Unconditional Convergence of a Fast Two-Level Linearized Algorithm for Semilinear Subdiffusion Equations

A fast two-level linearized scheme with nonuniform time-steps is constructed and analyzed for an initial-boundary-value problem of semilinear subdiffusion equations. The two-level fast L1 formula of the Caputo derivative is derived based on the sum-of-exponentials technique. The resulting fast algor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scientific computing Ročník 80; číslo 1; s. 1 - 25
Hlavní autoři: Liao, Hong-lin, Yan, Yonggui, Zhang, Jiwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2019
Springer Nature B.V
Témata:
ISSN:0885-7474, 1573-7691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A fast two-level linearized scheme with nonuniform time-steps is constructed and analyzed for an initial-boundary-value problem of semilinear subdiffusion equations. The two-level fast L1 formula of the Caputo derivative is derived based on the sum-of-exponentials technique. The resulting fast algorithm is computationally efficient in long-time simulations or small time-steps because it significantly reduces the computational cost O ( M N 2 ) and storage O ( MN ) for the standard L1 formula to O ( M N log N ) and O ( M log N ) , respectively, for M grid points in space and N levels in time. The nonuniform time mesh would be graded to handle the typical singularity of the solution near the time t = 0 , and Newton linearization is used to approximate the nonlinearity term. Our analysis relies on three tools: a recently developed discrete fractional Grönwall inequality, a global consistency analysis and a discrete H 2 energy method. A sharp error estimate reflecting the regularity of solution is established without any restriction on the relative diameters of the temporal and spatial mesh sizes. Numerical examples are provided to demonstrate the effectiveness of our approach and the sharpness of error analysis.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-019-00927-0