Weather Forecasting for Renewable Energy System: A Review
Energy crisis and climate change are the major concerns which has led to a significant growth in the renewable energy resources which includes mainly the solar and wind power generation. In smart grid, there is a increase in the penetration level of solar PV and wind power generation. The solar radi...
Gespeichert in:
| Veröffentlicht in: | Archives of computational methods in engineering Jg. 29; H. 5; S. 2875 - 2891 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.08.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1134-3060, 1886-1784 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Energy crisis and climate change are the major concerns which has led to a significant growth in the renewable energy resources which includes mainly the solar and wind power generation. In smart grid, there is a increase in the penetration level of solar PV and wind power generation. The solar radiation received at the earth surface is greatly dependent on various atmospheric parameters. Forecasting of solar radiation and photovoltaic power is a major concern in terms of efficient integration of solar PV plants in the power grid. There are significant challenges in smart grid energy management due to the variability of large-scale renewable energy generation. Renewable energy forecasting is critical to reduce the uncertainty related to renewable energy generation for a wide range of planning, investment and decision-making purposes. As renewable energy sources are highly intermittent and variable, all the forecasting models available in the literature contain errors. This paper presents an overview of current and new development of weather forecasting such as solar and wind forecasting techniques for renewable energy system in smart grid. Many forecasting models such as physical models, statistical models, artificial intelligence based models, machine learning and deep learning based models were discussed. It is observed that, despite having no clear understanding on atmospheric physics, the artificial intelligence based methods such as machine learning and deep learning method produces reasonable weather forecasting results. |
|---|---|
| AbstractList | Energy crisis and climate change are the major concerns which has led to a significant growth in the renewable energy resources which includes mainly the solar and wind power generation. In smart grid, there is a increase in the penetration level of solar PV and wind power generation. The solar radiation received at the earth surface is greatly dependent on various atmospheric parameters. Forecasting of solar radiation and photovoltaic power is a major concern in terms of efficient integration of solar PV plants in the power grid. There are significant challenges in smart grid energy management due to the variability of large-scale renewable energy generation. Renewable energy forecasting is critical to reduce the uncertainty related to renewable energy generation for a wide range of planning, investment and decision-making purposes. As renewable energy sources are highly intermittent and variable, all the forecasting models available in the literature contain errors. This paper presents an overview of current and new development of weather forecasting such as solar and wind forecasting techniques for renewable energy system in smart grid. Many forecasting models such as physical models, statistical models, artificial intelligence based models, machine learning and deep learning based models were discussed. It is observed that, despite having no clear understanding on atmospheric physics, the artificial intelligence based methods such as machine learning and deep learning method produces reasonable weather forecasting results. |
| Author | Michael, Prawin Angel Binu, D. Meenal, R. Vinoth Kumar, K. Rajasekaran, E. Sangeetha, B. Ramya, K. C. |
| Author_xml | – sequence: 1 givenname: R. surname: Meenal fullname: Meenal, R. organization: Department of Electrical and Electronics Engineering, Karunya Institute of Technology and Sciences – sequence: 2 givenname: D. surname: Binu fullname: Binu, D. organization: Department of Electronics and Communications, Sri Ramakrishna Institute of Technology – sequence: 3 givenname: K. C. surname: Ramya fullname: Ramya, K. C. organization: Department of Electrical and Electronics Engineering, Sri Krishna College of Engineering and Technology – sequence: 4 givenname: Prawin Angel surname: Michael fullname: Michael, Prawin Angel organization: Department of Electrical and Electronics Engineering, Karunya Institute of Technology and Sciences – sequence: 5 givenname: K. surname: Vinoth Kumar fullname: Vinoth Kumar, K. organization: Department of Electrical and Electronics Engineering, New Horizon College of Engineering – sequence: 6 givenname: E. surname: Rajasekaran fullname: Rajasekaran, E. organization: Department of Science and Humanities, VSB Engineering College – sequence: 7 givenname: B. surname: Sangeetha fullname: Sangeetha, B. email: ssa_geetha@yahoo.com organization: Department of Electrical and Electronics Engineering, AVS Engineering College |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnlfztdnEWymtCgXBDzyGJJ3WLW22Jqml_97oCoKHHsIE5n1mhmeAer71gNAlwdcE4_omEiIZKTHNTwlVlewE9YmUoiS15L38J4yXDAt8hgYxrjCuuFK0j9QbmPQOoZi2AZyJqfHLYtGG4gk87I1dQzHxEJaH4vkQE2xui1FufTawP0enC7OOcPFbh-h1OnkZ35ezx7uH8WhWOkZUKp1cWDt3nOLKWQucuAoMdVZWjFviLDgp-Byk5QpDzRSeA62FE67CtcCOsCG66uZuQ_uxg5j0qt0Fn1dqKhSmrK4kzSnZpVxoYwyw0K5JJjWtT8E0a02w_halO1E6i9I_ojTLKP2HbkOzMeFwHGIdFHPYLyH8XXWE-gIESHxa |
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2022_135490 crossref_primary_10_3390_smartcities8020067 crossref_primary_10_1016_j_egyr_2024_01_011 crossref_primary_10_3390_s25134070 crossref_primary_10_3390_app122111064 crossref_primary_10_1016_j_enconman_2023_117762 crossref_primary_10_3390_en16248057 crossref_primary_10_1051_e3sconf_202561902003 crossref_primary_10_1051_e3sconf_202561902002 crossref_primary_10_3390_en18092149 crossref_primary_10_1016_j_jece_2022_109085 crossref_primary_10_32604_ee_2024_046644 crossref_primary_10_1016_j_knosys_2024_111556 crossref_primary_10_1016_j_applthermaleng_2025_127340 crossref_primary_10_1016_j_ref_2023_100529 crossref_primary_10_3390_atmos14111635 crossref_primary_10_3390_en17112730 crossref_primary_10_1016_j_cherd_2024_07_008 crossref_primary_10_1016_j_psep_2023_12_054 crossref_primary_10_1007_s10668_025_06386_y crossref_primary_10_1016_j_jwpe_2023_104304 crossref_primary_10_1051_e3sconf_202561901001 crossref_primary_10_1016_j_rser_2025_115980 crossref_primary_10_1016_j_egyr_2023_12_031 crossref_primary_10_3390_rs15235597 crossref_primary_10_1109_ACCESS_2024_3420693 crossref_primary_10_1007_s42835_024_01943_3 crossref_primary_10_1016_j_asoc_2024_112055 crossref_primary_10_3390_rs15082076 crossref_primary_10_3390_en17102424 crossref_primary_10_1016_j_heliyon_2024_e26088 crossref_primary_10_29137_umagd_1476299 crossref_primary_10_1051_e3sconf_202561603011 crossref_primary_10_7717_peerj_cs_3001 crossref_primary_10_1051_e3sconf_202561603018 crossref_primary_10_1038_s41598_025_09366_4 crossref_primary_10_1016_j_ijhydene_2024_01_214 crossref_primary_10_1038_s41598_025_97109_w crossref_primary_10_1051_e3sconf_202455201111 crossref_primary_10_3390_designs8010010 crossref_primary_10_1016_j_ref_2024_100615 crossref_primary_10_1016_j_scca_2025_100099 crossref_primary_10_1080_01431161_2024_2431184 crossref_primary_10_3389_fphy_2024_1439180 crossref_primary_10_1016_j_compag_2025_110027 crossref_primary_10_1007_s42452_025_06895_5 crossref_primary_10_3390_en17235965 crossref_primary_10_1007_s40899_024_01035_0 crossref_primary_10_3390_atmos16010082 crossref_primary_10_1051_e3sconf_202455201103 crossref_primary_10_1051_e3sconf_202455201105 crossref_primary_10_1051_e3sconf_202455201107 crossref_primary_10_1051_e3sconf_202561903004 crossref_primary_10_1051_e3sconf_202455201108 crossref_primary_10_1051_e3sconf_202561903003 crossref_primary_10_1007_s42835_023_01378_2 crossref_primary_10_1051_e3sconf_202561903002 crossref_primary_10_5194_wes_10_483_2025 crossref_primary_10_1016_j_engappai_2025_110295 crossref_primary_10_3390_pr13082516 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123756 |
| Cites_doi | 10.3390/en5051355 10.1016/j.energy.2019.05.230 10.3389/fceng.2021.665415 10.1016/j.renene.2020.05.150 10.1016/j.energy.2018.01.177 10.1175/MWR-D-20-0219.1 10.3390/en14020436 10.1016/j.trc.2020.01.010 10.1007/s00521-020-04867-x 10.3390/sym12111830 10.1080/15567036.2019.1649756 10.3390/en13246623 10.3390/app8081286 10.1016/j.procs.2017.09.045 10.1109/ACCESS.2019.2897028 10.1007/s11708-021-0722-7 10.1007/978-981-15-6876-3_25 10.1016/j.egyr.2019.05.007 10.1089/big.2020.0159 10.1016/j.renene.2020.11.089 10.1109/ACCESS.2021.3062205 10.25046/aj060140 10.1029/2019MS001705 10.1016/j.chaos.2020.110227 10.1088/1755-1315/168/1/012012 10.1016/S0951-8339(02)00053-9 10.1016/j.renene.2020.04.042 10.1109/NAPS.2010.5619586 10.1016/j.procs.2018.05.041 10.1023/A:1010933404324 10.1109/ICRERA.2017.8191206 10.1175/WAF-D-14-00006.1 10.1016/j.rser.2015.04.081 10.1177/0309524X19849846 10.1016/j.neucom.2015.02.078 10.1016/S0925-2312(01)00702-0 10.1109/ICISC.2018.8398960 10.4236/jpee.2014.24023 10.1016/j.rser.2008.02.002 10.1109/ACCESS.2020.3011060 10.1109/CESYS.2017.8321285 10.1016/j.renene.2016.12.095 10.1016/j.enconman.2019.111799 10.1155/2010/684742 10.20965/jaciii.2010.p0069 10.1155/2014/693205 10.3390/en11123493 10.1109/ICAIIC48513.2020.9065071 10.1007/s00521-017-3225-z 10.17485/ijst/2016/v9i46/101922 10.1038/nature14539 10.1109/TPWRS.2006.889078 10.1016/j.ifacol.2018.11.738 10.1016/j.apenergy.2009.08.038 10.1109/ICMLA.2018.0022 10.1007/978-1-4757-2440-0 10.1016/j.acags.2019.100002 10.11591/ijeecs.v9.i3.pp555-557 10.1260/0309-524X.38.2.121 10.20533/ijsed.2046.3707.2012.0007 10.1016/S0038-092X(99)00064-X 10.1109/IECON.2016.7793113 10.1016/j.egypro.2016.12.147 10.1109/ACCESS.2018.2883330 10.3390/en14020338 10.1051/matecconf/201823203013 10.1088/1742-6596/1142/1/012010 10.1016/j.solener.2010.02.006 10.1007/978-3-030-69717-4_13 10.1016/S1364-0321(01)00006-5 10.1155/2017/3418145 10.3390/su13042393 10.1109/PCT.2007.4538368 10.1016/j.egypro.2017.08.182 10.1016/j.rser.2013.06.042 10.1016/j.matpr.2021.04.491 10.1007/978-981-13-1882-5_3 10.3390/en12020215 10.1016/j.renene.2017.12.005 10.1016/j.solener.2010.08.011 10.1007/978-3-319-03756-1_40 10.1016/j.apenergy.2019.05.044 10.1016/j.pecs.2013.06.002 10.1016/j.renene.2015.07.004 10.3390/en14092601 10.1088/1742-6596/824/1/012038 10.1109/ICICT48043.2020.9112534 |
| ContentType | Journal Article |
| Copyright | The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2021 The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2021. |
| Copyright_xml | – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2021 – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2021. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11831-021-09695-3 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1886-1784 |
| EndPage | 2891 |
| ExternalDocumentID | 10_1007_s11831_021_09695_3 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW K60 K6V K6~ K7- KDC KOV L6V LLZTM M0C M0N M4Y M7S MA- MK~ N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 Z88 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JZLTJ PHGZM PHGZT PQGLB JQ2 |
| ID | FETCH-LOGICAL-c319t-c8fbbdc4205cbbe41c5ea2cb8534b1cbec864de8b490e7390de276c6c50760c13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000746772600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1134-3060 |
| IngestDate | Thu Sep 18 00:00:53 EDT 2025 Tue Nov 18 21:19:39 EST 2025 Sat Nov 29 06:21:48 EST 2025 Fri Feb 21 02:45:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-c8fbbdc4205cbbe41c5ea2cb8534b1cbec864de8b490e7390de276c6c50760c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2690237582 |
| PQPubID | 1486352 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2690237582 crossref_citationtrail_10_1007_s11831_021_09695_3 crossref_primary_10_1007_s11831_021_09695_3 springer_journals_10_1007_s11831_021_09695_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | State of the Art Reviews |
| PublicationTitle | Archives of computational methods in engineering |
| PublicationTitleAbbrev | Arch Computat Methods Eng |
| PublicationYear | 2022 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Breiman (CR74) 2001; 45 Zhang (CR12) 2003; 50 Jo, Jin, Yoon, Kim (CR34) 2021; 14 Sfetsos, Coonick (CR13) 2000; 68 Paoli, Voyant, Muselli, Nivet (CR26) 2010; 84 CR37 CR36 CR35 Wang, Lei, Zhang, Zhou, Peng (CR65) 2019; 198 CR31 CR30 Lee, Kim, Park, Kim, Kim (CR91) 2018; 6 More, Deo (CR16) 2003; 16 Brahma, Wadhvani (CR62) 2020; 12 Meenal, Selvakumar (CR20) 2019 Shukur, Lee (CR39) 2015; 72 Diagne, David, Lauret, Boland, Schmutz (CR51) 2013; 27 Meenal, Boazina, Selvakumar (CR8) 2016; 9 CR46 CR45 Wang, Mi, Su, Zhao (CR27) 2012; 5 CR44 Vapnik (CR75) 1995 Rajagukguk, Ramadhan, Lee (CR59) 2020; 13 Alzahrani, Shamsi, Dagli, Ferdowsi (CR63) 2017; 114 Veldkamp, Whan, Dirksen, Schmeits (CR89) 2021; 149 Filik, Filik (CR29) 2017; 107 Bogaerts, Masegosa, Angarita-Zapata, Onieva, Hellinckx (CR77) 2020; 112 Hinton, LeCun, Bengio (CR64) 2015; 521 CR54 CR52 Tian, Ma, Zhang, Zhan (CR90) 2018; 11 CR50 Sun, Zhao (CR69) 2020; 8 Qing, Niu (CR87) 2018; 148 Ferreira, Santos, Lucio (CR6) 2019; 5 Narvaez, Giraldo, Bressan, Pantoja (CR18) 2021; 167 Rahman, Shakeri, Tiong, Khatun, Amin, Pasupuleti, Hasan (CR100) 2021; 13 Jebli (CR66) 2021; 6 Voyant, Notton, Kalogirou, Nivet, Paoli, Motte, Fouilloy (CR5) 2017; 105 Wang, Yu, Zhang, Li, Zhen, Li (CR67) 2018; 8 CR60 Karasu, Altan, Sarac, Hacioglu (CR55) 2017; 2 Schicker, Papazek, Kann, Wang (CR99) 2017; 125 Ren, Suganthan, Srikanth (CR57) 2015; 50 Peiris, Jayasinghe, Rathnayake (CR33) 2021; 24 Abdel-Nasser, Mahmoud (CR70) 2019; 31 Zang, Liu, Sun, Cheng, Wei, Sun (CR94) 2020; 160 Chaouachi, Kamel, Nagasaka (CR58) 2010; 14 Swapna, Kp, Vinayakumar (CR79) 2018; 132 Mellit, Pavan (CR15) 2010; 84 Kalogirou (CR14) 2001; 5 CR73 CR71 Pang, Niu, O’Neill (CR82) 2020; 156 Gala, Fernández, Díaz, Dorronsoro (CR40) 2016; 176 Rozas-Larraondo, Inza, Lozano (CR25) 2014; 29 CR3 Lei, Shiyan, Chuanwen, Hongling, Yan (CR47) 2009; 13 De Freitas, Silva, Sakamoto (CR43) 2018; 8 Shastri, Singh, Kumar, Kour, Mansotra (CR78) 2020; 140 CR9 Chen (CR42) 2018; 51 Santamaría-Bonfil, Reyes-Ballesteros, Gershenson (CR53) 2016; 85 CR88 CR86 CR85 Alkabbani, Ahmadian, Zhu, Elkamel (CR56) 2021; 3 CR84 Ahn, Park (CR80) 2021; 14 CR83 Meenal (CR23) 2018; 1142 Livieris, Pintelas, Pintelas (CR76) 2020; 32 Weyn, Durran, Caruana (CR61) 2019; 11 Kim, Cho (CR93) 2019; 182 Meenal, Selvakumar (CR21) 2018; 121 Kulkarni, Mukhopadhyay (CR68) 2018; 9 Singla, Duhan, Saroha (CR49) 2021 Lee, Kim (CR81) 2019; 12 Chang (CR1) 2014; 2 CR19 Hong, Rioflorido (CR41) 2019; 250 CR17 CR11 Sharma, Singh (CR2) 2018; 8 CR97 CR96 CR95 Boubaker, Benghanem, Mellit, Lefza, Kahouli, Kolsi (CR24) 2021; 9 Roy, Vinothini (CR28) 2018; 5 Sideratos, Hatziargyriou (CR10) 2007; 22 Ehsan, Begum, Ilham, Khan (CR22) 2019; 1 Donadio, Fang, Porté-Agel (CR101) 2021; 14 Blanchard, Samanta (CR32) 2020; 44 Ramesh, Arulmozhivarman (CR98) 2014; 38 Meenal, Selvakumar, Rajasekaran (CR7) 2019; 15 Inman, Pedro, Coimbra (CR48) 2013; 39 Kwon (CR72) 2010; 87 Torres, Hadjout, Sebaa, Martınez-Álvarez, Troncoso (CR4) 2020; 9 Takilalte, Harrouni, Mora (CR38) 2019 Qin, Yu, Zou, Yong, Zhao, Zhang (CR92) 2019; 7 I Schicker (9695_CR99) 2017; 125 YY Hong (9695_CR41) 2019; 250 A More (9695_CR16) 2003; 16 M Lei (9695_CR47) 2009; 13 S Veldkamp (9695_CR89) 2021; 149 A Takilalte (9695_CR38) 2019 SC Jo (9695_CR34) 2021; 14 RA Rajagukguk (9695_CR59) 2020; 13 9695_CR52 B Brahma (9695_CR62) 2020; 12 9695_CR50 HK Ahn (9695_CR80) 2021; 14 9695_CR54 D Qin (9695_CR92) 2019; 7 I Jebli (9695_CR66) 2021; 6 9695_CR60 M Abdel-Nasser (9695_CR70) 2019; 31 Y Gala (9695_CR40) 2016; 176 Y Ren (9695_CR57) 2015; 50 R Meenal (9695_CR7) 2019; 15 G Sideratos (9695_CR10) 2007; 22 X Qing (9695_CR87) 2018; 148 9695_CR3 SA Kalogirou (9695_CR14) 2001; 5 TY Kim (9695_CR93) 2019; 182 9695_CR36 9695_CR37 BN Ramesh (9695_CR98) 2014; 38 T Blanchard (9695_CR32) 2020; 44 9695_CR30 9695_CR31 G Hinton (9695_CR64) 2015; 521 M Ferreira (9695_CR6) 2019; 5 9695_CR35 AT Peiris (9695_CR33) 2021; 24 H Alkabbani (9695_CR56) 2021; 3 C Tian (9695_CR90) 2018; 11 H Wang (9695_CR65) 2019; 198 9695_CR9 SD Kwon (9695_CR72) 2010; 87 L Donadio (9695_CR101) 2021; 14 Q Chen (9695_CR42) 2018; 51 9695_CR45 BMA Ehsan (9695_CR22) 2019; 1 9695_CR46 9695_CR44 R Meenal (9695_CR8) 2016; 9 IE Livieris (9695_CR76) 2020; 32 Z Sun (9695_CR69) 2020; 8 R Roy (9695_CR28) 2018; 5 WY Chang (9695_CR1) 2014; 2 S Karasu (9695_CR55) 2017; 2 A Chaouachi (9695_CR58) 2010; 14 F Wang (9695_CR67) 2018; 8 H Zang (9695_CR94) 2020; 160 9695_CR17 ÜB Filik (9695_CR29) 2017; 107 T Bogaerts (9695_CR77) 2020; 112 9695_CR19 9695_CR96 9695_CR97 9695_CR95 9695_CR11 A Alzahrani (9695_CR63) 2017; 114 L Breiman (9695_CR74) 2001; 45 C Voyant (9695_CR5) 2017; 105 NC De Freitas (9695_CR43) 2018; 8 D Lee (9695_CR81) 2019; 12 MM Rahman (9695_CR100) 2021; 13 OB Shukur (9695_CR39) 2015; 72 P Singla (9695_CR49) 2021 R Meenal (9695_CR23) 2018; 1142 A Kulkarni (9695_CR68) 2018; 9 Z Pang (9695_CR82) 2020; 156 G Narvaez (9695_CR18) 2021; 167 P Rozas-Larraondo (9695_CR25) 2014; 29 J Torres (9695_CR4) 2020; 9 A Sfetsos (9695_CR13) 2000; 68 9695_CR71 M Diagne (9695_CR51) 2013; 27 S Shastri (9695_CR78) 2020; 140 S Boubaker (9695_CR24) 2021; 9 C Paoli (9695_CR26) 2010; 84 R Meenal (9695_CR21) 2018; 121 W Lee (9695_CR91) 2018; 6 9695_CR73 V Vapnik (9695_CR75) 1995 R Sharma (9695_CR2) 2018; 8 R Meenal (9695_CR20) 2019 A Mellit (9695_CR15) 2010; 84 G Santamaría-Bonfil (9695_CR53) 2016; 85 GP Zhang (9695_CR12) 2003; 50 F Wang (9695_CR27) 2012; 5 9695_CR85 9695_CR86 9695_CR83 9695_CR84 G Swapna (9695_CR79) 2018; 132 RH Inman (9695_CR48) 2013; 39 JA Weyn (9695_CR61) 2019; 11 9695_CR88 |
| References_xml | – volume: 24 start-page: 2021 year: 2021 ident: CR33 article-title: Forecasting wind power generation using artificial neural Network: “Pawan Danawi”—a case study from Sri Lanka publication-title: J Electr Comput Eng – ident: CR45 – volume: 5 start-page: 1355 issue: 5 year: 2012 end-page: 1370 ident: CR27 article-title: Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters publication-title: Energies doi: 10.3390/en5051355 – volume: 182 start-page: 72 year: 2019 end-page: 81 ident: CR93 article-title: Predicting residential energy consumption using CNN-LSTM neural networks publication-title: Energy doi: 10.1016/j.energy.2019.05.230 – ident: CR97 – volume: 16 start-page: 35 issue: 1 year: 2003 end-page: 49 ident: CR16 article-title: Forecasting wind with neural networks publication-title: Mar Struct – volume: 27 start-page: 65 year: 2013 end-page: 76 ident: CR51 article-title: Review of solar irradiance forecasting methods and a proposition for small-scale insular grids publication-title: Renew Sustain Energy Rev – volume: 5 start-page: 1172 year: 2019 end-page: 1184 ident: CR6 article-title: Short-term forecast of wind speed through mathematical models publication-title: Energy Rep – volume: 12 start-page: 215 issue: 2 year: 2019 ident: CR81 article-title: Recurrent neural network-based hourly prediction of photovoltaic power output using meteorological information publication-title: Energies – ident: CR54 – volume: 84 start-page: 807 issue: 5 year: 2010 end-page: 821 ident: CR15 article-title: A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy publication-title: Solar energy – volume: 39 start-page: 535 issue: 6 year: 2013 end-page: 576 ident: CR48 article-title: Solar forecasting methods for renewable energy integration publication-title: Prog Energy Combust Sci – volume: 125 start-page: 199 year: 2017 end-page: 206 ident: CR99 article-title: Short-range wind speed predictions for complex terrain using an interval-artificial neural network publication-title: Energy Proc – volume: 250 start-page: 530 year: 2019 end-page: 539 ident: CR41 article-title: A hybrid deep learning-based neural network for 24-h ahead wind power forecasting publication-title: Appl Energy – volume: 3 start-page: 14 year: 2021 ident: CR56 article-title: Machine learning and metaheuristic methods for renewable power forecasting: a recent review publication-title: Front Chem Eng doi: 10.3389/fceng.2021.665415 – ident: CR71 – ident: CR19 – volume: 156 start-page: 279 year: 2020 end-page: 289 ident: CR82 article-title: Solar radiation prediction using recurrent neural network and artificial neural network: a case study with comparisons publication-title: Renew Energy – start-page: 27 year: 2019 end-page: 36 ident: CR20 article-title: Assessment of solar energy potential of smart cities of tamil nadu using machine learning with big data publication-title: Advances in big data and cloud computing – volume: 85 start-page: 790 year: 2016 end-page: 809 ident: CR53 article-title: Wind speed forecasting for wind farms: a method based on support vector regression publication-title: Renew Energy – volume: 13 start-page: 915 issue: 4 year: 2009 end-page: 920 ident: CR47 article-title: A review on the forecasting of wind speed and generated power publication-title: Renew Sustain Energy Rev – ident: CR88 – ident: CR11 – volume: 9 start-page: 3 issue: 1 year: 2020 end-page: 21 ident: CR4 article-title: Deep learning for time series forecasting: a survey publication-title: Big Data – ident: CR60 – ident: CR36 – ident: CR85 – volume: 9 start-page: 555 issue: 3 year: 2018 end-page: 557 ident: CR68 article-title: Internet of things based weather forecast monitoring system publication-title: Indones J Electr Eng Comput Sci – volume: 9 start-page: 36719 year: 2021 end-page: 36729 ident: CR24 article-title: Deep neural networks for predicting solar radiation at Hail Region, Saudi Arabia publication-title: IEEE Access – volume: 160 start-page: 26 year: 2020 end-page: 41 ident: CR94 article-title: Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations publication-title: Renew Energy doi: 10.1016/j.renene.2020.05.150 – year: 1995 ident: CR75 publication-title: The nature of statistical learning theory – volume: 1142 start-page: 012010 year: 2018 ident: CR23 article-title: Solar mapping of India using support vector machine publication-title: J Phys Conf Ser – volume: 5 start-page: 373 issue: 4 year: 2001 end-page: 401 ident: CR14 article-title: Artificial neural networks in renewable energy systems applications: a review publication-title: Renew Sustain Energy Rev – ident: CR30 – volume: 87 start-page: 856 issue: 3 year: 2010 end-page: 865 ident: CR72 article-title: Uncertainty analysis of wind energy potential assessment publication-title: Appl Energy – volume: 15 start-page: 54 issue: 1 year: 2019 end-page: 59 ident: CR7 article-title: Review on mathematical models for the prediction of Solar radiation publication-title: Indones J Electr Eng Comput Sci – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR74 article-title: Random forests publication-title: Mach Learn – volume: 14 start-page: 338 issue: 2 year: 2021 ident: CR101 article-title: Numerical weather prediction and artificial neural network coupling for wind energy forecast publication-title: Energies – ident: CR86 – volume: 121 start-page: 324 year: 2018 end-page: 343 ident: CR21 article-title: Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters publication-title: Renew Energy – volume: 148 start-page: 461 year: 2018 end-page: 468 ident: CR87 article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM publication-title: Energy doi: 10.1016/j.energy.2018.01.177 – ident: CR44 – volume: 11 start-page: 3493 issue: 12 year: 2018 ident: CR90 article-title: A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network publication-title: Energies – ident: CR3 – volume: 149 start-page: 1141 issue: 4 year: 2021 end-page: 1152 ident: CR89 article-title: Statistical postprocessing of wind speed forecasts using convolutional neural networks publication-title: Mon Weather Rev doi: 10.1175/MWR-D-20-0219.1 – volume: 84 start-page: 2146 issue: 12 year: 2010 end-page: 2160 ident: CR26 article-title: Forecasting of preprocessed daily solar radiation time series using neural networks publication-title: Sol Energy – volume: 51 start-page: 414 issue: 28 year: 2018 end-page: 419 ident: CR42 article-title: Wind power forecasting publication-title: IFAC-Papers – volume: 8 start-page: 1 year: 2018 end-page: 9 ident: CR2 article-title: A review of wind power and wind speed forecasting publication-title: Rahul Sharma J Eng Res Appl – ident: CR52 – volume: 105 start-page: 569 year: 2017 end-page: 582 ident: CR5 article-title: Machine learning methods for solar radiation forecasting: a review publication-title: Renew Energy – volume: 11 start-page: 2680 issue: 8 year: 2019 end-page: 2693 ident: CR61 article-title: Can machines learn to predict weather? Using deep learning to predict gridded 500-hPa geopotential height from historical weather data publication-title: J Adv Model Earth Systems – ident: CR83 – volume: 140 start-page: 110227 year: 2020 ident: CR78 article-title: Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study publication-title: Chaos Solitons Fract – volume: 14 start-page: 436 issue: 2 year: 2021 ident: CR80 article-title: Deep RNN-based photovoltaic power short-term forecast using power IoT sensors publication-title: Energies doi: 10.3390/en14020436 – volume: 6 start-page: 73068 year: 2018 end-page: 73080 ident: CR91 article-title: Forecasting solar power using long-short term memory and convolutional neural networks publication-title: IEEE Access – volume: 2 start-page: 161 issue: 4 year: 2014 ident: CR1 article-title: A literature review of wind forecasting methods publication-title: J Power Energy Eng – volume: 8 start-page: 134422 year: 2020 end-page: 134434 ident: CR69 article-title: Short-term wind power forecasting based on VMD decomposition, ConvLSTM networks and error analysis publication-title: IEEE Access – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR64 article-title: Deep learning publication-title: Nature – volume: 1 start-page: 100002 year: 2019 ident: CR22 article-title: Advanced wind speed prediction using convective weather variables through machine learning application publication-title: Appl Comput Geosci – volume: 112 start-page: 62 year: 2020 end-page: 77 ident: CR77 article-title: A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2020.01.010 – volume: 50 start-page: 82 year: 2015 end-page: 91 ident: CR57 article-title: Ensemble methods for wind and solar power forecasting—a state-of-the-art review publication-title: Renew Sustain Energy Rev – ident: CR35 – volume: 14 start-page: 2601 issue: 9 year: 2021 ident: CR34 article-title: Methods for integrating extraterrestrial radiation into neural network models for day-ahead PV generation forecasting publication-title: Energies – ident: CR84 – volume: 9 start-page: 1 issue: 46 year: 2016 end-page: 6 ident: CR8 article-title: Temperature based radiation models for the estimation of global solar radiation at horizontal surface in India publication-title: Indian J Sci Technol – volume: 107 start-page: 264 year: 2017 end-page: 269 ident: CR29 article-title: Wind speed prediction using artificial neural networks based on multiple local measurements in Eskisehir publication-title: Energy Proc – volume: 32 start-page: 17351 year: 2020 end-page: 17360 ident: CR76 article-title: A CNN–LSTM model for gold price time-series forecasting publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04867-x – ident: CR46 – ident: CR96 – ident: CR50 – volume: 50 start-page: 159 year: 2003 end-page: 175 ident: CR12 article-title: Time series forecasting using a hybrid ARIMA and neural network model publication-title: Neurocomputing – ident: CR9 – volume: 12 start-page: 1830 issue: 11 year: 2020 ident: CR62 article-title: Solar irradiance forecasting based on deep learning methodologies and multi-site data publication-title: Symmetry doi: 10.3390/sym12111830 – volume: 5 start-page: 92 issue: 2 year: 2018 end-page: 101 ident: CR28 article-title: Comparative analysis between wind and solar forecasting methods using artificial neural networks and fuzzy logic publication-title: J Sci Eng Technol – volume: 13 start-page: 2393 issue: 4 year: 2021 ident: CR100 article-title: Prospective methodologies in hybrid renewable energy systems for energy prediction using artificial neural networks publication-title: Sustainability – ident: CR95 – volume: 68 start-page: 169 issue: 2 year: 2000 end-page: 178 ident: CR13 article-title: Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques publication-title: Sol Energy – year: 2019 ident: CR38 article-title: Forecasting global solar irradiance for various resolutions using time series models-case study: Algeria publication-title: Energy Sources Part A Recov Utiliz Environ Effects doi: 10.1080/15567036.2019.1649756 – volume: 14 start-page: 69 issue: 1 year: 2010 end-page: 75 ident: CR58 article-title: Neural network ensemble-based solar power generation short-term forecasting publication-title: J Adv Comput Intell Intell Inform – ident: CR37 – volume: 44 start-page: 33 issue: 1 year: 2020 end-page: 48 ident: CR32 article-title: Wind speed forecasting using neural networks publication-title: Wind Eng – volume: 13 start-page: 6623 issue: 24 year: 2020 ident: CR59 article-title: A review on deep learning models for forecasting time series data of solar irradiance and photovoltaic power publication-title: Energies doi: 10.3390/en13246623 – volume: 8 start-page: 1286 issue: 8 year: 2018 ident: CR67 article-title: Wavelet decomposition and convolutional LSTM networks based improved deep learning model for solar irradiance forecasting publication-title: Appl Sci doi: 10.3390/app8081286 – volume: 8 start-page: 4 year: 2018 end-page: 9 ident: CR43 article-title: Wind speed forecasting: a review publication-title: Int J Eng Res Appl – volume: 114 start-page: 304 year: 2017 end-page: 313 ident: CR63 article-title: Solar irradiance forecasting using deep neural networks publication-title: Proc Comput Sci doi: 10.1016/j.procs.2017.09.045 – volume: 38 start-page: 121 issue: 2 year: 2014 end-page: 128 ident: CR98 article-title: Dynamic neural network based very short-term wind speed forecasting publication-title: Wind Eng – volume: 176 start-page: 48 year: 2016 end-page: 59 ident: CR40 article-title: Hybrid machine learning forecasting of solar radiation values publication-title: Neurocomputing – volume: 6 start-page: 349 issue: 1 year: 2021 end-page: 355 ident: CR66 article-title: Deep learning based models for solar energy prediction publication-title: Adv Sci Technol Eng Syst J – ident: CR73 – volume: 198 start-page: 111799 year: 2019 ident: CR65 article-title: A review of deep learning for renewable energy forecasting publication-title: Energy Convers Manag – volume: 132 start-page: 1253 year: 2018 end-page: 1262 ident: CR79 article-title: Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals publication-title: Proc Comput Sci – ident: CR17 – ident: CR31 – volume: 167 start-page: 333 year: 2021 end-page: 342 ident: CR18 article-title: Machine learning for site-adaptation and solar radiation forecasting publication-title: Renew Energy – volume: 2 start-page: 16 issue: 1 year: 2017 end-page: 20 ident: CR55 article-title: Prediction of solar radiation based on machine learning methods publication-title: J Cogn Syst – volume: 72 start-page: 89 issue: 5 year: 2015 ident: CR39 article-title: Daily wind speed forecasting through hybrid AR-ANN and AR-KF models publication-title: J Teknol – volume: 29 start-page: 1332 issue: 6 year: 2014 end-page: 1342 ident: CR25 article-title: A method for wind speed forecasting in airports based on nonparametric regression publication-title: Weather Forecast – volume: 7 start-page: 20050 year: 2019 end-page: 20059 ident: CR92 article-title: A novel combined prediction scheme based on CNN and LSTM for urban PM 2.5 concentration publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897028 – year: 2021 ident: CR49 article-title: A comprehensive review and analysis of solar forecasting techniques publication-title: Front Energy doi: 10.1007/s11708-021-0722-7 – volume: 22 start-page: 258 issue: 1 year: 2007 end-page: 265 ident: CR10 article-title: An advanced statistical method for wind power forecasting publication-title: IEEE Trans Power Syst – volume: 31 start-page: 2727 issue: 7 year: 2019 end-page: 2740 ident: CR70 article-title: Accurate photovoltaic power forecasting models using deep LSTM–RNN publication-title: Neural Comput Appl – volume: 8 start-page: 4 year: 2018 ident: 9695_CR43 publication-title: Int J Eng Res Appl – ident: 9695_CR54 doi: 10.1007/978-981-15-6876-3_25 – volume: 5 start-page: 1172 year: 2019 ident: 9695_CR6 publication-title: Energy Rep doi: 10.1016/j.egyr.2019.05.007 – volume: 9 start-page: 3 issue: 1 year: 2020 ident: 9695_CR4 publication-title: Big Data doi: 10.1089/big.2020.0159 – volume: 167 start-page: 333 year: 2021 ident: 9695_CR18 publication-title: Renew Energy doi: 10.1016/j.renene.2020.11.089 – volume: 9 start-page: 36719 year: 2021 ident: 9695_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062205 – volume: 6 start-page: 349 issue: 1 year: 2021 ident: 9695_CR66 publication-title: Adv Sci Technol Eng Syst J doi: 10.25046/aj060140 – volume: 12 start-page: 1830 issue: 11 year: 2020 ident: 9695_CR62 publication-title: Symmetry doi: 10.3390/sym12111830 – volume: 11 start-page: 2680 issue: 8 year: 2019 ident: 9695_CR61 publication-title: J Adv Model Earth Systems doi: 10.1029/2019MS001705 – volume: 140 start-page: 110227 year: 2020 ident: 9695_CR78 publication-title: Chaos Solitons Fract doi: 10.1016/j.chaos.2020.110227 – volume: 114 start-page: 304 year: 2017 ident: 9695_CR63 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2017.09.045 – volume: 3 start-page: 14 year: 2021 ident: 9695_CR56 publication-title: Front Chem Eng doi: 10.3389/fceng.2021.665415 – ident: 9695_CR97 doi: 10.1088/1755-1315/168/1/012012 – volume: 16 start-page: 35 issue: 1 year: 2003 ident: 9695_CR16 publication-title: Mar Struct doi: 10.1016/S0951-8339(02)00053-9 – volume: 156 start-page: 279 year: 2020 ident: 9695_CR82 publication-title: Renew Energy doi: 10.1016/j.renene.2020.04.042 – ident: 9695_CR45 doi: 10.1109/NAPS.2010.5619586 – volume: 2 start-page: 16 issue: 1 year: 2017 ident: 9695_CR55 publication-title: J Cogn Syst – volume: 132 start-page: 1253 year: 2018 ident: 9695_CR79 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2018.05.041 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 9695_CR74 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: 9695_CR83 doi: 10.1109/ICRERA.2017.8191206 – volume: 29 start-page: 1332 issue: 6 year: 2014 ident: 9695_CR25 publication-title: Weather Forecast doi: 10.1175/WAF-D-14-00006.1 – volume: 50 start-page: 82 year: 2015 ident: 9695_CR57 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.04.081 – volume: 13 start-page: 6623 issue: 24 year: 2020 ident: 9695_CR59 publication-title: Energies doi: 10.3390/en13246623 – volume: 44 start-page: 33 issue: 1 year: 2020 ident: 9695_CR32 publication-title: Wind Eng doi: 10.1177/0309524X19849846 – volume: 176 start-page: 48 year: 2016 ident: 9695_CR40 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.078 – volume: 50 start-page: 159 year: 2003 ident: 9695_CR12 publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00702-0 – ident: 9695_CR95 doi: 10.1109/ICISC.2018.8398960 – ident: 9695_CR9 – volume: 32 start-page: 17351 year: 2020 ident: 9695_CR76 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04867-x – volume: 2 start-page: 161 issue: 4 year: 2014 ident: 9695_CR1 publication-title: J Power Energy Eng doi: 10.4236/jpee.2014.24023 – volume: 148 start-page: 461 year: 2018 ident: 9695_CR87 publication-title: Energy doi: 10.1016/j.energy.2018.01.177 – volume: 13 start-page: 915 issue: 4 year: 2009 ident: 9695_CR47 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2008.02.002 – volume: 8 start-page: 134422 year: 2020 ident: 9695_CR69 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011060 – ident: 9695_CR31 doi: 10.1109/CESYS.2017.8321285 – volume: 112 start-page: 62 year: 2020 ident: 9695_CR77 publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2020.01.010 – ident: 9695_CR17 – ident: 9695_CR11 – volume: 72 start-page: 89 issue: 5 year: 2015 ident: 9695_CR39 publication-title: J Teknol – volume: 105 start-page: 569 year: 2017 ident: 9695_CR5 publication-title: Renew Energy doi: 10.1016/j.renene.2016.12.095 – volume: 8 start-page: 1286 issue: 8 year: 2018 ident: 9695_CR67 publication-title: Appl Sci doi: 10.3390/app8081286 – volume: 198 start-page: 111799 year: 2019 ident: 9695_CR65 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.111799 – ident: 9695_CR73 doi: 10.1155/2010/684742 – volume: 14 start-page: 69 issue: 1 year: 2010 ident: 9695_CR58 publication-title: J Adv Comput Intell Intell Inform doi: 10.20965/jaciii.2010.p0069 – ident: 9695_CR37 doi: 10.1155/2014/693205 – volume: 11 start-page: 3493 issue: 12 year: 2018 ident: 9695_CR90 publication-title: Energies doi: 10.3390/en11123493 – volume: 182 start-page: 72 year: 2019 ident: 9695_CR93 publication-title: Energy doi: 10.1016/j.energy.2019.05.230 – volume: 14 start-page: 436 issue: 2 year: 2021 ident: 9695_CR80 publication-title: Energies doi: 10.3390/en14020436 – volume: 8 start-page: 1 year: 2018 ident: 9695_CR2 publication-title: Rahul Sharma J Eng Res Appl – ident: 9695_CR86 doi: 10.1109/ICAIIC48513.2020.9065071 – volume: 31 start-page: 2727 issue: 7 year: 2019 ident: 9695_CR70 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-3225-z – volume: 9 start-page: 1 issue: 46 year: 2016 ident: 9695_CR8 publication-title: Indian J Sci Technol doi: 10.17485/ijst/2016/v9i46/101922 – ident: 9695_CR60 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 9695_CR64 publication-title: Nature doi: 10.1038/nature14539 – volume: 22 start-page: 258 issue: 1 year: 2007 ident: 9695_CR10 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2006.889078 – volume: 51 start-page: 414 issue: 28 year: 2018 ident: 9695_CR42 publication-title: IFAC-Papers doi: 10.1016/j.ifacol.2018.11.738 – volume: 87 start-page: 856 issue: 3 year: 2010 ident: 9695_CR72 publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.08.038 – ident: 9695_CR3 doi: 10.1109/NAPS.2010.5619586 – ident: 9695_CR88 doi: 10.1109/ICMLA.2018.0022 – volume-title: The nature of statistical learning theory year: 1995 ident: 9695_CR75 doi: 10.1007/978-1-4757-2440-0 – volume: 1 start-page: 100002 year: 2019 ident: 9695_CR22 publication-title: Appl Comput Geosci doi: 10.1016/j.acags.2019.100002 – volume: 149 start-page: 1141 issue: 4 year: 2021 ident: 9695_CR89 publication-title: Mon Weather Rev doi: 10.1175/MWR-D-20-0219.1 – volume: 7 start-page: 20050 year: 2019 ident: 9695_CR92 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897028 – volume: 9 start-page: 555 issue: 3 year: 2018 ident: 9695_CR68 publication-title: Indones J Electr Eng Comput Sci doi: 10.11591/ijeecs.v9.i3.pp555-557 – volume: 38 start-page: 121 issue: 2 year: 2014 ident: 9695_CR98 publication-title: Wind Eng doi: 10.1260/0309-524X.38.2.121 – ident: 9695_CR35 doi: 10.20533/ijsed.2046.3707.2012.0007 – year: 2019 ident: 9695_CR38 publication-title: Energy Sources Part A Recov Utiliz Environ Effects doi: 10.1080/15567036.2019.1649756 – volume: 68 start-page: 169 issue: 2 year: 2000 ident: 9695_CR13 publication-title: Sol Energy doi: 10.1016/S0038-092X(99)00064-X – ident: 9695_CR46 doi: 10.1109/IECON.2016.7793113 – volume: 107 start-page: 264 year: 2017 ident: 9695_CR29 publication-title: Energy Proc doi: 10.1016/j.egypro.2016.12.147 – volume: 6 start-page: 73068 year: 2018 ident: 9695_CR91 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2883330 – volume: 14 start-page: 338 issue: 2 year: 2021 ident: 9695_CR101 publication-title: Energies doi: 10.3390/en14020338 – ident: 9695_CR36 doi: 10.1051/matecconf/201823203013 – volume: 5 start-page: 92 issue: 2 year: 2018 ident: 9695_CR28 publication-title: J Sci Eng Technol – year: 2021 ident: 9695_CR49 publication-title: Front Energy doi: 10.1007/s11708-021-0722-7 – volume: 1142 start-page: 012010 year: 2018 ident: 9695_CR23 publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1142/1/012010 – volume: 84 start-page: 807 issue: 5 year: 2010 ident: 9695_CR15 publication-title: Solar energy doi: 10.1016/j.solener.2010.02.006 – ident: 9695_CR71 doi: 10.1007/978-3-030-69717-4_13 – volume: 5 start-page: 373 issue: 4 year: 2001 ident: 9695_CR14 publication-title: Renew Sustain Energy Rev doi: 10.1016/S1364-0321(01)00006-5 – ident: 9695_CR96 doi: 10.1155/2017/3418145 – volume: 13 start-page: 2393 issue: 4 year: 2021 ident: 9695_CR100 publication-title: Sustainability doi: 10.3390/su13042393 – volume: 24 start-page: 2021 year: 2021 ident: 9695_CR33 publication-title: J Electr Comput Eng – ident: 9695_CR44 doi: 10.1109/PCT.2007.4538368 – ident: 9695_CR30 – volume: 125 start-page: 199 year: 2017 ident: 9695_CR99 publication-title: Energy Proc doi: 10.1016/j.egypro.2017.08.182 – volume: 27 start-page: 65 year: 2013 ident: 9695_CR51 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.06.042 – volume: 15 start-page: 54 issue: 1 year: 2019 ident: 9695_CR7 publication-title: Indones J Electr Eng Comput Sci – ident: 9695_CR50 doi: 10.1016/j.matpr.2021.04.491 – volume: 160 start-page: 26 year: 2020 ident: 9695_CR94 publication-title: Renew Energy doi: 10.1016/j.renene.2020.05.150 – start-page: 27 volume-title: Advances in big data and cloud computing year: 2019 ident: 9695_CR20 doi: 10.1007/978-981-13-1882-5_3 – volume: 12 start-page: 215 issue: 2 year: 2019 ident: 9695_CR81 publication-title: Energies doi: 10.3390/en12020215 – volume: 121 start-page: 324 year: 2018 ident: 9695_CR21 publication-title: Renew Energy doi: 10.1016/j.renene.2017.12.005 – volume: 84 start-page: 2146 issue: 12 year: 2010 ident: 9695_CR26 publication-title: Sol Energy doi: 10.1016/j.solener.2010.08.011 – ident: 9695_CR85 doi: 10.1007/978-3-319-03756-1_40 – volume: 5 start-page: 1355 issue: 5 year: 2012 ident: 9695_CR27 publication-title: Energies doi: 10.3390/en5051355 – ident: 9695_CR52 – volume: 250 start-page: 530 year: 2019 ident: 9695_CR41 publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.05.044 – volume: 39 start-page: 535 issue: 6 year: 2013 ident: 9695_CR48 publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2013.06.002 – volume: 85 start-page: 790 year: 2016 ident: 9695_CR53 publication-title: Renew Energy doi: 10.1016/j.renene.2015.07.004 – volume: 14 start-page: 2601 issue: 9 year: 2021 ident: 9695_CR34 publication-title: Energies doi: 10.3390/en14092601 – ident: 9695_CR84 doi: 10.1088/1742-6596/824/1/012038 – ident: 9695_CR19 doi: 10.1109/ICICT48043.2020.9112534 |
| SSID | ssj0054992 |
| Score | 2.6321409 |
| Snippet | Energy crisis and climate change are the major concerns which has led to a significant growth in the renewable energy resources which includes mainly the solar... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2875 |
| SubjectTerms | Alternative energy sources Artificial intelligence Atmospheric models Atmospheric physics Decision making Deep learning Earth surface Energy management Engineering Forecasting techniques Machine learning Mathematical and Computational Engineering Original Paper Photovoltaic cells Radiation Renewable energy sources Renewable resources Smart grid Solar radiation Statistical models Weather forecasting Wind power Wind power generation |
| Title | Weather Forecasting for Renewable Energy System: A Review |
| URI | https://link.springer.com/article/10.1007/s11831-021-09695-3 https://www.proquest.com/docview/2690237582 |
| Volume | 29 |
| WOSCitedRecordID | wos000746772600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1886-1784 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9KAHp1NxOiUHbxpok6ZtvA3Z8CBD_NytNK8tCDJlnfrv-9KmTkUFPfTUJJT3_fre7wXgMJWxURo97kUm4EFhkOsQBSffVmBqHb6ugMLn0WgUj8f6woHCyqbbvSlJVpZ6DnYj6aPUV9CjQ624XIQlZafN2Bz96raxvzbhqWqcvrT__EPPQWW-P-OzO5rHmF_KopW3Gbb_953rsOaiS9avxWEDFvJJB9ou0mROj8sOrH4YQ7gJ-q6OA5m9pxPT0nZCMwpm2SUZwleLrWKDCiLI6vnmJ6zP6prCFtwMB9enZ9xdqcCRdG3GMS6MyTAQnkJj8sBHlacCDTntwPhIDI3DIMtjE2gvj6T2slxEIYaobAUPfbkNrcnjJN8BlulMFVEhyFpmQSQL48k0zCidEWlISZTqgt9QNkE3b9xee_GQzCclW0olRKmkolQiu3D0vuepnrbx6-pew7DEaV6ZkHBRGEJZkOjCccOg-eufT9v92_I9WBEWCVH1AvagNZs-5_uwjC-z-3J6UEnkGyTi1-E |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06k4nZoH37TQpulHfBuyMXEO0al7K801BUGmrFP_fZM0dSoq6EOfmoRyd7mP3v3uAA5TPxYBR9dxI8Eclgt0eIjUUbYtx1QbfG6Awv1oMIhHI35pQWFFVe1epSSNpp6B3ZT0qdCXqoeHPHD8eVhgesyOjtGvbyv9qwMek-P0fP3PP3QtVOb7Mz6bo5mP-SUtaqxNt_6_71yDVetdknYpDuswJ8cNqFtPk9h7XDRg5UMbwg3gd6UfSPScTkwLXQlNlDNLrpQifNXYKtIxEEFS9jc_IW1S5hQ24abbGZ72HDtSwUF116YOxrkQGTLqBiiEZB4GMqUolNFmwkPF0DhkmYwF466MfO5mkkYhhhjoDB56_hbUxo9juQ0k41mQRzlV2jJjkZ8L10_DTIUzNA1VEBU0wasom6DtN67HXjwks07JmlKJolRiKJX4TTh63_NUdtv4dXWrYlhib16RKOFSboiKgmgTjisGzV7_fNrO35YfwFJveNFP-meD811YphoVYeoCW1CbTp7lHiziy_S-mOwb6XwDTFnaxQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWsVt2DNw1NNpvHeivaolhKqa_eQnaSgCC1NFX_vrN52CoqiIecsruEeU9mvlmA49D2lSPRNExPCUMkCg3pIjfItyUYaocvM6Bw1-v1_OFQ9udQ_Fm3e1mSzDENekrTaNocR0lzBnwjSaQ0mNMjXekY9iIsCcpkdFPX4Oa-tMU6-cnqnZat__-7ZgGb-f6Mz65pFm9-KZFmnqdT_f83b8B6EXWyVi4mm7AQj2pQLSJQVuh3WoO1ufGEWyAf8viQ6fs7MUx1hzSjIJcNyEC-acwVa2fQQZbPPT9jLZbXGrbhrtO-Pb80iqsWDCQdnBroJ0pFKLjpoFKxsNCJQ46KnLlQFhKjfVdEsa-ENGPPlmYUc89FFx1d2UPL3oHK6HkU7wKLZOQkXsLJikbCsxNl2qEbUZrDQ5eSK6cOVknlAIs55Po6jKdgNkFZUyogSgUZpQK7Dicfe8b5FI5fVzdK5gWFRqYBCR2FJ5Qd8Tqclsyavf75tL2_LT-Clf5FJ-he9a73YZVrsETWLtiAynTyEh_AMr5OH9PJYSao72kq46k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weather+Forecasting+for+Renewable+Energy+System%3A+A+Review&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Meenal%2C+R.&rft.au=Binu%2C+D.&rft.au=Ramya%2C+K.+C.&rft.au=Michael%2C+Prawin+Angel&rft.date=2022-08-01&rft.pub=Springer+Netherlands&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=29&rft.issue=5&rft.spage=2875&rft.epage=2891&rft_id=info:doi/10.1007%2Fs11831-021-09695-3&rft.externalDocID=10_1007_s11831_021_09695_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon |