/S0951-8339(02)00053-9
10.1016/j.renene.2020.04.042
10.1109/NAPS.2010.5619586
10.1016/j.procs.2018.05.041
10.1023/A:1010933404324
10.1109/ICRERA.2017.8191206
10.1175/WAF-D-14-00006.1
10.1016/j.rser.2015.04.081
10.1177/0309524X19849846
10.1016/j.neucom.2015.02.078
10.1016/S0925-2312(01)00702-0
10.1109/ICISC.2018.8398960
10.4236/jpee.2014.24023
10.1016/j.rser.2008.02.002
10.1109/ACCESS.2020.3011060
10.1109/CESYS.2017.8321285
10.1016/j.renene.2016.12.095
10.1016/j.enconman.2019.111799
10.1155/2010/684742
10.20965/jaciii.2010.p0069
10.1155/2014/693205
10.3390/en11123493
10.1109/ICAIIC48513.2020.9065071
10.1007/s00521-017-3225-z
10.17485/ijst/2016/v9i46/101922
10.1038/nature14539
10.1109/TPWRS.2006.889078
10.1016/j.ifacol.2018.11.738
10.1016/j.apenergy.2009.08.038
10.1109/ICMLA.2018.0022
10.1007/978-1-4757-2440-0
10.1016/j.acags.2019.100002
10.11591/ijeecs.v9.i3.pp555-557
10.1260/0309-524X.38.2.121
10.20533/ijsed.2046.3707.2012.0007
10.1016/S0038-092X(99)00064-X
10.1109/IECON.2016.7793113
10.1016/j.egypro.2016.12.147
10.1109/ACCESS.2018.2883330
10.3390/en14020338
10.1051/matecconf/201823203013
10.1088/1742-6596/1142/1/012010
10.1016/j.solener.2010.02.006
10.1007/978-3-030-69717-4_13
10.1016/S1364-0321(01)00006-5
10.1155/2017/3418145
10.3390/su13042393
10.1109/PCT.2007.4538368
10.1016/j.egypro.2017.08.182
10.1016/j.rser.2013.06.042
10.1016/j.matpr.2021.04.491
10.1007/978-981-13-1882-5_3
10.3390/en12020215
10.1016/j.renene.2017.12.005
10.1016/j.solener.2010.08.011
10.1007/978-3-319-03756-1_40
10.1016/j.apenergy.2019.05.044
10.1016/j.pecs.2013.06.002
10.1016/j.renene.2015.07.004
10.3390/en14092601
10.1088/1742-6596/824/1/012038
10.1109/ICICT48043.2020.9112534
ContentType Journal Article
Copyright The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2021
The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2021.
Copyright_xml – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2021
– notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11831-021-09695-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1886-1784
EndPage 2891
ExternalDocumentID 10_1007_s11831_021_09695_3
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
K60
K6V
K6~
K7-
KDC
KOV
L6V
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JZLTJ
PHGZM
PHGZT
PQGLB
JQ2
ID FETCH-LOGICAL-c319t-c8fbbdc4205cbbe41c5ea2cb8534b1cbec864de8b490e7390de276c6c50760c13
IEDL.DBID RSV
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000746772600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1134-3060
IngestDate Thu Sep 18 00:00:53 EDT 2025
Tue Nov 18 21:19:39 EST 2025
Sat Nov 29 06:21:48 EST 2025
Fri Feb 21 02:45:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c8fbbdc4205cbbe41c5ea2cb8534b1cbec864de8b490e7390de276c6c50760c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2690237582
PQPubID 1486352
PageCount 17
ParticipantIDs proquest_journals_2690237582
crossref_citationtrail_10_1007_s11831_021_09695_3
crossref_primary_10_1007_s11831_021_09695_3
springer_journals_10_1007_s11831_021_09695_3
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle State of the Art Reviews
PublicationTitle Archives of computational methods in engineering
PublicationTitleAbbrev Arch Computat Methods Eng
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Breiman (CR74) 2001; 45
Zhang (CR12) 2003; 50
Jo, Jin, Yoon, Kim (CR34) 2021; 14
Sfetsos, Coonick (CR13) 2000; 68
Paoli, Voyant, Muselli, Nivet (CR26) 2010; 84
CR37
CR36
CR35
Wang, Lei, Zhang, Zhou, Peng (CR65) 2019; 198
CR31
CR30
Lee, Kim, Park, Kim, Kim (CR91) 2018; 6
More, Deo (CR16) 2003; 16
Brahma, Wadhvani (CR62) 2020; 12
Meenal, Selvakumar (CR20) 2019
Shukur, Lee (CR39) 2015; 72
Diagne, David, Lauret, Boland, Schmutz (CR51) 2013; 27
Meenal, Boazina, Selvakumar (CR8) 2016; 9
CR46
CR45
Wang, Mi, Su, Zhao (CR27) 2012; 5
CR44
Vapnik (CR75) 1995
Rajagukguk, Ramadhan, Lee (CR59) 2020; 13
Alzahrani, Shamsi, Dagli, Ferdowsi (CR63) 2017; 114
Veldkamp, Whan, Dirksen, Schmeits (CR89) 2021; 149
Filik, Filik (CR29) 2017; 107
Bogaerts, Masegosa, Angarita-Zapata, Onieva, Hellinckx (CR77) 2020; 112
Hinton, LeCun, Bengio (CR64) 2015; 521
CR54
CR52
Tian, Ma, Zhang, Zhan (CR90) 2018; 11
CR50
Sun, Zhao (CR69) 2020; 8
Qing, Niu (CR87) 2018; 148
Ferreira, Santos, Lucio (CR6) 2019; 5
Narvaez, Giraldo, Bressan, Pantoja (CR18) 2021; 167
Rahman, Shakeri, Tiong, Khatun, Amin, Pasupuleti, Hasan (CR100) 2021; 13
Jebli (CR66) 2021; 6
Voyant, Notton, Kalogirou, Nivet, Paoli, Motte, Fouilloy (CR5) 2017; 105
Wang, Yu, Zhang, Li, Zhen, Li (CR67) 2018; 8
CR60
Karasu, Altan, Sarac, Hacioglu (CR55) 2017; 2
Schicker, Papazek, Kann, Wang (CR99) 2017; 125
Ren, Suganthan, Srikanth (CR57) 2015; 50
Peiris, Jayasinghe, Rathnayake (CR33) 2021; 24
Abdel-Nasser, Mahmoud (CR70) 2019; 31
Zang, Liu, Sun, Cheng, Wei, Sun (CR94) 2020; 160
Chaouachi, Kamel, Nagasaka (CR58) 2010; 14
Swapna, Kp, Vinayakumar (CR79) 2018; 132
Mellit, Pavan (CR15) 2010; 84
Kalogirou (CR14) 2001; 5
CR73
CR71
Pang, Niu, O’Neill (CR82) 2020; 156
Gala, Fernández, Díaz, Dorronsoro (CR40) 2016; 176
Rozas-Larraondo, Inza, Lozano (CR25) 2014; 29
CR3
Lei, Shiyan, Chuanwen, Hongling, Yan (CR47) 2009; 13
De Freitas, Silva, Sakamoto (CR43) 2018; 8
Shastri, Singh, Kumar, Kour, Mansotra (CR78) 2020; 140
CR9
Chen (CR42) 2018; 51
Santamaría-Bonfil, Reyes-Ballesteros, Gershenson (CR53) 2016; 85
CR88
CR86
CR85
Alkabbani, Ahmadian, Zhu, Elkamel (CR56) 2021; 3
CR84
Ahn, Park (CR80) 2021; 14
CR83
Meenal (CR23) 2018; 1142
Livieris, Pintelas, Pintelas (CR76) 2020; 32
Weyn, Durran, Caruana (CR61) 2019; 11
Kim, Cho (CR93) 2019; 182
Meenal, Selvakumar (CR21) 2018; 121
Kulkarni, Mukhopadhyay (CR68) 2018; 9
Singla, Duhan, Saroha (CR49) 2021
Lee, Kim (CR81) 2019; 12
Chang (CR1) 2014; 2
CR19
Hong, Rioflorido (CR41) 2019; 250
CR17
CR11
Sharma, Singh (CR2) 2018; 8
CR97
CR96
CR95
Boubaker, Benghanem, Mellit, Lefza, Kahouli, Kolsi (CR24) 2021; 9
Roy, Vinothini (CR28) 2018; 5
Sideratos, Hatziargyriou (CR10) 2007; 22
Ehsan, Begum, Ilham, Khan (CR22) 2019; 1
Donadio, Fang, Porté-Agel (CR101) 2021; 14
Blanchard, Samanta (CR32) 2020; 44
Ramesh, Arulmozhivarman (CR98) 2014; 38
Meenal, Selvakumar, Rajasekaran (CR7) 2019; 15
Inman, Pedro, Coimbra (CR48) 2013; 39
Kwon (CR72) 2010; 87
Torres, Hadjout, Sebaa, Martınez-Álvarez, Troncoso (CR4) 2020; 9
Takilalte, Harrouni, Mora (CR38) 2019
Qin, Yu, Zou, Yong, Zhao, Zhang (CR92) 2019; 7
I Schicker (9695_CR99) 2017; 125
YY Hong (9695_CR41) 2019; 250
A More (9695_CR16) 2003; 16
M Lei (9695_CR47) 2009; 13
S Veldkamp (9695_CR89) 2021; 149
A Takilalte (9695_CR38) 2019
SC Jo (9695_CR34) 2021; 14
RA Rajagukguk (9695_CR59) 2020; 13
9695_CR52
B Brahma (9695_CR62) 2020; 12
9695_CR50
HK Ahn (9695_CR80) 2021; 14
9695_CR54
D Qin (9695_CR92) 2019; 7
I Jebli (9695_CR66) 2021; 6
9695_CR60
M Abdel-Nasser (9695_CR70) 2019; 31
Y Gala (9695_CR40) 2016; 176
Y Ren (9695_CR57) 2015; 50
R Meenal (9695_CR7) 2019; 15
G Sideratos (9695_CR10) 2007; 22
X Qing (9695_CR87) 2018; 148
9695_CR3
SA Kalogirou (9695_CR14) 2001; 5
TY Kim (9695_CR93) 2019; 182
9695_CR36
9695_CR37
BN Ramesh (9695_CR98) 2014; 38
T Blanchard (9695_CR32) 2020; 44
9695_CR30
9695_CR31
G Hinton (9695_CR64) 2015; 521
M Ferreira (9695_CR6) 2019; 5
9695_CR35
AT Peiris (9695_CR33) 2021; 24
H Alkabbani (9695_CR56) 2021; 3
C Tian (9695_CR90) 2018; 11
H Wang (9695_CR65) 2019; 198
9695_CR9
SD Kwon (9695_CR72) 2010; 87
L Donadio (9695_CR101) 2021; 14
Q Chen (9695_CR42) 2018; 51
9695_CR45
BMA Ehsan (9695_CR22) 2019; 1
9695_CR46
9695_CR44
R Meenal (9695_CR8) 2016; 9
IE Livieris (9695_CR76) 2020; 32
Z Sun (9695_CR69) 2020; 8
R Roy (9695_CR28) 2018; 5
WY Chang (9695_CR1) 2014; 2
S Karasu (9695_CR55) 2017; 2
A Chaouachi (9695_CR58) 2010; 14
F Wang (9695_CR67) 2018; 8
H Zang (9695_CR94) 2020; 160
9695_CR17
ÜB Filik (9695_CR29) 2017; 107
T Bogaerts (9695_CR77) 2020; 112
9695_CR19
9695_CR96
9695_CR97
9695_CR95
9695_CR11
A Alzahrani (9695_CR63) 2017; 114
L Breiman (9695_CR74) 2001; 45
C Voyant (9695_CR5) 2017; 105
NC De Freitas (9695_CR43) 2018; 8
D Lee (9695_CR81) 2019; 12
MM Rahman (9695_CR100) 2021; 13
OB Shukur (9695_CR39) 2015; 72
P Singla (9695_CR49) 2021
R Meenal (9695_CR23) 2018; 1142
A Kulkarni (9695_CR68) 2018; 9
Z Pang (9695_CR82) 2020; 156
G Narvaez (9695_CR18) 2021; 167
P Rozas-Larraondo (9695_CR25) 2014; 29
J Torres (9695_CR4) 2020; 9
A Sfetsos (9695_CR13) 2000; 68
9695_CR71
M Diagne (9695_CR51) 2013; 27
S Shastri (9695_CR78) 2020; 140
S Boubaker (9695_CR24) 2021; 9
C Paoli (9695_CR26) 2010; 84
R Meenal (9695_CR21) 2018; 121
W Lee (9695_CR91) 2018; 6
9695_CR73
V Vapnik (9695_CR75) 1995
R Sharma (9695_CR2) 2018; 8
R Meenal (9695_CR20) 2019
A Mellit (9695_CR15) 2010; 84
G Santamaría-Bonfil (9695_CR53) 2016; 85
GP Zhang (9695_CR12) 2003; 50
F Wang (9695_CR27) 2012; 5
9695_CR85
9695_CR86
9695_CR83
9695_CR84
G Swapna (9695_CR79) 2018; 132
RH Inman (9695_CR48) 2013; 39
JA Weyn (9695_CR61) 2019; 11
9695_CR88
References_xml – volume: 24
  start-page: 2021
  year: 2021
  ident: CR33
  article-title: Forecasting wind power generation using artificial neural Network: “Pawan Danawi”—a case study from Sri Lanka
  publication-title: J Electr Comput Eng
– ident: CR45
– volume: 5
  start-page: 1355
  issue: 5
  year: 2012
  end-page: 1370
  ident: CR27
  article-title: Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters
  publication-title: Energies
  doi: 10.3390/en5051355
– volume: 182
  start-page: 72
  year: 2019
  end-page: 81
  ident: CR93
  article-title: Predicting residential energy consumption using CNN-LSTM neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.230
– ident: CR97
– volume: 16
  start-page: 35
  issue: 1
  year: 2003
  end-page: 49
  ident: CR16
  article-title: Forecasting wind with neural networks
  publication-title: Mar Struct
– volume: 27
  start-page: 65
  year: 2013
  end-page: 76
  ident: CR51
  article-title: Review of solar irradiance forecasting methods and a proposition for small-scale insular grids
  publication-title: Renew Sustain Energy Rev
– volume: 5
  start-page: 1172
  year: 2019
  end-page: 1184
  ident: CR6
  article-title: Short-term forecast of wind speed through mathematical models
  publication-title: Energy Rep
– volume: 12
  start-page: 215
  issue: 2
  year: 2019
  ident: CR81
  article-title: Recurrent neural network-based hourly prediction of photovoltaic power output using meteorological information
  publication-title: Energies
– ident: CR54
– volume: 84
  start-page: 807
  issue: 5
  year: 2010
  end-page: 821
  ident: CR15
  article-title: A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy
  publication-title: Solar energy
– volume: 39
  start-page: 535
  issue: 6
  year: 2013
  end-page: 576
  ident: CR48
  article-title: Solar forecasting methods for renewable energy integration
  publication-title: Prog Energy Combust Sci
– volume: 125
  start-page: 199
  year: 2017
  end-page: 206
  ident: CR99
  article-title: Short-range wind speed predictions for complex terrain using an interval-artificial neural network
  publication-title: Energy Proc
– volume: 250
  start-page: 530
  year: 2019
  end-page: 539
  ident: CR41
  article-title: A hybrid deep learning-based neural network for 24-h ahead wind power forecasting
  publication-title: Appl Energy
– volume: 3
  start-page: 14
  year: 2021
  ident: CR56
  article-title: Machine learning and metaheuristic methods for renewable power forecasting: a recent review
  publication-title: Front Chem Eng
  doi: 10.3389/fceng.2021.665415
– ident: CR71
– ident: CR19
– volume: 156
  start-page: 279
  year: 2020
  end-page: 289
  ident: CR82
  article-title: Solar radiation prediction using recurrent neural network and artificial neural network: a case study with comparisons
  publication-title: Renew Energy
– start-page: 27
  year: 2019
  end-page: 36
  ident: CR20
  article-title: Assessment of solar energy potential of smart cities of tamil nadu using machine learning with big data
  publication-title: Advances in big data and cloud computing
– volume: 85
  start-page: 790
  year: 2016
  end-page: 809
  ident: CR53
  article-title: Wind speed forecasting for wind farms: a method based on support vector regression
  publication-title: Renew Energy
– volume: 13
  start-page: 915
  issue: 4
  year: 2009
  end-page: 920
  ident: CR47
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
– ident: CR88
– ident: CR11
– volume: 9
  start-page: 3
  issue: 1
  year: 2020
  end-page: 21
  ident: CR4
  article-title: Deep learning for time series forecasting: a survey
  publication-title: Big Data
– ident: CR60
– ident: CR36
– ident: CR85
– volume: 9
  start-page: 555
  issue: 3
  year: 2018
  end-page: 557
  ident: CR68
  article-title: Internet of things based weather forecast monitoring system
  publication-title: Indones J Electr Eng Comput Sci
– volume: 9
  start-page: 36719
  year: 2021
  end-page: 36729
  ident: CR24
  article-title: Deep neural networks for predicting solar radiation at Hail Region, Saudi Arabia
  publication-title: IEEE Access
– volume: 160
  start-page: 26
  year: 2020
  end-page: 41
  ident: CR94
  article-title: Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.05.150
– year: 1995
  ident: CR75
  publication-title: The nature of statistical learning theory
– volume: 1142
  start-page: 012010
  year: 2018
  ident: CR23
  article-title: Solar mapping of India using support vector machine
  publication-title: J Phys Conf Ser
– volume: 5
  start-page: 373
  issue: 4
  year: 2001
  end-page: 401
  ident: CR14
  article-title: Artificial neural networks in renewable energy systems applications: a review
  publication-title: Renew Sustain Energy Rev
– ident: CR30
– volume: 87
  start-page: 856
  issue: 3
  year: 2010
  end-page: 865
  ident: CR72
  article-title: Uncertainty analysis of wind energy potential assessment
  publication-title: Appl Energy
– volume: 15
  start-page: 54
  issue: 1
  year: 2019
  end-page: 59
  ident: CR7
  article-title: Review on mathematical models for the prediction of Solar radiation
  publication-title: Indones J Electr Eng Comput Sci
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR74
  article-title: Random forests
  publication-title: Mach Learn
– volume: 14
  start-page: 338
  issue: 2
  year: 2021
  ident: CR101
  article-title: Numerical weather prediction and artificial neural network coupling for wind energy forecast
  publication-title: Energies
– ident: CR86
– volume: 121
  start-page: 324
  year: 2018
  end-page: 343
  ident: CR21
  article-title: Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters
  publication-title: Renew Energy
– volume: 148
  start-page: 461
  year: 2018
  end-page: 468
  ident: CR87
  article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.177
– ident: CR44
– volume: 11
  start-page: 3493
  issue: 12
  year: 2018
  ident: CR90
  article-title: A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network
  publication-title: Energies
– ident: CR3
– volume: 149
  start-page: 1141
  issue: 4
  year: 2021
  end-page: 1152
  ident: CR89
  article-title: Statistical postprocessing of wind speed forecasts using convolutional neural networks
  publication-title: Mon Weather Rev
  doi: 10.1175/MWR-D-20-0219.1
– volume: 84
  start-page: 2146
  issue: 12
  year: 2010
  end-page: 2160
  ident: CR26
  article-title: Forecasting of preprocessed daily solar radiation time series using neural networks
  publication-title: Sol Energy
– volume: 51
  start-page: 414
  issue: 28
  year: 2018
  end-page: 419
  ident: CR42
  article-title: Wind power forecasting
  publication-title: IFAC-Papers
– volume: 8
  start-page: 1
  year: 2018
  end-page: 9
  ident: CR2
  article-title: A review of wind power and wind speed forecasting
  publication-title: Rahul Sharma J Eng Res Appl
– ident: CR52
– volume: 105
  start-page: 569
  year: 2017
  end-page: 582
  ident: CR5
  article-title: Machine learning methods for solar radiation forecasting: a review
  publication-title: Renew Energy
– volume: 11
  start-page: 2680
  issue: 8
  year: 2019
  end-page: 2693
  ident: CR61
  article-title: Can machines learn to predict weather? Using deep learning to predict gridded 500-hPa geopotential height from historical weather data
  publication-title: J Adv Model Earth Systems
– ident: CR83
– volume: 140
  start-page: 110227
  year: 2020
  ident: CR78
  article-title: Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study
  publication-title: Chaos Solitons Fract
– volume: 14
  start-page: 436
  issue: 2
  year: 2021
  ident: CR80
  article-title: Deep RNN-based photovoltaic power short-term forecast using power IoT sensors
  publication-title: Energies
  doi: 10.3390/en14020436
– volume: 6
  start-page: 73068
  year: 2018
  end-page: 73080
  ident: CR91
  article-title: Forecasting solar power using long-short term memory and convolutional neural networks
  publication-title: IEEE Access
– volume: 2
  start-page: 161
  issue: 4
  year: 2014
  ident: CR1
  article-title: A literature review of wind forecasting methods
  publication-title: J Power Energy Eng
– volume: 8
  start-page: 134422
  year: 2020
  end-page: 134434
  ident: CR69
  article-title: Short-term wind power forecasting based on VMD decomposition, ConvLSTM networks and error analysis
  publication-title: IEEE Access
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR64
  article-title: Deep learning
  publication-title: Nature
– volume: 1
  start-page: 100002
  year: 2019
  ident: CR22
  article-title: Advanced wind speed prediction using convective weather variables through machine learning application
  publication-title: Appl Comput Geosci
– volume: 112
  start-page: 62
  year: 2020
  end-page: 77
  ident: CR77
  article-title: A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/j.trc.2020.01.010
– volume: 50
  start-page: 82
  year: 2015
  end-page: 91
  ident: CR57
  article-title: Ensemble methods for wind and solar power forecasting—a state-of-the-art review
  publication-title: Renew Sustain Energy Rev
– ident: CR35
– volume: 14
  start-page: 2601
  issue: 9
  year: 2021
  ident: CR34
  article-title: Methods for integrating extraterrestrial radiation into neural network models for day-ahead PV generation forecasting
  publication-title: Energies
– ident: CR84
– volume: 9
  start-page: 1
  issue: 46
  year: 2016
  end-page: 6
  ident: CR8
  article-title: Temperature based radiation models for the estimation of global solar radiation at horizontal surface in India
  publication-title: Indian J Sci Technol
– volume: 107
  start-page: 264
  year: 2017
  end-page: 269
  ident: CR29
  article-title: Wind speed prediction using artificial neural networks based on multiple local measurements in Eskisehir
  publication-title: Energy Proc
– volume: 32
  start-page: 17351
  year: 2020
  end-page: 17360
  ident: CR76
  article-title: A CNN–LSTM model for gold price time-series forecasting
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04867-x
– ident: CR46
– ident: CR96
– ident: CR50
– volume: 50
  start-page: 159
  year: 2003
  end-page: 175
  ident: CR12
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
– ident: CR9
– volume: 12
  start-page: 1830
  issue: 11
  year: 2020
  ident: CR62
  article-title: Solar irradiance forecasting based on deep learning methodologies and multi-site data
  publication-title: Symmetry
  doi: 10.3390/sym12111830
– volume: 5
  start-page: 92
  issue: 2
  year: 2018
  end-page: 101
  ident: CR28
  article-title: Comparative analysis between wind and solar forecasting methods using artificial neural networks and fuzzy logic
  publication-title: J Sci Eng Technol
– volume: 13
  start-page: 2393
  issue: 4
  year: 2021
  ident: CR100
  article-title: Prospective methodologies in hybrid renewable energy systems for energy prediction using artificial neural networks
  publication-title: Sustainability
– ident: CR95
– volume: 68
  start-page: 169
  issue: 2
  year: 2000
  end-page: 178
  ident: CR13
  article-title: Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques
  publication-title: Sol Energy
– year: 2019
  ident: CR38
  article-title: Forecasting global solar irradiance for various resolutions using time series models-case study: Algeria
  publication-title: Energy Sources Part A Recov Utiliz Environ Effects
  doi: 10.1080/15567036.2019.1649756
– volume: 14
  start-page: 69
  issue: 1
  year: 2010
  end-page: 75
  ident: CR58
  article-title: Neural network ensemble-based solar power generation short-term forecasting
  publication-title: J Adv Comput Intell Intell Inform
– ident: CR37
– volume: 44
  start-page: 33
  issue: 1
  year: 2020
  end-page: 48
  ident: CR32
  article-title: Wind speed forecasting using neural networks
  publication-title: Wind Eng
– volume: 13
  start-page: 6623
  issue: 24
  year: 2020
  ident: CR59
  article-title: A review on deep learning models for forecasting time series data of solar irradiance and photovoltaic power
  publication-title: Energies
  doi: 10.3390/en13246623
– volume: 8
  start-page: 1286
  issue: 8
  year: 2018
  ident: CR67
  article-title: Wavelet decomposition and convolutional LSTM networks based improved deep learning model for solar irradiance forecasting
  publication-title: Appl Sci
  doi: 10.3390/app8081286
– volume: 8
  start-page: 4
  year: 2018
  end-page: 9
  ident: CR43
  article-title: Wind speed forecasting: a review
  publication-title: Int J Eng Res Appl
– volume: 114
  start-page: 304
  year: 2017
  end-page: 313
  ident: CR63
  article-title: Solar irradiance forecasting using deep neural networks
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2017.09.045
– volume: 38
  start-page: 121
  issue: 2
  year: 2014
  end-page: 128
  ident: CR98
  article-title: Dynamic neural network based very short-term wind speed forecasting
  publication-title: Wind Eng
– volume: 176
  start-page: 48
  year: 2016
  end-page: 59
  ident: CR40
  article-title: Hybrid machine learning forecasting of solar radiation values
  publication-title: Neurocomputing
– volume: 6
  start-page: 349
  issue: 1
  year: 2021
  end-page: 355
  ident: CR66
  article-title: Deep learning based models for solar energy prediction
  publication-title: Adv Sci Technol Eng Syst J
– ident: CR73
– volume: 198
  start-page: 111799
  year: 2019
  ident: CR65
  article-title: A review of deep learning for renewable energy forecasting
  publication-title: Energy Convers Manag
– volume: 132
  start-page: 1253
  year: 2018
  end-page: 1262
  ident: CR79
  article-title: Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals
  publication-title: Proc Comput Sci
– ident: CR17
– ident: CR31
– volume: 167
  start-page: 333
  year: 2021
  end-page: 342
  ident: CR18
  article-title: Machine learning for site-adaptation and solar radiation forecasting
  publication-title: Renew Energy
– volume: 2
  start-page: 16
  issue: 1
  year: 2017
  end-page: 20
  ident: CR55
  article-title: Prediction of solar radiation based on machine learning methods
  publication-title: J Cogn Syst
– volume: 72
  start-page: 89
  issue: 5
  year: 2015
  ident: CR39
  article-title: Daily wind speed forecasting through hybrid AR-ANN and AR-KF models
  publication-title: J Teknol
– volume: 29
  start-page: 1332
  issue: 6
  year: 2014
  end-page: 1342
  ident: CR25
  article-title: A method for wind speed forecasting in airports based on nonparametric regression
  publication-title: Weather Forecast
– volume: 7
  start-page: 20050
  year: 2019
  end-page: 20059
  ident: CR92
  article-title: A novel combined prediction scheme based on CNN and LSTM for urban PM 2.5 concentration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897028
– year: 2021
  ident: CR49
  article-title: A comprehensive review and analysis of solar forecasting techniques
  publication-title: Front Energy
  doi: 10.1007/s11708-021-0722-7
– volume: 22
  start-page: 258
  issue: 1
  year: 2007
  end-page: 265
  ident: CR10
  article-title: An advanced statistical method for wind power forecasting
  publication-title: IEEE Trans Power Syst
– volume: 31
  start-page: 2727
  issue: 7
  year: 2019
  end-page: 2740
  ident: CR70
  article-title: Accurate photovoltaic power forecasting models using deep LSTM–RNN
  publication-title: Neural Comput Appl
– volume: 8
  start-page: 4
  year: 2018
  ident: 9695_CR43
  publication-title: Int J Eng Res Appl
– ident: 9695_CR54
  doi: 10.1007/978-981-15-6876-3_25
– volume: 5
  start-page: 1172
  year: 2019
  ident: 9695_CR6
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2019.05.007
– volume: 9
  start-page: 3
  issue: 1
  year: 2020
  ident: 9695_CR4
  publication-title: Big Data
  doi: 10.1089/big.2020.0159
– volume: 167
  start-page: 333
  year: 2021
  ident: 9695_CR18
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.11.089
– volume: 9
  start-page: 36719
  year: 2021
  ident: 9695_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3062205
– volume: 6
  start-page: 349
  issue: 1
  year: 2021
  ident: 9695_CR66
  publication-title: Adv Sci Technol Eng Syst J
  doi: 10.25046/aj060140
– volume: 12
  start-page: 1830
  issue: 11
  year: 2020
  ident: 9695_CR62
  publication-title: Symmetry
  doi: 10.3390/sym12111830
– volume: 11
  start-page: 2680
  issue: 8
  year: 2019
  ident: 9695_CR61
  publication-title: J Adv Model Earth Systems
  doi: 10.1029/2019MS001705
– volume: 140
  start-page: 110227
  year: 2020
  ident: 9695_CR78
  publication-title: Chaos Solitons Fract
  doi: 10.1016/j.chaos.2020.110227
– volume: 114
  start-page: 304
  year: 2017
  ident: 9695_CR63
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2017.09.045
– volume: 3
  start-page: 14
  year: 2021
  ident: 9695_CR56
  publication-title: Front Chem Eng
  doi: 10.3389/fceng.2021.665415
– ident: 9695_CR97
  doi: 10.1088/1755-1315/168/1/012012
– volume: 16
  start-page: 35
  issue: 1
  year: 2003
  ident: 9695_CR16
  publication-title: Mar Struct
  doi: 10.1016/S0951-8339(02)00053-9
– volume: 156
  start-page: 279
  year: 2020
  ident: 9695_CR82
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.04.042
– ident: 9695_CR45
  doi: 10.1109/NAPS.2010.5619586
– volume: 2
  start-page: 16
  issue: 1
  year: 2017
  ident: 9695_CR55
  publication-title: J Cogn Syst
– volume: 132
  start-page: 1253
  year: 2018
  ident: 9695_CR79
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2018.05.041
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 9695_CR74
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: 9695_CR83
  doi: 10.1109/ICRERA.2017.8191206
– volume: 29
  start-page: 1332
  issue: 6
  year: 2014
  ident: 9695_CR25
  publication-title: Weather Forecast
  doi: 10.1175/WAF-D-14-00006.1
– volume: 50
  start-page: 82
  year: 2015
  ident: 9695_CR57
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.04.081
– volume: 13
  start-page: 6623
  issue: 24
  year: 2020
  ident: 9695_CR59
  publication-title: Energies
  doi: 10.3390/en13246623
– volume: 44
  start-page: 33
  issue: 1
  year: 2020
  ident: 9695_CR32
  publication-title: Wind Eng
  doi: 10.1177/0309524X19849846
– volume: 176
  start-page: 48
  year: 2016
  ident: 9695_CR40
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.078
– volume: 50
  start-page: 159
  year: 2003
  ident: 9695_CR12
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
– ident: 9695_CR95
  doi: 10.1109/ICISC.2018.8398960
– ident: 9695_CR9
– volume: 32
  start-page: 17351
  year: 2020
  ident: 9695_CR76
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04867-x
– volume: 2
  start-page: 161
  issue: 4
  year: 2014
  ident: 9695_CR1
  publication-title: J Power Energy Eng
  doi: 10.4236/jpee.2014.24023
– volume: 148
  start-page: 461
  year: 2018
  ident: 9695_CR87
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.177
– volume: 13
  start-page: 915
  issue: 4
  year: 2009
  ident: 9695_CR47
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2008.02.002
– volume: 8
  start-page: 134422
  year: 2020
  ident: 9695_CR69
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011060
– ident: 9695_CR31
  doi: 10.1109/CESYS.2017.8321285
– volume: 112
  start-page: 62
  year: 2020
  ident: 9695_CR77
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/j.trc.2020.01.010
– ident: 9695_CR17
– ident: 9695_CR11
– volume: 72
  start-page: 89
  issue: 5
  year: 2015
  ident: 9695_CR39
  publication-title: J Teknol
– volume: 105
  start-page: 569
  year: 2017
  ident: 9695_CR5
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.12.095
– volume: 8
  start-page: 1286
  issue: 8
  year: 2018
  ident: 9695_CR67
  publication-title: Appl Sci
  doi: 10.3390/app8081286
– volume: 198
  start-page: 111799
  year: 2019
  ident: 9695_CR65
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.111799
– ident: 9695_CR73
  doi: 10.1155/2010/684742
– volume: 14
  start-page: 69
  issue: 1
  year: 2010
  ident: 9695_CR58
  publication-title: J Adv Comput Intell Intell Inform
  doi: 10.20965/jaciii.2010.p0069
– ident: 9695_CR37
  doi: 10.1155/2014/693205
– volume: 11
  start-page: 3493
  issue: 12
  year: 2018
  ident: 9695_CR90
  publication-title: Energies
  doi: 10.3390/en11123493
– volume: 182
  start-page: 72
  year: 2019
  ident: 9695_CR93
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.230
– volume: 14
  start-page: 436
  issue: 2
  year: 2021
  ident: 9695_CR80
  publication-title: Energies
  doi: 10.3390/en14020436
– volume: 8
  start-page: 1
  year: 2018
  ident: 9695_CR2
  publication-title: Rahul Sharma J Eng Res Appl
– ident: 9695_CR86
  doi: 10.1109/ICAIIC48513.2020.9065071
– volume: 31
  start-page: 2727
  issue: 7
  year: 2019
  ident: 9695_CR70
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3225-z
– volume: 9
  start-page: 1
  issue: 46
  year: 2016
  ident: 9695_CR8
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2016/v9i46/101922
– ident: 9695_CR60
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 9695_CR64
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 22
  start-page: 258
  issue: 1
  year: 2007
  ident: 9695_CR10
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2006.889078
– volume: 51
  start-page: 414
  issue: 28
  year: 2018
  ident: 9695_CR42
  publication-title: IFAC-Papers
  doi: 10.1016/j.ifacol.2018.11.738
– volume: 87
  start-page: 856
  issue: 3
  year: 2010
  ident: 9695_CR72
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.08.038
– ident: 9695_CR3
  doi: 10.1109/NAPS.2010.5619586
– ident: 9695_CR88
  doi: 10.1109/ICMLA.2018.0022
– volume-title: The nature of statistical learning theory
  year: 1995
  ident: 9695_CR75
  doi: 10.1007/978-1-4757-2440-0
– volume: 1
  start-page: 100002
  year: 2019
  ident: 9695_CR22
  publication-title: Appl Comput Geosci
  doi: 10.1016/j.acags.2019.100002
– volume: 149
  start-page: 1141
  issue: 4
  year: 2021
  ident: 9695_CR89
  publication-title: Mon Weather Rev
  doi: 10.1175/MWR-D-20-0219.1
– volume: 7
  start-page: 20050
  year: 2019
  ident: 9695_CR92
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897028
– volume: 9
  start-page: 555
  issue: 3
  year: 2018
  ident: 9695_CR68
  publication-title: Indones J Electr Eng Comput Sci
  doi: 10.11591/ijeecs.v9.i3.pp555-557
– volume: 38
  start-page: 121
  issue: 2
  year: 2014
  ident: 9695_CR98
  publication-title: Wind Eng
  doi: 10.1260/0309-524X.38.2.121
– ident: 9695_CR35
  doi: 10.20533/ijsed.2046.3707.2012.0007
– year: 2019
  ident: 9695_CR38
  publication-title: Energy Sources Part A Recov Utiliz Environ Effects
  doi: 10.1080/15567036.2019.1649756
– volume: 68
  start-page: 169
  issue: 2
  year: 2000
  ident: 9695_CR13
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(99)00064-X
– ident: 9695_CR46
  doi: 10.1109/IECON.2016.7793113
– volume: 107
  start-page: 264
  year: 2017
  ident: 9695_CR29
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2016.12.147
– volume: 6
  start-page: 73068
  year: 2018
  ident: 9695_CR91
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2883330
– volume: 14
  start-page: 338
  issue: 2
  year: 2021
  ident: 9695_CR101
  publication-title: Energies
  doi: 10.3390/en14020338
– ident: 9695_CR36
  doi: 10.1051/matecconf/201823203013
– volume: 5
  start-page: 92
  issue: 2
  year: 2018
  ident: 9695_CR28
  publication-title: J Sci Eng Technol
– year: 2021
  ident: 9695_CR49
  publication-title: Front Energy
  doi: 10.1007/s11708-021-0722-7
– volume: 1142
  start-page: 012010
  year: 2018
  ident: 9695_CR23
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1142/1/012010
– volume: 84
  start-page: 807
  issue: 5
  year: 2010
  ident: 9695_CR15
  publication-title: Solar energy
  doi: 10.1016/j.solener.2010.02.006
– ident: 9695_CR71
  doi: 10.1007/978-3-030-69717-4_13
– volume: 5
  start-page: 373
  issue: 4
  year: 2001
  ident: 9695_CR14
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/S1364-0321(01)00006-5
– ident: 9695_CR96
  doi: 10.1155/2017/3418145
– volume: 13
  start-page: 2393
  issue: 4
  year: 2021
  ident: 9695_CR100
  publication-title: Sustainability
  doi: 10.3390/su13042393
– volume: 24
  start-page: 2021
  year: 2021
  ident: 9695_CR33
  publication-title: J Electr Comput Eng
– ident: 9695_CR44
  doi: 10.1109/PCT.2007.4538368
– ident: 9695_CR30
– volume: 125
  start-page: 199
  year: 2017
  ident: 9695_CR99
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2017.08.182
– volume: 27
  start-page: 65
  year: 2013
  ident: 9695_CR51
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.06.042
– volume: 15
  start-page: 54
  issue: 1
  year: 2019
  ident: 9695_CR7
  publication-title: Indones J Electr Eng Comput Sci
– ident: 9695_CR50
  doi: 10.1016/j.matpr.2021.04.491
– volume: 160
  start-page: 26
  year: 2020
  ident: 9695_CR94
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.05.150
– start-page: 27
  volume-title: Advances in big data and cloud computing
  year: 2019
  ident: 9695_CR20
  doi: 10.1007/978-981-13-1882-5_3
– volume: 12
  start-page: 215
  issue: 2
  year: 2019
  ident: 9695_CR81
  publication-title: Energies
  doi: 10.3390/en12020215
– volume: 121
  start-page: 324
  year: 2018
  ident: 9695_CR21
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.12.005
– volume: 84
  start-page: 2146
  issue: 12
  year: 2010
  ident: 9695_CR26
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2010.08.011
– ident: 9695_CR85
  doi: 10.1007/978-3-319-03756-1_40
– volume: 5
  start-page: 1355
  issue: 5
  year: 2012
  ident: 9695_CR27
  publication-title: Energies
  doi: 10.3390/en5051355
– ident: 9695_CR52
– volume: 250
  start-page: 530
  year: 2019
  ident: 9695_CR41
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.05.044
– volume: 39
  start-page: 535
  issue: 6
  year: 2013
  ident: 9695_CR48
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2013.06.002
– volume: 85
  start-page: 790
  year: 2016
  ident: 9695_CR53
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.07.004
– volume: 14
  start-page: 2601
  issue: 9
  year: 2021
  ident: 9695_CR34
  publication-title: Energies
  doi: 10.3390/en14092601
– ident: 9695_CR84
  doi: 10.1088/1742-6596/824/1/012038
– ident: 9695_CR19
  doi: 10.1109/ICICT48043.2020.9112534
SSID ssj0054992
Score 2.6321409
Snippet Energy crisis and climate change are the major concerns which has led to a significant growth in the renewable energy resources which includes mainly the solar...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2875
SubjectTerms Alternative energy sources
Artificial intelligence
Atmospheric models
Atmospheric physics
Decision making
Deep learning
Earth surface
Energy management
Engineering
Forecasting techniques
Machine learning
Mathematical and Computational Engineering
Original Paper
Photovoltaic cells
Radiation
Renewable energy sources
Renewable resources
Smart grid
Solar radiation
Statistical models
Weather forecasting
Wind power
Wind power generation
Title Weather Forecasting for Renewable Energy System: A Review
URI https://link.springer.com/article/10.1007/s11831-021-09695-3
https://www.proquest.com/docview/2690237582
Volume 29
WOSCitedRecordID wos000746772600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9KAHp1NxOiUHbxpok6ZtvA3Z8CBD_NytNK8tCDJlnfrv-9KmTkUFPfTUJJT3_fre7wXgMJWxURo97kUm4EFhkOsQBSffVmBqHb6ugMLn0WgUj8f6woHCyqbbvSlJVpZ6DnYj6aPUV9CjQ624XIQlZafN2Bz96raxvzbhqWqcvrT__EPPQWW-P-OzO5rHmF_KopW3Gbb_953rsOaiS9avxWEDFvJJB9ou0mROj8sOrH4YQ7gJ-q6OA5m9pxPT0nZCMwpm2SUZwleLrWKDCiLI6vnmJ6zP6prCFtwMB9enZ9xdqcCRdG3GMS6MyTAQnkJj8sBHlacCDTntwPhIDI3DIMtjE2gvj6T2slxEIYaobAUPfbkNrcnjJN8BlulMFVEhyFpmQSQL48k0zCidEWlISZTqgt9QNkE3b9xee_GQzCclW0olRKmkolQiu3D0vuepnrbx6-pew7DEaV6ZkHBRGEJZkOjCccOg-eufT9v92_I9WBEWCVH1AvagNZs-5_uwjC-z-3J6UEnkGyTi1-E
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06k4nZoH37TQpulHfBuyMXEO0al7K801BUGmrFP_fZM0dSoq6EOfmoRyd7mP3v3uAA5TPxYBR9dxI8Eclgt0eIjUUbYtx1QbfG6Awv1oMIhHI35pQWFFVe1epSSNpp6B3ZT0qdCXqoeHPHD8eVhgesyOjtGvbyv9qwMek-P0fP3PP3QtVOb7Mz6bo5mP-SUtaqxNt_6_71yDVetdknYpDuswJ8cNqFtPk9h7XDRg5UMbwg3gd6UfSPScTkwLXQlNlDNLrpQifNXYKtIxEEFS9jc_IW1S5hQ24abbGZ72HDtSwUF116YOxrkQGTLqBiiEZB4GMqUolNFmwkPF0DhkmYwF466MfO5mkkYhhhjoDB56_hbUxo9juQ0k41mQRzlV2jJjkZ8L10_DTIUzNA1VEBU0wasom6DtN67HXjwks07JmlKJolRiKJX4TTh63_NUdtv4dXWrYlhib16RKOFSboiKgmgTjisGzV7_fNrO35YfwFJveNFP-meD811YphoVYeoCW1CbTp7lHiziy_S-mOwb6XwDTFnaxQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWsVt2DNw1NNpvHeivaolhKqa_eQnaSgCC1NFX_vrN52CoqiIecsruEeU9mvlmA49D2lSPRNExPCUMkCg3pIjfItyUYaocvM6Bw1-v1_OFQ9udQ_Fm3e1mSzDENekrTaNocR0lzBnwjSaQ0mNMjXekY9iIsCcpkdFPX4Oa-tMU6-cnqnZat__-7ZgGb-f6Mz65pFm9-KZFmnqdT_f83b8B6EXWyVi4mm7AQj2pQLSJQVuh3WoO1ufGEWyAf8viQ6fs7MUx1hzSjIJcNyEC-acwVa2fQQZbPPT9jLZbXGrbhrtO-Pb80iqsWDCQdnBroJ0pFKLjpoFKxsNCJQ46KnLlQFhKjfVdEsa-ENGPPlmYUc89FFx1d2UPL3oHK6HkU7wKLZOQkXsLJikbCsxNl2qEbUZrDQ5eSK6cOVknlAIs55Po6jKdgNkFZUyogSgUZpQK7Dicfe8b5FI5fVzdK5gWFRqYBCR2FJ5Qd8Tqclsyavf75tL2_LT-Clf5FJ-he9a73YZVrsETWLtiAynTyEh_AMr5OH9PJYSao72kq46k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weather+Forecasting+for+Renewable+Energy+System%3A+A+Review&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Meenal%2C+R.&rft.au=Binu%2C+D.&rft.au=Ramya%2C+K.+C.&rft.au=Michael%2C+Prawin+Angel&rft.date=2022-08-01&rft.pub=Springer+Netherlands&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=29&rft.issue=5&rft.spage=2875&rft.epage=2891&rft_id=info:doi/10.1007%2Fs11831-021-09695-3&rft.externalDocID=10_1007_s11831_021_09695_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon