WSN Localization Technology Based on Hybrid GA-PSO-BP Algorithm for Indoor Three-Dimensional Space
Positioning accuracy is one of the main challenges in wireless sensor networks. Both the existing localization algorithms and the ranging accuracy need to be improved. This paper demonstrates that the PSO-BP method can effectively estimate the coordinates of mobile nodes in the indoor three-dimensio...
Uložené v:
| Vydané v: | Wireless personal communications Ročník 114; číslo 1; s. 167 - 184 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.09.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0929-6212, 1572-834X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Positioning accuracy is one of the main challenges in wireless sensor networks. Both the existing localization algorithms and the ranging accuracy need to be improved. This paper demonstrates that the PSO-BP method can effectively estimate the coordinates of mobile nodes in the indoor three-dimensional space. Convergence speed and estimation accuracy of the BP neural network model optimized for the PSO are also discussed. A hybrid GA-PSO-BP algorithm is then proposed. It improves the BP neural network’s prediction performance by optimizing parameters such as the number of neurons for each hidden layer, the learning rate and the error target of the BP network. The value of the coordinates of the specified beacon node and the RSSI value are the inputs of the BP neural network. The method for estimating the floor which the mobile node is on is used to further improve the node coordinate prediction accuracy. Compared with the PSO-BP, the simulation results show that the convergence speed of the hybrid GA-PSO-BP model is faster. It can effectively improve the node coordinate estimation accuracy of the mobile sensor networks. The average coordinate estimation error of the hybrid GA-PSO-BP algorithm proposed in this paper is about 0.215 m, which is 49.2. |
|---|---|
| AbstractList | Positioning accuracy is one of the main challenges in wireless sensor networks. Both the existing localization algorithms and the ranging accuracy need to be improved. This paper demonstrates that the PSO-BP method can effectively estimate the coordinates of mobile nodes in the indoor three-dimensional space. Convergence speed and estimation accuracy of the BP neural network model optimized for the PSO are also discussed. A hybrid GA-PSO-BP algorithm is then proposed. It improves the BP neural network’s prediction performance by optimizing parameters such as the number of neurons for each hidden layer, the learning rate and the error target of the BP network. The value of the coordinates of the specified beacon node and the RSSI value are the inputs of the BP neural network. The method for estimating the floor which the mobile node is on is used to further improve the node coordinate prediction accuracy. Compared with the PSO-BP, the simulation results show that the convergence speed of the hybrid GA-PSO-BP model is faster. It can effectively improve the node coordinate estimation accuracy of the mobile sensor networks. The average coordinate estimation error of the hybrid GA-PSO-BP algorithm proposed in this paper is about 0.215 m, which is 49.2. Positioning accuracy is one of the main challenges in wireless sensor networks. Both the existing localization algorithms and the ranging accuracy need to be improved. This paper demonstrates that the PSO-BP method can effectively estimate the coordinates of mobile nodes in the indoor three-dimensional space. Convergence speed and estimation accuracy of the BP neural network model optimized for the PSO are also discussed. A hybrid GA-PSO-BP algorithm is then proposed. It improves the BP neural network’s prediction performance by optimizing parameters such as the number of neurons for each hidden layer, the learning rate and the error target of the BP network. The value of the coordinates of the specified beacon node and the RSSI value are the inputs of the BP neural network. The method for estimating the floor which the mobile node is on is used to further improve the node coordinate prediction accuracy. Compared with the PSO-BP, the simulation results show that the convergence speed of the hybrid GA-PSO-BP model is faster. It can effectively improve the node coordinate estimation accuracy of the mobile sensor networks. The average coordinate estimation error of the hybrid GA-PSO-BP algorithm proposed in this paper is about 0.215 m, which is 49.2. |
| Author | Liu, Wenju Lv, Yongyang Wang, Ze Zhang, Zhihao |
| Author_xml | – sequence: 1 givenname: Yongyang surname: Lv fullname: Lv, Yongyang organization: School of Computer Science and Technology, Tiangong University – sequence: 2 givenname: Wenju surname: Liu fullname: Liu, Wenju email: 928634209lwj@sina.com organization: School of Computer Science and Technology, Tiangong University – sequence: 3 givenname: Ze surname: Wang fullname: Wang, Ze organization: School of Computer Science and Technology, Tiangong University – sequence: 4 givenname: Zhihao surname: Zhang fullname: Zhang, Zhihao organization: School of Computer Science and Technology, Tiangong University |
| BookMark | eNp9kM9PwjAUgBuDiYD-A56aeK72tdu6HQEVSIiQsERvTbd1MDJWbMcB_3oLMzHx4Onl_fjee_kGqNeYRiN0D_QRKBVPDoAJQSijhAoeChJcoT6EgpGYBx891KcJS0jEgN2ggXM7Sj2WsD7K3tdveGFyVVdfqq1Mg1OdbxtTm80Jj5XTBfa12SmzVYGnI7JaL8l4hUf1xtiq3e5xaSyeN4XxId1arclztdeN85tUjdcHletbdF2q2um7nzhE6etLOpmRxXI6n4wWJOeQtCSPRcagUGVcgADIFJRlksUQKU5jn0bi3OA8TygPA8qFKkMAHSQ6gzJUfIgeurUHaz6P2rVyZ47Wf-EkCziLk4h6fIhYN5Vb45zVpTzYaq_sSQKVZ5WyUym9SnlRKQMPxX-gvGovtlqrqvp_lHeo83eajba_X_1DfQPdUYkW |
| CitedBy_id | crossref_primary_10_3390_math13152453 crossref_primary_10_1007_s11227_022_04320_x crossref_primary_10_1007_s13198_023_01869_5 crossref_primary_10_1093_ijlct_ctab100 crossref_primary_10_3389_feart_2023_1308175 crossref_primary_10_3390_s25185722 crossref_primary_10_1016_j_energy_2024_131722 crossref_primary_10_1155_2022_3411203 crossref_primary_10_1016_j_comnet_2021_107945 crossref_primary_10_1007_s11277_020_07555_0 crossref_primary_10_1109_MCOMSTD_2025_3577400 crossref_primary_10_1109_ACCESS_2022_3150015 crossref_primary_10_1016_j_commatsci_2022_111699 crossref_primary_10_1109_JSEN_2021_3107414 crossref_primary_10_1007_s11235_021_00862_2 crossref_primary_10_1109_JSEN_2024_3396165 crossref_primary_10_1155_2024_2790066 crossref_primary_10_3390_s22124622 crossref_primary_10_1016_j_flowmeasinst_2024_102645 crossref_primary_10_1016_j_measurement_2023_114014 crossref_primary_10_1088_1361_6501_ad49bc crossref_primary_10_1017_aer_2022_54 crossref_primary_10_1155_2021_3443189 crossref_primary_10_1155_2022_5816453 crossref_primary_10_1155_2022_9193055 crossref_primary_10_3390_s23187929 crossref_primary_10_1155_2021_6623485 crossref_primary_10_1049_sfw2_12027 crossref_primary_10_1007_s10462_022_10199_0 crossref_primary_10_3390_ijtpp7030019 crossref_primary_10_1002_dac_70175 crossref_primary_10_1007_s00138_021_01177_7 crossref_primary_10_1038_s41598_023_47089_6 crossref_primary_10_1155_2022_2848255 crossref_primary_10_3390_s23031097 |
| Cites_doi | 10.1007/s11277-015-2394-2 10.1007/s00500-013-1067-x 10.1109/ACCESS.2018.2853996 10.1007/978-3-642-17697-5_11 10.1049/iet-wss.2012.0073 10.1007/s11277-015-2362-x 10.1155/2013/570964 10.3991/ijoe.v13i07.7285 10.1109/LCOMM.2014.2318031 10.1155/2015/140217 10.1016/j.jnca.2015.11.019 10.1155/2013/252056 10.2991/ijcis.10.1.85 10.1007/s11276-015-0936-x 10.1109/TSIPN.2017.2749976 10.1109/JSEN.2015.2483745 10.1007/s11277-017-4880-1 10.1016/j.comcom.2016.11.005 10.1007/978-3-642-25725-4_28 10.12700/APH.10.03.2013.3.15 10.1109/WPNC.2014.6843305 10.1109/ICDMIC.2014.6954228 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11277-020-07357-4 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Journalism & Communications Engineering |
| EISSN | 1572-834X |
| EndPage | 184 |
| ExternalDocumentID | 10_1007_s11277_020_07357_4 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FD6 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c319t-c87b21daf8d1711ba1ff9b816a3081ba678d1733c90354037af511e49eb1f5a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528972700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0929-6212 |
| IngestDate | Thu Sep 25 00:52:05 EDT 2025 Sat Nov 29 05:18:15 EST 2025 Tue Nov 18 22:36:00 EST 2025 Fri Feb 21 02:40:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Genetic algorithm (GA) BP neural network (BPNN) Wireless sensor networks (WSN) Node coordinate estimation Particle swarm optimization (PSO) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-c87b21daf8d1711ba1ff9b816a3081ba678d1733c90354037af511e49eb1f5a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2432896017 |
| PQPubID | 2043826 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2432896017 crossref_primary_10_1007_s11277_020_07357_4 crossref_citationtrail_10_1007_s11277_020_07357_4 springer_journals_10_1007_s11277_020_07357_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Wireless personal communications |
| PublicationTitleAbbrev | Wireless Pers Commun |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Yehai, Rirong, Liang (CR11) 2018; 26 Madani, Bouchra, Paule, Lyhyaoui (CR16) 2013; 2013 Subhan, Ahmed, Ashraf, Imran (CR14) 2015; 83 Fang, Nan, Jiang, Chen (CR17) 2017; 101 Gogolak, Pletl, Kukolj (CR24) 2013; 10 Payal, Rai, Reddy (CR26) 2015; 82 Sun, Liu, Liu (CR3) 2018; 3 Ryu, Irfan, Reyaz (CR1) 2015; 2015 CR13 Gharghan, Nordin, Jawad, Jawad, Ismail (CR30) 2018; 6 Halder, Ghosal (CR5) 2016; 60 Wu, Zhang, Yang (CR8) 2014; 133 Li, Han, Luo (CR7) 2009; 30 Zezhong, Xiaoping, Suining, Xiaobang (CR20) 2019; 44 Hua (CR29) 2019 Singh, Sharma (CR28) 2018; 98 Yi, Gao, Wang (CR4) 2018; 41 Subhan, Hasbullah, Ashraf (CR15) 2013; 2013 Luoh (CR23) 2014; 18 Sadreazami, Mohammadi, Asif (CR25) 2017; 4 Shan, Fu (CR12) 2016; 3 Rasool, Kemp (CR31) 2013; 3 Gharghan, Nordin, Ismail, Ali (CR10) 2015; 16 Bhuvaneswari, Vaidehi, Saranya, Moreno, Gavrilova, Kenneth Tan (CR2) 2010 CR9 CR22 CR21 SrideviPonmalar, Kumar, Senthil, Harikrishnan (CR27) 2017; 10 Xu, Zhou, Zhang (CR6) 2014; 18 Xiang (CR18) 2017; 13 Jin, Che, Xu, Wang, Wang (CR19) 2015; 21 SP Singh (7357_CR28) 2018; 98 H Sadreazami (7357_CR25) 2017; 4 7357_CR9 C Yehai (7357_CR11) 2018; 26 S Halder (7357_CR5) 2016; 60 B Sun (7357_CR3) 2018; 3 SK Gharghan (7357_CR10) 2015; 16 L Gogolak (7357_CR24) 2013; 10 Y Yi (7357_CR4) 2018; 41 Y Xu (7357_CR6) 2014; 18 E Madani (7357_CR16) 2013; 2013 F Subhan (7357_CR15) 2013; 2013 7357_CR13 A Payal (7357_CR26) 2015; 82 P SrideviPonmalar (7357_CR27) 2017; 10 R Jin (7357_CR19) 2015; 21 7357_CR21 PTV Bhuvaneswari (7357_CR2) 2010 B Xiang (7357_CR18) 2017; 13 SL Wu (7357_CR8) 2014; 133 L Luoh (7357_CR23) 2014; 18 FM Li (7357_CR7) 2009; 30 SK Gharghan (7357_CR30) 2018; 6 JH Ryu (7357_CR1) 2015; 2015 Z Shan (7357_CR12) 2016; 3 L Zezhong (7357_CR20) 2019; 44 I Rasool (7357_CR31) 2013; 3 X Fang (7357_CR17) 2017; 101 X Hua (7357_CR29) 2019 F Subhan (7357_CR14) 2015; 83 7357_CR22 |
| References_xml | – volume: 41 start-page: 75 issue: 2 year: 2018 end-page: 80 ident: CR4 article-title: Node localization with random walk for wireless sensor networks publication-title: Journal of Beijing University of Posts and Telecommunications – volume: 83 start-page: 297 year: 2015 end-page: 314 ident: CR14 article-title: Extended gradient RSSI predictor and filter for signal prediction and filtering in communication holes publication-title: Wireless Personal Communications doi: 10.1007/s11277-015-2394-2 – ident: CR22 – volume: 133 start-page: 134 issue: 12 year: 2014 end-page: 136 ident: CR8 article-title: WSN localization algorithm based on RSSI correction publication-title: Journal of Chongqing University – volume: 18 start-page: 443 year: 2014 end-page: 456 ident: CR23 article-title: ZigBee-based intelligent indoor positioning system soft computing publication-title: Soft Computing doi: 10.1007/s00500-013-1067-x – volume: 10 start-page: 221 year: 2013 end-page: 235 ident: CR24 article-title: Neural network-based indoor localization in WSN environments publication-title: Acta Polytechnica Hungarica – volume: 6 start-page: 38475 year: 2018 end-page: 38489 ident: CR30 article-title: Adaptive neural fuzzy inference system for accurate localization of wireless sensor network in outdoor and indoor cycling applications publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2853996 – start-page: 207 year: 2010 end-page: 222 ident: CR2 article-title: Distance based transmission power control scheme for indoor wireless sensor network publication-title: Transactions on computational science XI doi: 10.1007/978-3-642-17697-5_11 – volume: 3 start-page: 28 year: 2016 ident: CR12 article-title: Study of RSSI ranging optimization techniques based on particle filter model publication-title: Electronic Measurement Technology – volume: 3 start-page: 57 year: 2013 end-page: 68 ident: CR31 article-title: Statistical analysis of wireless sensor network Gaussian range estimation errors publication-title: IET Wireless Sensor Systems doi: 10.1049/iet-wss.2012.0073 – volume: 82 start-page: 2519 year: 2015 end-page: 2536 ident: CR26 article-title: Analysis of some feedforward artificial neural network training algorithms for developing localization framework in wireless sensor networks publication-title: Wireless Personal Communications doi: 10.1007/s11277-015-2362-x – volume: 3 start-page: 114 year: 2018 end-page: 119 ident: CR3 article-title: Research on Hdv-hop based large indoor location algorithm for wireless sensor networks publication-title: Computer Applications and Software – volume: 44 start-page: 26 issue: 1 year: 2019 end-page: 31 ident: CR20 article-title: An improved weighted centroid indoor positioning algorithm based on RSSI publication-title: Science of Surveying and Mapping – volume: 2013 start-page: 73 year: 2013 end-page: 85 ident: CR15 article-title: Kalman filter-based hybrid indoor position estimation technique in bluetooth networks publication-title: International Journal of Navigation and Observation doi: 10.1155/2013/570964 – volume: 13 start-page: 81 year: 2017 end-page: 90 ident: CR18 article-title: Application of ranging difference location algorithm in wireless sensor network location publication-title: International Journal of Online Engineering (iJOE) doi: 10.3991/ijoe.v13i07.7285 – volume: 18 start-page: 1055 year: 2014 end-page: 1058 ident: CR6 article-title: RSS-based source localization when path-loss model parameters are unknown publication-title: IEEE Communications Letters doi: 10.1109/LCOMM.2014.2318031 – volume: 2015 start-page: 1 year: 2015 end-page: 14 ident: CR1 article-title: A review on sensor network issues and robotics publication-title: Journal of Sensors doi: 10.1155/2015/140217 – ident: CR21 – volume: 60 start-page: 82 year: 2016 end-page: 94 ident: CR5 article-title: A survey on mobility-assisted localization techniques in wireless sensor networks publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2015.11.019 – volume: 2013 start-page: 1 year: 2013 end-page: 7 ident: CR16 article-title: Combining Kalman filtering with ZigBee protocol to improve localization in wireless sensor network publication-title: ISRN Sensor Networks doi: 10.1155/2013/252056 – volume: 10 start-page: 1263 year: 2017 end-page: 1271 ident: CR27 article-title: Hybrid firefly variants algorithm for localization optimization in WSN publication-title: International Journal of Computational Intelligence Systems doi: 10.2991/ijcis.10.1.85 – volume: 30 start-page: 15 year: 2009 end-page: 23 ident: CR7 article-title: Adaptive area location algorithm combining with packet lost rate and RSSI in wireless sensor networks publication-title: Journal on Communications – ident: CR13 – ident: CR9 – volume: 26 start-page: 289 issue: 4 year: 2018 end-page: 293 ident: CR11 article-title: Quadrilateral weighted centroid localization based on range correction of RSSI for wireless sensor networks publication-title: Computer Measurement Control – volume: 21 start-page: 2561 year: 2015 end-page: 2569 ident: CR19 article-title: An RSSI-based localization algorithm for outliers suppression in wireless sensor networks publication-title: Wireless Networks doi: 10.1007/s11276-015-0936-x – volume: 4 start-page: 137 year: 2017 end-page: 147 ident: CR25 article-title: Distributed-graph-based statistical approach for intrusion detection in cyber-physical systems publication-title: IEEE Transactions on Signal and Information Processing over Networks doi: 10.1109/TSIPN.2017.2749976 – volume: 16 start-page: 529 year: 2015 end-page: 541 ident: CR10 article-title: Accurate wireless sensor localization technique based on hybrid PSO-ANN algorithm for indoor and outdoor track cycling publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2015.2483745 – volume: 98 start-page: 487 year: 2018 end-page: 503 ident: CR28 article-title: A PSO based improved localization algorithm for wireless sensor network publication-title: Wireless Personal Communications doi: 10.1007/s11277-017-4880-1 – year: 2019 ident: CR29 publication-title: Wireless sensor network positioning technology based on ZigBee – volume: 101 start-page: 69 year: 2017 end-page: 81 ident: CR17 article-title: Robust node position estimation algorithms for wireless sensor networks based on improved adaptive Kalman filters publication-title: Computer Communications doi: 10.1016/j.comcom.2016.11.005 – volume: 4 start-page: 137 year: 2017 ident: 7357_CR25 publication-title: IEEE Transactions on Signal and Information Processing over Networks doi: 10.1109/TSIPN.2017.2749976 – volume: 3 start-page: 114 year: 2018 ident: 7357_CR3 publication-title: Computer Applications and Software – volume-title: Wireless sensor network positioning technology based on ZigBee year: 2019 ident: 7357_CR29 – volume: 13 start-page: 81 year: 2017 ident: 7357_CR18 publication-title: International Journal of Online Engineering (iJOE) doi: 10.3991/ijoe.v13i07.7285 – volume: 3 start-page: 28 year: 2016 ident: 7357_CR12 publication-title: Electronic Measurement Technology – volume: 44 start-page: 26 issue: 1 year: 2019 ident: 7357_CR20 publication-title: Science of Surveying and Mapping – volume: 98 start-page: 487 year: 2018 ident: 7357_CR28 publication-title: Wireless Personal Communications doi: 10.1007/s11277-017-4880-1 – volume: 2013 start-page: 73 year: 2013 ident: 7357_CR15 publication-title: International Journal of Navigation and Observation doi: 10.1155/2013/570964 – volume: 10 start-page: 1263 year: 2017 ident: 7357_CR27 publication-title: International Journal of Computational Intelligence Systems doi: 10.2991/ijcis.10.1.85 – volume: 18 start-page: 1055 year: 2014 ident: 7357_CR6 publication-title: IEEE Communications Letters doi: 10.1109/LCOMM.2014.2318031 – volume: 101 start-page: 69 year: 2017 ident: 7357_CR17 publication-title: Computer Communications doi: 10.1016/j.comcom.2016.11.005 – volume: 6 start-page: 38475 year: 2018 ident: 7357_CR30 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2853996 – volume: 82 start-page: 2519 year: 2015 ident: 7357_CR26 publication-title: Wireless Personal Communications doi: 10.1007/s11277-015-2362-x – start-page: 207 volume-title: Transactions on computational science XI year: 2010 ident: 7357_CR2 doi: 10.1007/978-3-642-17697-5_11 – ident: 7357_CR9 doi: 10.1007/978-3-642-25725-4_28 – volume: 41 start-page: 75 issue: 2 year: 2018 ident: 7357_CR4 publication-title: Journal of Beijing University of Posts and Telecommunications – volume: 10 start-page: 221 year: 2013 ident: 7357_CR24 publication-title: Acta Polytechnica Hungarica doi: 10.12700/APH.10.03.2013.3.15 – ident: 7357_CR13 doi: 10.1109/WPNC.2014.6843305 – volume: 18 start-page: 443 year: 2014 ident: 7357_CR23 publication-title: Soft Computing doi: 10.1007/s00500-013-1067-x – volume: 3 start-page: 57 year: 2013 ident: 7357_CR31 publication-title: IET Wireless Sensor Systems doi: 10.1049/iet-wss.2012.0073 – volume: 2013 start-page: 1 year: 2013 ident: 7357_CR16 publication-title: ISRN Sensor Networks doi: 10.1155/2013/252056 – volume: 16 start-page: 529 year: 2015 ident: 7357_CR10 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2015.2483745 – volume: 26 start-page: 289 issue: 4 year: 2018 ident: 7357_CR11 publication-title: Computer Measurement Control – volume: 60 start-page: 82 year: 2016 ident: 7357_CR5 publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2015.11.019 – volume: 2015 start-page: 1 year: 2015 ident: 7357_CR1 publication-title: Journal of Sensors doi: 10.1155/2015/140217 – ident: 7357_CR22 doi: 10.1109/ICDMIC.2014.6954228 – volume: 21 start-page: 2561 year: 2015 ident: 7357_CR19 publication-title: Wireless Networks doi: 10.1007/s11276-015-0936-x – volume: 133 start-page: 134 issue: 12 year: 2014 ident: 7357_CR8 publication-title: Journal of Chongqing University – volume: 83 start-page: 297 year: 2015 ident: 7357_CR14 publication-title: Wireless Personal Communications doi: 10.1007/s11277-015-2394-2 – volume: 30 start-page: 15 year: 2009 ident: 7357_CR7 publication-title: Journal on Communications – ident: 7357_CR21 |
| SSID | ssj0010092 |
| Score | 2.4055068 |
| Snippet | Positioning accuracy is one of the main challenges in wireless sensor networks. Both the existing localization algorithms and the ranging accuracy need to be... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 167 |
| SubjectTerms | Accuracy Algorithms Communications Engineering Computer Communication Networks Computer simulation Convergence Engineering Localization Model accuracy Networks Neural networks Nodes Remote sensors Signal,Image and Speech Processing Wireless networks Wireless sensor networks |
| Title | WSN Localization Technology Based on Hybrid GA-PSO-BP Algorithm for Indoor Three-Dimensional Space |
| URI | https://link.springer.com/article/10.1007/s11277-020-07357-4 https://www.proquest.com/docview/2432896017 |
| Volume | 114 |
| WOSCitedRecordID | wos000528972700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-834X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010092 issn: 0929-6212 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPfkzFuSl5EF800LTp1-OmzgljDjt0byVNWx3sQ9Yp-N976drViQral0KTlpK75HeXy_0O4JTzkNu6FlPphBrlkaZRYTGLIlgHoS1N05Epz2zb7nScft_tZklhSX7aPQ9Jpit1kezGVLhRuTuolqZN-SqsIdw5qmDDvfewiB0oGqGUYU8d7MCVOUuV-f4by3BU2JhfwqIp2jS3__efO7CVWZekPleHXViJxmXY_MQ5WIZq1mmQjMgZWcoPSfYgePQ6pK3wLcvPJMXeO2kg4oUEn7XeVZ4XuanTrndHG11SHz5NpoPZ84igDUxux-EEbz1Uk4heqfIBc-oP4qGDHu1Dr3ndu2zRrAwDlTg_ZyhFO9BZKGInZDZjgWBx7AYOs4SB9kQgEO6wwTCkq6lNJMMWMVpxEXcRBmJTGAdQGk_G0SGQWBOMWYHUpMPxkm6om7ob4BondHQz4wqwXBi-zCjKVaWMoV-QK6vB9XFw_XRwfV6B88U7L3OCjl9713IZ-9lkTXydG-h2omdqV-Ail2nR_PPXjv7WvQobeqoW6oRaDUqz6Wt0DOvybTZIpiepEn8AUh3oTA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqDH1NxbmoexBcNNG26to-bOjecc7ihvpU0bXWwD1mn4H_vpWtXJypoXwpNGkLukt9dLvcLwDHnPrd0LaTS9jXKA02joszKFMHa8y1pmraMeWabVqtlPz467SQpLEpPu6chyXilzpLdmAo3KncH1dK0KF-EJY6IpRjz7zr3s9iBohGKGfbUwQ5cmZNUme_bmIejzMb8EhaN0aa28b9-bsJ6Yl2SylQdtmAhGOZh7RPnYB6KSaVeNCAnZC4_JNoG76HTIk2Fb0l-Jsn23kkVEc8n-K3-rvK8yFWFtju3tNomlf7TaNybPA8I2sCkMfRH-OqimgT0Ql0fMKX-IB100IMd6NYuu-d1mlzDQCXOzwlK0fJ05ovQ9pnFmCdYGDqezcrCQHvCEwh3WGAY0tHUJpJhiRCtuIA7CAOhKYxdyA1Hw2APSKgJxsqe1KTN8ZGOr5u64-EaJ3R0M8MCsFQYrkwoytVNGX03I1dWg-vi4Lrx4Lq8AKezf16mBB2_1i6lMnaTyRq5OjfQ7UTP1CrAWSrTrPjn1vb_Vv0IVurdm6bbbLSui7CqxyqiTquVIDcZvwYHsCzfJr1ofBgr9Ac9gesw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_8QvTBj6k4P_MgvmiwadO1fZwfU3HMwYburaRJowPtZKuC_72XrrObqCD2pdCkpeQu-d3l7n4BOOBccc-2NJW-siiPLYuKCqtQBOtIedJ1fZnxzNa9RsPvdILmWBV_lu0-CkkOaxoMS1OSnrwofVIUvjETejSuD6qo61E-DbPcJNIbf7119xlHMJRCGdueSfLAVTovm_n-G5PQVNibX0KkGfLUlv__zyuwlFudpDpUk1WYipMSLI5xEZZgO-_UHTyTQzJRNzJYg-i-1SB1g3t53SYp9uTJKSKhIvjs6t3Uf5HLKm22bulpk1SfHnr9bvr4TNA2JteJ6uGtjeoT03NzrMCQEoS00HGP16Fdu2ifXdH8eAYqcd6mKF0vspkS2lfMYywSTOsg8llFOGhnRAJhEBscRwaW2VxyPKHRuot5gPCgXeFswEzSS-JNINoSjFUiaUmf4yUDZbt2EOHaJ2x0P3UZ2Egwocypy80JGk9hQbpsBjfEwQ2zwQ15GY4-33kZEnf82ntnJO8wn8SD0OYOuqPosXplOB7Jt2j--Wtbf-u-D_PN81pYv27cbMOCnWmISWLbgZm0_xrvwpx8S7uD_l6m2x8XvPQU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WSN+Localization+Technology+Based+on+Hybrid+GA-PSO-BP+Algorithm+for+Indoor+Three-Dimensional+Space&rft.jtitle=Wireless+personal+communications&rft.au=Lv%2C+Yongyang&rft.au=Liu%2C+Wenju&rft.au=Wang%2C+Ze&rft.au=Zhang%2C+Zhihao&rft.date=2020-09-01&rft.issn=0929-6212&rft.eissn=1572-834X&rft.volume=114&rft.issue=1&rft.spage=167&rft.epage=184&rft_id=info:doi/10.1007%2Fs11277-020-07357-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11277_020_07357_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-6212&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-6212&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-6212&client=summon |