WSN Localization Technology Based on Hybrid GA-PSO-BP Algorithm for Indoor Three-Dimensional Space

Positioning accuracy is one of the main challenges in wireless sensor networks. Both the existing localization algorithms and the ranging accuracy need to be improved. This paper demonstrates that the PSO-BP method can effectively estimate the coordinates of mobile nodes in the indoor three-dimensio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Wireless personal communications Ročník 114; číslo 1; s. 167 - 184
Hlavní autori: Lv, Yongyang, Liu, Wenju, Wang, Ze, Zhang, Zhihao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.09.2020
Springer Nature B.V
Predmet:
ISSN:0929-6212, 1572-834X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Positioning accuracy is one of the main challenges in wireless sensor networks. Both the existing localization algorithms and the ranging accuracy need to be improved. This paper demonstrates that the PSO-BP method can effectively estimate the coordinates of mobile nodes in the indoor three-dimensional space. Convergence speed and estimation accuracy of the BP neural network model optimized for the PSO are also discussed. A hybrid GA-PSO-BP algorithm is then proposed. It improves the BP neural network’s prediction performance by optimizing parameters such as the number of neurons for each hidden layer, the learning rate and the error target of the BP network. The value of the coordinates of the specified beacon node and the RSSI value are the inputs of the BP neural network. The method for estimating the floor which the mobile node is on is used to further improve the node coordinate prediction accuracy. Compared with the PSO-BP, the simulation results show that the convergence speed of the hybrid GA-PSO-BP model is faster. It can effectively improve the node coordinate estimation accuracy of the mobile sensor networks. The average coordinate estimation error of the hybrid GA-PSO-BP algorithm proposed in this paper is about 0.215 m, which is 49.2.
AbstractList Positioning accuracy is one of the main challenges in wireless sensor networks. Both the existing localization algorithms and the ranging accuracy need to be improved. This paper demonstrates that the PSO-BP method can effectively estimate the coordinates of mobile nodes in the indoor three-dimensional space. Convergence speed and estimation accuracy of the BP neural network model optimized for the PSO are also discussed. A hybrid GA-PSO-BP algorithm is then proposed. It improves the BP neural network’s prediction performance by optimizing parameters such as the number of neurons for each hidden layer, the learning rate and the error target of the BP network. The value of the coordinates of the specified beacon node and the RSSI value are the inputs of the BP neural network. The method for estimating the floor which the mobile node is on is used to further improve the node coordinate prediction accuracy. Compared with the PSO-BP, the simulation results show that the convergence speed of the hybrid GA-PSO-BP model is faster. It can effectively improve the node coordinate estimation accuracy of the mobile sensor networks. The average coordinate estimation error of the hybrid GA-PSO-BP algorithm proposed in this paper is about 0.215 m, which is 49.2.
Positioning accuracy is one of the main challenges in wireless sensor networks. Both the existing localization algorithms and the ranging accuracy need to be improved. This paper demonstrates that the PSO-BP method can effectively estimate the coordinates of mobile nodes in the indoor three-dimensional space. Convergence speed and estimation accuracy of the BP neural network model optimized for the PSO are also discussed. A hybrid GA-PSO-BP algorithm is then proposed. It improves the BP neural network’s prediction performance by optimizing parameters such as the number of neurons for each hidden layer, the learning rate and the error target of the BP network. The value of the coordinates of the specified beacon node and the RSSI value are the inputs of the BP neural network. The method for estimating the floor which the mobile node is on is used to further improve the node coordinate prediction accuracy. Compared with the PSO-BP, the simulation results show that the convergence speed of the hybrid GA-PSO-BP model is faster. It can effectively improve the node coordinate estimation accuracy of the mobile sensor networks. The average coordinate estimation error of the hybrid GA-PSO-BP algorithm proposed in this paper is about 0.215 m, which is 49.2.
Author Liu, Wenju
Lv, Yongyang
Wang, Ze
Zhang, Zhihao
Author_xml – sequence: 1
  givenname: Yongyang
  surname: Lv
  fullname: Lv, Yongyang
  organization: School of Computer Science and Technology, Tiangong University
– sequence: 2
  givenname: Wenju
  surname: Liu
  fullname: Liu, Wenju
  email: 928634209lwj@sina.com
  organization: School of Computer Science and Technology, Tiangong University
– sequence: 3
  givenname: Ze
  surname: Wang
  fullname: Wang, Ze
  organization: School of Computer Science and Technology, Tiangong University
– sequence: 4
  givenname: Zhihao
  surname: Zhang
  fullname: Zhang, Zhihao
  organization: School of Computer Science and Technology, Tiangong University
BookMark eNp9kM9PwjAUgBuDiYD-A56aeK72tdu6HQEVSIiQsERvTbd1MDJWbMcB_3oLMzHx4Onl_fjee_kGqNeYRiN0D_QRKBVPDoAJQSijhAoeChJcoT6EgpGYBx891KcJS0jEgN2ggXM7Sj2WsD7K3tdveGFyVVdfqq1Mg1OdbxtTm80Jj5XTBfa12SmzVYGnI7JaL8l4hUf1xtiq3e5xaSyeN4XxId1arclztdeN85tUjdcHletbdF2q2um7nzhE6etLOpmRxXI6n4wWJOeQtCSPRcagUGVcgADIFJRlksUQKU5jn0bi3OA8TygPA8qFKkMAHSQ6gzJUfIgeurUHaz6P2rVyZ47Wf-EkCziLk4h6fIhYN5Vb45zVpTzYaq_sSQKVZ5WyUym9SnlRKQMPxX-gvGovtlqrqvp_lHeo83eajba_X_1DfQPdUYkW
CitedBy_id crossref_primary_10_3390_math13152453
crossref_primary_10_1007_s11227_022_04320_x
crossref_primary_10_1007_s13198_023_01869_5
crossref_primary_10_1093_ijlct_ctab100
crossref_primary_10_3389_feart_2023_1308175
crossref_primary_10_3390_s25185722
crossref_primary_10_1016_j_energy_2024_131722
crossref_primary_10_1155_2022_3411203
crossref_primary_10_1016_j_comnet_2021_107945
crossref_primary_10_1007_s11277_020_07555_0
crossref_primary_10_1109_MCOMSTD_2025_3577400
crossref_primary_10_1109_ACCESS_2022_3150015
crossref_primary_10_1016_j_commatsci_2022_111699
crossref_primary_10_1109_JSEN_2021_3107414
crossref_primary_10_1007_s11235_021_00862_2
crossref_primary_10_1109_JSEN_2024_3396165
crossref_primary_10_1155_2024_2790066
crossref_primary_10_3390_s22124622
crossref_primary_10_1016_j_flowmeasinst_2024_102645
crossref_primary_10_1016_j_measurement_2023_114014
crossref_primary_10_1088_1361_6501_ad49bc
crossref_primary_10_1017_aer_2022_54
crossref_primary_10_1155_2021_3443189
crossref_primary_10_1155_2022_5816453
crossref_primary_10_1155_2022_9193055
crossref_primary_10_3390_s23187929
crossref_primary_10_1155_2021_6623485
crossref_primary_10_1049_sfw2_12027
crossref_primary_10_1007_s10462_022_10199_0
crossref_primary_10_3390_ijtpp7030019
crossref_primary_10_1002_dac_70175
crossref_primary_10_1007_s00138_021_01177_7
crossref_primary_10_1038_s41598_023_47089_6
crossref_primary_10_1155_2022_2848255
crossref_primary_10_3390_s23031097
Cites_doi 10.1007/s11277-015-2394-2
10.1007/s00500-013-1067-x
10.1109/ACCESS.2018.2853996
10.1007/978-3-642-17697-5_11
10.1049/iet-wss.2012.0073
10.1007/s11277-015-2362-x
10.1155/2013/570964
10.3991/ijoe.v13i07.7285
10.1109/LCOMM.2014.2318031
10.1155/2015/140217
10.1016/j.jnca.2015.11.019
10.1155/2013/252056
10.2991/ijcis.10.1.85
10.1007/s11276-015-0936-x
10.1109/TSIPN.2017.2749976
10.1109/JSEN.2015.2483745
10.1007/s11277-017-4880-1
10.1016/j.comcom.2016.11.005
10.1007/978-3-642-25725-4_28
10.12700/APH.10.03.2013.3.15
10.1109/WPNC.2014.6843305
10.1109/ICDMIC.2014.6954228
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11277-020-07357-4
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1572-834X
EndPage 184
ExternalDocumentID 10_1007_s11277_020_07357_4
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FD6
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c319t-c87b21daf8d1711ba1ff9b816a3081ba678d1733c90354037af511e49eb1f5a3
IEDL.DBID RSV
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528972700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0929-6212
IngestDate Thu Sep 25 00:52:05 EDT 2025
Sat Nov 29 05:18:15 EST 2025
Tue Nov 18 22:36:00 EST 2025
Fri Feb 21 02:40:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Genetic algorithm (GA)
BP neural network (BPNN)
Wireless sensor networks (WSN)
Node coordinate estimation
Particle swarm optimization (PSO)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c87b21daf8d1711ba1ff9b816a3081ba678d1733c90354037af511e49eb1f5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2432896017
PQPubID 2043826
PageCount 18
ParticipantIDs proquest_journals_2432896017
crossref_primary_10_1007_s11277_020_07357_4
crossref_citationtrail_10_1007_s11277_020_07357_4
springer_journals_10_1007_s11277_020_07357_4
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Wireless personal communications
PublicationTitleAbbrev Wireless Pers Commun
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Yehai, Rirong, Liang (CR11) 2018; 26
Madani, Bouchra, Paule, Lyhyaoui (CR16) 2013; 2013
Subhan, Ahmed, Ashraf, Imran (CR14) 2015; 83
Fang, Nan, Jiang, Chen (CR17) 2017; 101
Gogolak, Pletl, Kukolj (CR24) 2013; 10
Payal, Rai, Reddy (CR26) 2015; 82
Sun, Liu, Liu (CR3) 2018; 3
Ryu, Irfan, Reyaz (CR1) 2015; 2015
CR13
Gharghan, Nordin, Jawad, Jawad, Ismail (CR30) 2018; 6
Halder, Ghosal (CR5) 2016; 60
Wu, Zhang, Yang (CR8) 2014; 133
Li, Han, Luo (CR7) 2009; 30
Zezhong, Xiaoping, Suining, Xiaobang (CR20) 2019; 44
Hua (CR29) 2019
Singh, Sharma (CR28) 2018; 98
Yi, Gao, Wang (CR4) 2018; 41
Subhan, Hasbullah, Ashraf (CR15) 2013; 2013
Luoh (CR23) 2014; 18
Sadreazami, Mohammadi, Asif (CR25) 2017; 4
Shan, Fu (CR12) 2016; 3
Rasool, Kemp (CR31) 2013; 3
Gharghan, Nordin, Ismail, Ali (CR10) 2015; 16
Bhuvaneswari, Vaidehi, Saranya, Moreno, Gavrilova, Kenneth Tan (CR2) 2010
CR9
CR22
CR21
SrideviPonmalar, Kumar, Senthil, Harikrishnan (CR27) 2017; 10
Xu, Zhou, Zhang (CR6) 2014; 18
Xiang (CR18) 2017; 13
Jin, Che, Xu, Wang, Wang (CR19) 2015; 21
SP Singh (7357_CR28) 2018; 98
H Sadreazami (7357_CR25) 2017; 4
7357_CR9
C Yehai (7357_CR11) 2018; 26
S Halder (7357_CR5) 2016; 60
B Sun (7357_CR3) 2018; 3
SK Gharghan (7357_CR10) 2015; 16
L Gogolak (7357_CR24) 2013; 10
Y Yi (7357_CR4) 2018; 41
Y Xu (7357_CR6) 2014; 18
E Madani (7357_CR16) 2013; 2013
F Subhan (7357_CR15) 2013; 2013
7357_CR13
A Payal (7357_CR26) 2015; 82
P SrideviPonmalar (7357_CR27) 2017; 10
R Jin (7357_CR19) 2015; 21
7357_CR21
PTV Bhuvaneswari (7357_CR2) 2010
B Xiang (7357_CR18) 2017; 13
SL Wu (7357_CR8) 2014; 133
L Luoh (7357_CR23) 2014; 18
FM Li (7357_CR7) 2009; 30
SK Gharghan (7357_CR30) 2018; 6
JH Ryu (7357_CR1) 2015; 2015
Z Shan (7357_CR12) 2016; 3
L Zezhong (7357_CR20) 2019; 44
I Rasool (7357_CR31) 2013; 3
X Fang (7357_CR17) 2017; 101
X Hua (7357_CR29) 2019
F Subhan (7357_CR14) 2015; 83
7357_CR22
References_xml – volume: 41
  start-page: 75
  issue: 2
  year: 2018
  end-page: 80
  ident: CR4
  article-title: Node localization with random walk for wireless sensor networks
  publication-title: Journal of Beijing University of Posts and Telecommunications
– volume: 83
  start-page: 297
  year: 2015
  end-page: 314
  ident: CR14
  article-title: Extended gradient RSSI predictor and filter for signal prediction and filtering in communication holes
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-015-2394-2
– ident: CR22
– volume: 133
  start-page: 134
  issue: 12
  year: 2014
  end-page: 136
  ident: CR8
  article-title: WSN localization algorithm based on RSSI correction
  publication-title: Journal of Chongqing University
– volume: 18
  start-page: 443
  year: 2014
  end-page: 456
  ident: CR23
  article-title: ZigBee-based intelligent indoor positioning system soft computing
  publication-title: Soft Computing
  doi: 10.1007/s00500-013-1067-x
– volume: 10
  start-page: 221
  year: 2013
  end-page: 235
  ident: CR24
  article-title: Neural network-based indoor localization in WSN environments
  publication-title: Acta Polytechnica Hungarica
– volume: 6
  start-page: 38475
  year: 2018
  end-page: 38489
  ident: CR30
  article-title: Adaptive neural fuzzy inference system for accurate localization of wireless sensor network in outdoor and indoor cycling applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2853996
– start-page: 207
  year: 2010
  end-page: 222
  ident: CR2
  article-title: Distance based transmission power control scheme for indoor wireless sensor network
  publication-title: Transactions on computational science XI
  doi: 10.1007/978-3-642-17697-5_11
– volume: 3
  start-page: 28
  year: 2016
  ident: CR12
  article-title: Study of RSSI ranging optimization techniques based on particle filter model
  publication-title: Electronic Measurement Technology
– volume: 3
  start-page: 57
  year: 2013
  end-page: 68
  ident: CR31
  article-title: Statistical analysis of wireless sensor network Gaussian range estimation errors
  publication-title: IET Wireless Sensor Systems
  doi: 10.1049/iet-wss.2012.0073
– volume: 82
  start-page: 2519
  year: 2015
  end-page: 2536
  ident: CR26
  article-title: Analysis of some feedforward artificial neural network training algorithms for developing localization framework in wireless sensor networks
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-015-2362-x
– volume: 3
  start-page: 114
  year: 2018
  end-page: 119
  ident: CR3
  article-title: Research on Hdv-hop based large indoor location algorithm for wireless sensor networks
  publication-title: Computer Applications and Software
– volume: 44
  start-page: 26
  issue: 1
  year: 2019
  end-page: 31
  ident: CR20
  article-title: An improved weighted centroid indoor positioning algorithm based on RSSI
  publication-title: Science of Surveying and Mapping
– volume: 2013
  start-page: 73
  year: 2013
  end-page: 85
  ident: CR15
  article-title: Kalman filter-based hybrid indoor position estimation technique in bluetooth networks
  publication-title: International Journal of Navigation and Observation
  doi: 10.1155/2013/570964
– volume: 13
  start-page: 81
  year: 2017
  end-page: 90
  ident: CR18
  article-title: Application of ranging difference location algorithm in wireless sensor network location
  publication-title: International Journal of Online Engineering (iJOE)
  doi: 10.3991/ijoe.v13i07.7285
– volume: 18
  start-page: 1055
  year: 2014
  end-page: 1058
  ident: CR6
  article-title: RSS-based source localization when path-loss model parameters are unknown
  publication-title: IEEE Communications Letters
  doi: 10.1109/LCOMM.2014.2318031
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 14
  ident: CR1
  article-title: A review on sensor network issues and robotics
  publication-title: Journal of Sensors
  doi: 10.1155/2015/140217
– ident: CR21
– volume: 60
  start-page: 82
  year: 2016
  end-page: 94
  ident: CR5
  article-title: A survey on mobility-assisted localization techniques in wireless sensor networks
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2015.11.019
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 7
  ident: CR16
  article-title: Combining Kalman filtering with ZigBee protocol to improve localization in wireless sensor network
  publication-title: ISRN Sensor Networks
  doi: 10.1155/2013/252056
– volume: 10
  start-page: 1263
  year: 2017
  end-page: 1271
  ident: CR27
  article-title: Hybrid firefly variants algorithm for localization optimization in WSN
  publication-title: International Journal of Computational Intelligence Systems
  doi: 10.2991/ijcis.10.1.85
– volume: 30
  start-page: 15
  year: 2009
  end-page: 23
  ident: CR7
  article-title: Adaptive area location algorithm combining with packet lost rate and RSSI in wireless sensor networks
  publication-title: Journal on Communications
– ident: CR13
– ident: CR9
– volume: 26
  start-page: 289
  issue: 4
  year: 2018
  end-page: 293
  ident: CR11
  article-title: Quadrilateral weighted centroid localization based on range correction of RSSI for wireless sensor networks
  publication-title: Computer Measurement Control
– volume: 21
  start-page: 2561
  year: 2015
  end-page: 2569
  ident: CR19
  article-title: An RSSI-based localization algorithm for outliers suppression in wireless sensor networks
  publication-title: Wireless Networks
  doi: 10.1007/s11276-015-0936-x
– volume: 4
  start-page: 137
  year: 2017
  end-page: 147
  ident: CR25
  article-title: Distributed-graph-based statistical approach for intrusion detection in cyber-physical systems
  publication-title: IEEE Transactions on Signal and Information Processing over Networks
  doi: 10.1109/TSIPN.2017.2749976
– volume: 16
  start-page: 529
  year: 2015
  end-page: 541
  ident: CR10
  article-title: Accurate wireless sensor localization technique based on hybrid PSO-ANN algorithm for indoor and outdoor track cycling
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2015.2483745
– volume: 98
  start-page: 487
  year: 2018
  end-page: 503
  ident: CR28
  article-title: A PSO based improved localization algorithm for wireless sensor network
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-017-4880-1
– year: 2019
  ident: CR29
  publication-title: Wireless sensor network positioning technology based on ZigBee
– volume: 101
  start-page: 69
  year: 2017
  end-page: 81
  ident: CR17
  article-title: Robust node position estimation algorithms for wireless sensor networks based on improved adaptive Kalman filters
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2016.11.005
– volume: 4
  start-page: 137
  year: 2017
  ident: 7357_CR25
  publication-title: IEEE Transactions on Signal and Information Processing over Networks
  doi: 10.1109/TSIPN.2017.2749976
– volume: 3
  start-page: 114
  year: 2018
  ident: 7357_CR3
  publication-title: Computer Applications and Software
– volume-title: Wireless sensor network positioning technology based on ZigBee
  year: 2019
  ident: 7357_CR29
– volume: 13
  start-page: 81
  year: 2017
  ident: 7357_CR18
  publication-title: International Journal of Online Engineering (iJOE)
  doi: 10.3991/ijoe.v13i07.7285
– volume: 3
  start-page: 28
  year: 2016
  ident: 7357_CR12
  publication-title: Electronic Measurement Technology
– volume: 44
  start-page: 26
  issue: 1
  year: 2019
  ident: 7357_CR20
  publication-title: Science of Surveying and Mapping
– volume: 98
  start-page: 487
  year: 2018
  ident: 7357_CR28
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-017-4880-1
– volume: 2013
  start-page: 73
  year: 2013
  ident: 7357_CR15
  publication-title: International Journal of Navigation and Observation
  doi: 10.1155/2013/570964
– volume: 10
  start-page: 1263
  year: 2017
  ident: 7357_CR27
  publication-title: International Journal of Computational Intelligence Systems
  doi: 10.2991/ijcis.10.1.85
– volume: 18
  start-page: 1055
  year: 2014
  ident: 7357_CR6
  publication-title: IEEE Communications Letters
  doi: 10.1109/LCOMM.2014.2318031
– volume: 101
  start-page: 69
  year: 2017
  ident: 7357_CR17
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2016.11.005
– volume: 6
  start-page: 38475
  year: 2018
  ident: 7357_CR30
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2853996
– volume: 82
  start-page: 2519
  year: 2015
  ident: 7357_CR26
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-015-2362-x
– start-page: 207
  volume-title: Transactions on computational science XI
  year: 2010
  ident: 7357_CR2
  doi: 10.1007/978-3-642-17697-5_11
– ident: 7357_CR9
  doi: 10.1007/978-3-642-25725-4_28
– volume: 41
  start-page: 75
  issue: 2
  year: 2018
  ident: 7357_CR4
  publication-title: Journal of Beijing University of Posts and Telecommunications
– volume: 10
  start-page: 221
  year: 2013
  ident: 7357_CR24
  publication-title: Acta Polytechnica Hungarica
  doi: 10.12700/APH.10.03.2013.3.15
– ident: 7357_CR13
  doi: 10.1109/WPNC.2014.6843305
– volume: 18
  start-page: 443
  year: 2014
  ident: 7357_CR23
  publication-title: Soft Computing
  doi: 10.1007/s00500-013-1067-x
– volume: 3
  start-page: 57
  year: 2013
  ident: 7357_CR31
  publication-title: IET Wireless Sensor Systems
  doi: 10.1049/iet-wss.2012.0073
– volume: 2013
  start-page: 1
  year: 2013
  ident: 7357_CR16
  publication-title: ISRN Sensor Networks
  doi: 10.1155/2013/252056
– volume: 16
  start-page: 529
  year: 2015
  ident: 7357_CR10
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2015.2483745
– volume: 26
  start-page: 289
  issue: 4
  year: 2018
  ident: 7357_CR11
  publication-title: Computer Measurement Control
– volume: 60
  start-page: 82
  year: 2016
  ident: 7357_CR5
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2015.11.019
– volume: 2015
  start-page: 1
  year: 2015
  ident: 7357_CR1
  publication-title: Journal of Sensors
  doi: 10.1155/2015/140217
– ident: 7357_CR22
  doi: 10.1109/ICDMIC.2014.6954228
– volume: 21
  start-page: 2561
  year: 2015
  ident: 7357_CR19
  publication-title: Wireless Networks
  doi: 10.1007/s11276-015-0936-x
– volume: 133
  start-page: 134
  issue: 12
  year: 2014
  ident: 7357_CR8
  publication-title: Journal of Chongqing University
– volume: 83
  start-page: 297
  year: 2015
  ident: 7357_CR14
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-015-2394-2
– volume: 30
  start-page: 15
  year: 2009
  ident: 7357_CR7
  publication-title: Journal on Communications
– ident: 7357_CR21
SSID ssj0010092
Score 2.4055068
Snippet Positioning accuracy is one of the main challenges in wireless sensor networks. Both the existing localization algorithms and the ranging accuracy need to be...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 167
SubjectTerms Accuracy
Algorithms
Communications Engineering
Computer Communication Networks
Computer simulation
Convergence
Engineering
Localization
Model accuracy
Networks
Neural networks
Nodes
Remote sensors
Signal,Image and Speech Processing
Wireless networks
Wireless sensor networks
Title WSN Localization Technology Based on Hybrid GA-PSO-BP Algorithm for Indoor Three-Dimensional Space
URI https://link.springer.com/article/10.1007/s11277-020-07357-4
https://www.proquest.com/docview/2432896017
Volume 114
WOSCitedRecordID wos000528972700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-834X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPfkzFuSl5EF800LTp1-OmzgljDjt0byVNWx3sQ9Yp-N976drViQral0KTlpK75HeXy_0O4JTzkNu6FlPphBrlkaZRYTGLIlgHoS1N05Epz2zb7nScft_tZklhSX7aPQ9Jpit1kezGVLhRuTuolqZN-SqsIdw5qmDDvfewiB0oGqGUYU8d7MCVOUuV-f4by3BU2JhfwqIp2jS3__efO7CVWZekPleHXViJxmXY_MQ5WIZq1mmQjMgZWcoPSfYgePQ6pK3wLcvPJMXeO2kg4oUEn7XeVZ4XuanTrndHG11SHz5NpoPZ84igDUxux-EEbz1Uk4heqfIBc-oP4qGDHu1Dr3ndu2zRrAwDlTg_ZyhFO9BZKGInZDZjgWBx7AYOs4SB9kQgEO6wwTCkq6lNJMMWMVpxEXcRBmJTGAdQGk_G0SGQWBOMWYHUpMPxkm6om7ob4BondHQz4wqwXBi-zCjKVaWMoV-QK6vB9XFw_XRwfV6B88U7L3OCjl9713IZ-9lkTXydG-h2omdqV-Ail2nR_PPXjv7WvQobeqoW6oRaDUqz6Wt0DOvybTZIpiepEn8AUh3oTA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqDH1NxbmoexBcNNG26to-bOjecc7ihvpU0bXWwD1mn4H_vpWtXJypoXwpNGkLukt9dLvcLwDHnPrd0LaTS9jXKA02joszKFMHa8y1pmraMeWabVqtlPz467SQpLEpPu6chyXilzpLdmAo3KncH1dK0KF-EJY6IpRjz7zr3s9iBohGKGfbUwQ5cmZNUme_bmIejzMb8EhaN0aa28b9-bsJ6Yl2SylQdtmAhGOZh7RPnYB6KSaVeNCAnZC4_JNoG76HTIk2Fb0l-Jsn23kkVEc8n-K3-rvK8yFWFtju3tNomlf7TaNybPA8I2sCkMfRH-OqimgT0Ql0fMKX-IB100IMd6NYuu-d1mlzDQCXOzwlK0fJ05ovQ9pnFmCdYGDqezcrCQHvCEwh3WGAY0tHUJpJhiRCtuIA7CAOhKYxdyA1Hw2APSKgJxsqe1KTN8ZGOr5u64-EaJ3R0M8MCsFQYrkwoytVNGX03I1dWg-vi4Lrx4Lq8AKezf16mBB2_1i6lMnaTyRq5OjfQ7UTP1CrAWSrTrPjn1vb_Vv0IVurdm6bbbLSui7CqxyqiTquVIDcZvwYHsCzfJr1ofBgr9Ac9gesw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_8QvTBj6k4P_MgvmiwadO1fZwfU3HMwYburaRJowPtZKuC_72XrrObqCD2pdCkpeQu-d3l7n4BOOBccc-2NJW-siiPLYuKCqtQBOtIedJ1fZnxzNa9RsPvdILmWBV_lu0-CkkOaxoMS1OSnrwofVIUvjETejSuD6qo61E-DbPcJNIbf7119xlHMJRCGdueSfLAVTovm_n-G5PQVNibX0KkGfLUlv__zyuwlFudpDpUk1WYipMSLI5xEZZgO-_UHTyTQzJRNzJYg-i-1SB1g3t53SYp9uTJKSKhIvjs6t3Uf5HLKm22bulpk1SfHnr9bvr4TNA2JteJ6uGtjeoT03NzrMCQEoS00HGP16Fdu2ifXdH8eAYqcd6mKF0vspkS2lfMYywSTOsg8llFOGhnRAJhEBscRwaW2VxyPKHRuot5gPCgXeFswEzSS-JNINoSjFUiaUmf4yUDZbt2EOHaJ2x0P3UZ2Egwocypy80JGk9hQbpsBjfEwQ2zwQ15GY4-33kZEnf82ntnJO8wn8SD0OYOuqPosXplOB7Jt2j--Wtbf-u-D_PN81pYv27cbMOCnWmISWLbgZm0_xrvwpx8S7uD_l6m2x8XvPQU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WSN+Localization+Technology+Based+on+Hybrid+GA-PSO-BP+Algorithm+for+Indoor+Three-Dimensional+Space&rft.jtitle=Wireless+personal+communications&rft.au=Lv%2C+Yongyang&rft.au=Liu%2C+Wenju&rft.au=Wang%2C+Ze&rft.au=Zhang%2C+Zhihao&rft.date=2020-09-01&rft.issn=0929-6212&rft.eissn=1572-834X&rft.volume=114&rft.issue=1&rft.spage=167&rft.epage=184&rft_id=info:doi/10.1007%2Fs11277-020-07357-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11277_020_07357_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-6212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-6212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-6212&client=summon