Unconditional Convergence of a Fast Two-Level Linearized Algorithm for Semilinear Subdiffusion Equations
A fast two-level linearized scheme with nonuniform time-steps is constructed and analyzed for an initial-boundary-value problem of semilinear subdiffusion equations. The two-level fast L1 formula of the Caputo derivative is derived based on the sum-of-exponentials technique. The resulting fast algor...
Uloženo v:
| Vydáno v: | Journal of scientific computing Ročník 80; číslo 1; s. 1 - 25 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.07.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-7474, 1573-7691 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A fast two-level linearized scheme with nonuniform time-steps is constructed and analyzed for an initial-boundary-value problem of semilinear subdiffusion equations. The two-level fast L1 formula of the Caputo derivative is derived based on the sum-of-exponentials technique. The resulting fast algorithm is computationally efficient in long-time simulations or small time-steps because it significantly reduces the computational cost
O
(
M
N
2
)
and storage
O
(
MN
) for the standard L1 formula to
O
(
M
N
log
N
)
and
O
(
M
log
N
)
, respectively, for
M
grid points in space and
N
levels in time. The nonuniform time mesh would be graded to handle the typical singularity of the solution near the time
t
=
0
, and Newton linearization is used to approximate the nonlinearity term. Our analysis relies on three tools: a recently developed discrete fractional Grönwall inequality, a global consistency analysis and a discrete
H
2
energy method. A sharp error estimate reflecting the regularity of solution is established without any restriction on the relative diameters of the temporal and spatial mesh sizes. Numerical examples are provided to demonstrate the effectiveness of our approach and the sharpness of error analysis. |
|---|---|
| AbstractList | A fast two-level linearized scheme with nonuniform time-steps is constructed and analyzed for an initial-boundary-value problem of semilinear subdiffusion equations. The two-level fast L1 formula of the Caputo derivative is derived based on the sum-of-exponentials technique. The resulting fast algorithm is computationally efficient in long-time simulations or small time-steps because it significantly reduces the computational cost O(MN2) and storage O(MN) for the standard L1 formula to O(MNlogN) and O(MlogN), respectively, for M grid points in space and N levels in time. The nonuniform time mesh would be graded to handle the typical singularity of the solution near the time t=0, and Newton linearization is used to approximate the nonlinearity term. Our analysis relies on three tools: a recently developed discrete fractional Grönwall inequality, a global consistency analysis and a discrete H2 energy method. A sharp error estimate reflecting the regularity of solution is established without any restriction on the relative diameters of the temporal and spatial mesh sizes. Numerical examples are provided to demonstrate the effectiveness of our approach and the sharpness of error analysis. A fast two-level linearized scheme with nonuniform time-steps is constructed and analyzed for an initial-boundary-value problem of semilinear subdiffusion equations. The two-level fast L1 formula of the Caputo derivative is derived based on the sum-of-exponentials technique. The resulting fast algorithm is computationally efficient in long-time simulations or small time-steps because it significantly reduces the computational cost O ( M N 2 ) and storage O ( MN ) for the standard L1 formula to O ( M N log N ) and O ( M log N ) , respectively, for M grid points in space and N levels in time. The nonuniform time mesh would be graded to handle the typical singularity of the solution near the time t = 0 , and Newton linearization is used to approximate the nonlinearity term. Our analysis relies on three tools: a recently developed discrete fractional Grönwall inequality, a global consistency analysis and a discrete H 2 energy method. A sharp error estimate reflecting the regularity of solution is established without any restriction on the relative diameters of the temporal and spatial mesh sizes. Numerical examples are provided to demonstrate the effectiveness of our approach and the sharpness of error analysis. |
| Author | Liao, Hong-lin Yan, Yonggui Zhang, Jiwei |
| Author_xml | – sequence: 1 givenname: Hong-lin orcidid: 0000-0003-0777-6832 surname: Liao fullname: Liao, Hong-lin organization: Department of Mathematics, Nanjing University of Aeronautics and Astronautics – sequence: 2 givenname: Yonggui surname: Yan fullname: Yan, Yonggui organization: Beijing Computational Science Research Center (CSRC) – sequence: 3 givenname: Jiwei orcidid: 0000-0002-4493-7431 surname: Zhang fullname: Zhang, Jiwei email: jiweizhang@whu.edu.cn organization: School of Mathematics and Statistics, and Hubei Key Laboratory of Computational Science, Wuhan University |
| BookMark | eNp9kEFPwjAYhhuDiYD-AU9NPFfbdVvXIyGgJks8AOemdC2UjBbaDaO_3sFMTDxw6uF7n_fr94zAwHmnAXgk-JlgzF4iwZxkCBOOMOYJQ_gGDEnGKGI5JwMwxEWRIZay9A6MYtzhLlXwZAi2K6e8q2xjvZM1nHp30mGjndLQGyjhXMYGLj89KvVJ17C0Tstgv3UFJ_XGB9ts99D4ABd6b-vLEC7adWWNaWNXCWfHVp674z24NbKO-uH3HYPVfLacvqHy4_V9OimRooQ3SLFcZUzR3BSpkuvcqIzqXCeUp5xWFZdZQWSSVlWeFFQxalhOc86NVERywxkdg6e-9xD8sdWxETvfhu62KBJOCkrSzleXSvqUCj7GoI04BLuX4UsQLM5GRW9UdEbFxajAHVT8g5RtLtc1Qdr6Okp7NHZ73EaHv19doX4ATHaN3w |
| CitedBy_id | crossref_primary_10_1007_s10915_022_01803_0 crossref_primary_10_1016_j_apnum_2024_04_008 crossref_primary_10_1016_j_cam_2022_114448 crossref_primary_10_1016_j_camwa_2021_12_012 crossref_primary_10_1080_00207160_2022_2119080 crossref_primary_10_1007_s11075_019_00722_w crossref_primary_10_1016_j_camwa_2022_01_007 crossref_primary_10_1007_s10915_022_01948_y crossref_primary_10_1007_s40314_023_02409_4 crossref_primary_10_1016_j_cnsns_2024_107830 crossref_primary_10_1016_j_amc_2021_125985 crossref_primary_10_1016_j_cnsns_2024_108120 crossref_primary_10_1016_j_jcp_2020_109473 crossref_primary_10_1007_s11075_020_00920_x crossref_primary_10_3390_math9020183 crossref_primary_10_1002_num_22583 crossref_primary_10_1016_j_aml_2021_107805 crossref_primary_10_1016_j_camwa_2020_11_015 crossref_primary_10_1016_j_physd_2024_134194 crossref_primary_10_1016_j_camwa_2025_07_031 crossref_primary_10_1007_s10915_020_01350_6 crossref_primary_10_1016_j_jcp_2022_111467 crossref_primary_10_1137_19M1259675 crossref_primary_10_1137_20M1384105 crossref_primary_10_1007_s13540_023_00231_7 crossref_primary_10_1016_j_amc_2019_124598 crossref_primary_10_1007_s42967_023_00295_5 crossref_primary_10_1088_1402_4896_ad95c4 crossref_primary_10_1007_s10915_020_01308_8 crossref_primary_10_1007_s10915_021_01661_2 crossref_primary_10_1007_s13540_022_00022_6 crossref_primary_10_1007_s12190_021_01609_7 crossref_primary_10_1016_j_apnum_2019_11_012 crossref_primary_10_1007_s11075_019_00817_4 crossref_primary_10_1080_00207160_2024_2410453 crossref_primary_10_1007_s10915_021_01721_7 crossref_primary_10_1016_j_apnum_2020_09_006 crossref_primary_10_1007_s40314_019_0889_2 crossref_primary_10_1016_j_matcom_2023_03_013 crossref_primary_10_1007_s10092_023_00508_6 crossref_primary_10_1007_s10255_022_1102_8 crossref_primary_10_1007_s12190_023_01969_2 crossref_primary_10_3390_fractalfract8110675 crossref_primary_10_1007_s10915_023_02186_6 crossref_primary_10_1007_s12190_024_02120_5 crossref_primary_10_1016_j_apnum_2022_02_017 crossref_primary_10_1016_j_cam_2022_114702 crossref_primary_10_1088_1742_6596_2905_1_012026 crossref_primary_10_1016_j_camwa_2024_10_023 crossref_primary_10_1016_j_cam_2024_115952 crossref_primary_10_1515_ijnsns_2021_0100 crossref_primary_10_1016_j_camwa_2020_04_031 crossref_primary_10_1016_j_cnsns_2024_108586 crossref_primary_10_1007_s10915_021_01527_7 crossref_primary_10_1007_s11075_020_01014_4 crossref_primary_10_1007_s11075_024_01968_9 crossref_primary_10_1115_1_4068581 crossref_primary_10_1007_s10444_024_10116_9 crossref_primary_10_1002_num_22441 crossref_primary_10_1007_s00009_024_02617_0 crossref_primary_10_1007_s11075_021_01205_7 crossref_primary_10_1016_j_aml_2019_106111 crossref_primary_10_1007_s10915_022_01835_6 crossref_primary_10_1016_j_cam_2023_115647 crossref_primary_10_1007_s10444_020_09780_4 crossref_primary_10_1007_s10444_020_09782_2 crossref_primary_10_1007_s10915_020_01290_1 crossref_primary_10_1007_s11075_021_01121_w crossref_primary_10_1088_1402_4896_ad302d crossref_primary_10_1007_s10915_022_02000_9 crossref_primary_10_1007_s11075_022_01359_y crossref_primary_10_1016_j_cam_2023_115287 crossref_primary_10_1016_j_camwa_2023_08_020 crossref_primary_10_1016_j_cnsns_2020_105366 crossref_primary_10_1002_mma_8623 crossref_primary_10_1007_s10092_023_00543_3 crossref_primary_10_1016_j_camwa_2024_11_001 crossref_primary_10_1007_s10915_024_02616_z crossref_primary_10_1016_j_apnum_2021_12_013 crossref_primary_10_1007_s11075_020_00971_0 crossref_primary_10_1088_1742_6596_1324_1_012030 crossref_primary_10_1002_num_22656 |
| Cites_doi | 10.1016/j.jcp.2010.05.015 10.4208/cicp.OA-2017-0019 10.1137/080714907 10.1016/j.jcp.2014.02.008 10.4208/cicp.OA-2016-0136 10.1137/17M1131829 10.1007/s00211-006-0045-y 10.1017/CBO9780511543234 10.1016/j.jcp.2014.11.034 10.1137/15M1043960 10.1137/16M1089320 10.4208/cicp.080313.051213s 10.1137/120871821 10.1137/080736533 10.1137/120870505 10.1093/imanum/drn075 10.1137/16M1175742 10.1137/16M1082329 10.1002/num.20414 10.1090/S0025-5718-09-02234-0 10.1016/j.jcp.2016.04.039 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Springer Science+Business Media, LLC, part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s10915-019-00927-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-7691 |
| EndPage | 25 |
| ExternalDocumentID | 10_1007_s10915_019_00927_0 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11372354 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: NSAF grantid: U1530401 – fundername: National Natural Science Foundation of China grantid: 11771035; 91430216 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -52 -5D -5G -BR -EM -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BENPR BGLVJ BGNMA BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9R PF- PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ~A9 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFFHD AFFNX AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AI. AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF EJD HF~ H~9 KOW N2Q NDZJH O9- OVD PHGZM PHGZT PQGLB R4E RNI RZC RZE RZK S1Z S26 S28 SCLPG T16 TEORI VH1 ZWQNP 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-c76c57c36f84cab6fc53e6e239493dd9a581a24dd6283c73f763699fac1a9f973 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 96 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468983100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7474 |
| IngestDate | Wed Nov 05 03:33:17 EST 2025 Tue Nov 18 22:40:11 EST 2025 Sat Nov 29 01:56:25 EST 2025 Fri Feb 21 02:36:57 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Semilinear subdiffusion equation energy method Discrete Discrete fractional Grönwall inequality Two-level L1 formula Unconditional convergence |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-c76c57c36f84cab6fc53e6e239493dd9a581a24dd6283c73f763699fac1a9f973 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4493-7431 0000-0003-0777-6832 |
| PQID | 2918314007 |
| PQPubID | 2043771 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2918314007 crossref_primary_10_1007_s10915_019_00927_0 crossref_citationtrail_10_1007_s10915_019_00927_0 springer_journals_10_1007_s10915_019_00927_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of scientific computing |
| PublicationTitleAbbrev | J Sci Comput |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Liao, Sun, Shi (CR12) 2010; 40 McLean, Mustapha (CR16) 2007; 105 Zhang, Sun, Liao (CR23) 2014; 265 Li, Wang, Sun (CR8) 2014; 15 Liao, McLean, Zhang (CR15) 2019; 57 Mustapha, Mustapha (CR19) 2010; 30 Jiang, Zhang, Zhang, Zhang (CR4) 2017; 21 Brunner, Ling, Yamamoto (CR3) 2010; 229 Brunner (CR2) 2004 Li, Sun (CR7) 2013; 51 Li (CR10) 2010; 31 Li, Sun (CR6) 2013; 10 Li, Yi, Chen (CR9) 2016; 316 Stynes, O’Riordan, Gracia (CR20) 2017; 55 Yan, Sun, Zhang (CR22) 2017; 22 Baffet, Hesthaven (CR1) 2017; 55 McLean (CR17) 2012; 34 Mustapha, McLean (CR18) 2009; 78 Liao, Sun (CR13) 2010; 26 Xu, Hesthaven, Chen (CR21) 2015; 293 Liao, Sun, Shi (CR11) 2010; 47 Jin, Li, Zhou (CR5) 2018; 56 Liao, Li, Zhang (CR14) 2018; 56 H Brunner (927_CR2) 2004 K Mustapha (927_CR19) 2010; 30 YN Zhang (927_CR23) 2014; 265 H-L Liao (927_CR13) 2010; 26 H-L Liao (927_CR14) 2018; 56 B Li (927_CR7) 2013; 51 Y Yan (927_CR22) 2017; 22 Q Xu (927_CR21) 2015; 293 W McLean (927_CR16) 2007; 105 K Mustapha (927_CR18) 2009; 78 B Li (927_CR8) 2014; 15 H Brunner (927_CR3) 2010; 229 S Jiang (927_CR4) 2017; 21 B Li (927_CR6) 2013; 10 D Baffet (927_CR1) 2017; 55 H-L Liao (927_CR11) 2010; 47 J Li (927_CR10) 2010; 31 H-L Liao (927_CR12) 2010; 40 W McLean (927_CR17) 2012; 34 M Stynes (927_CR20) 2017; 55 B Jin (927_CR5) 2018; 56 C Li (927_CR9) 2016; 316 H-L Liao (927_CR15) 2019; 57 |
| References_xml | – volume: 229 start-page: 6613 year: 2010 end-page: 6622 ident: CR3 article-title: Numerical simulations of 2D fractional subdiffusion problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.05.015 – volume: 22 start-page: 1028 year: 2017 end-page: 1048 ident: CR22 article-title: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2017-0019 – volume: 47 start-page: 4381 issue: 6 year: 2010 end-page: 4401 ident: CR11 article-title: Error estimate of fourth-order compact scheme for solving linear Schrödinger equations publication-title: SIAM. J. Numer. Anal. doi: 10.1137/080714907 – volume: 265 start-page: 195 year: 2014 end-page: 210 ident: CR23 article-title: Finite difference methods for the time fractional diffusion equation on nonuniform meshes publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.02.008 – volume: 21 start-page: 650 issue: 3 year: 2017 end-page: 678 ident: CR4 article-title: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2016-0136 – volume: 56 start-page: 1112 issue: 2 year: 2018 end-page: 1133 ident: CR14 article-title: Sharp error estimate of nonuniform L1 formula for linear reaction–subdiffusion equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/17M1131829 – volume: 105 start-page: 481 year: 2007 end-page: 510 ident: CR16 article-title: A second-order accurate numerical method for a fractional wave equation publication-title: Numer. Math. doi: 10.1007/s00211-006-0045-y – year: 2004 ident: CR2 publication-title: Collocation Methods for Volterra Integral and Related Functional Differential Equations doi: 10.1017/CBO9780511543234 – volume: 293 start-page: 173 issue: C year: 2015 end-page: 183 ident: CR21 article-title: A parareal method for time-fractional differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.11.034 – volume: 55 start-page: 496 issue: 2 year: 2017 end-page: 520 ident: CR1 article-title: A kernel compression scheme for fractional differential equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/15M1043960 – volume: 56 start-page: 1 issue: 1 year: 2018 end-page: 23 ident: CR5 article-title: Numerical analysis of nonlinear subdiffusion equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1089320 – volume: 15 start-page: 1141 year: 2014 end-page: 1158 ident: CR8 article-title: The stability and convergence of fully discrete Galerkin FEMs for porous medium flows publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.080313.051213s – volume: 51 start-page: 1959 year: 2013 end-page: 1977 ident: CR7 article-title: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media publication-title: SIAM J. Numer. Anal. doi: 10.1137/120871821 – volume: 31 start-page: 4696 year: 2010 end-page: 4714 ident: CR10 article-title: A fast time stepping method for evaluating fractional integrals publication-title: SIAM J. Sci. Comput. doi: 10.1137/080736533 – volume: 34 start-page: A3039 year: 2012 end-page: A3056 ident: CR17 article-title: Fast summation by interval clustering for an evolution equation with memory publication-title: SIAM J. Sci. Comput. doi: 10.1137/120870505 – volume: 30 start-page: 555 issue: 2 year: 2010 end-page: 578 ident: CR19 article-title: A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drn075 – volume: 57 start-page: 218 issue: 1 year: 2019 end-page: 237 ident: CR15 article-title: A discrete Grönwall inequality with application to numerical schemes for reaction–subdiffusion problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1175742 – volume: 55 start-page: 1057 issue: 2 year: 2017 end-page: 1079 ident: CR20 article-title: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1082329 – volume: 26 start-page: 37 year: 2010 end-page: 60 ident: CR13 article-title: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations publication-title: Numer. Methods PDEs doi: 10.1002/num.20414 – volume: 78 start-page: 1975 issue: 268 year: 2009 end-page: 1995 ident: CR18 article-title: Discontinuous Galerkin method for an evolution equation with a memory term of positive type publication-title: Math. Comput. doi: 10.1090/S0025-5718-09-02234-0 – volume: 40 start-page: 827 issue: 9 year: 2010 end-page: 842 ident: CR12 article-title: Maximum norm error analysis of explicit schemes for two-dimensional nonlinear Schrödinger equations publication-title: Sci. China Math. – volume: 10 start-page: 622 year: 2013 end-page: 633 ident: CR6 article-title: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations publication-title: Int. J. Numer. Anal. Model. – volume: 316 start-page: 614 year: 2016 end-page: 631 ident: CR9 article-title: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.04.039 – volume: 78 start-page: 1975 issue: 268 year: 2009 ident: 927_CR18 publication-title: Math. Comput. doi: 10.1090/S0025-5718-09-02234-0 – volume: 265 start-page: 195 year: 2014 ident: 927_CR23 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.02.008 – volume: 34 start-page: A3039 year: 2012 ident: 927_CR17 publication-title: SIAM J. Sci. Comput. doi: 10.1137/120870505 – volume: 47 start-page: 4381 issue: 6 year: 2010 ident: 927_CR11 publication-title: SIAM. J. Numer. Anal. doi: 10.1137/080714907 – volume: 40 start-page: 827 issue: 9 year: 2010 ident: 927_CR12 publication-title: Sci. China Math. – volume: 56 start-page: 1112 issue: 2 year: 2018 ident: 927_CR14 publication-title: SIAM J. Numer. Anal. doi: 10.1137/17M1131829 – volume: 55 start-page: 1057 issue: 2 year: 2017 ident: 927_CR20 publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1082329 – volume: 21 start-page: 650 issue: 3 year: 2017 ident: 927_CR4 publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2016-0136 – volume: 56 start-page: 1 issue: 1 year: 2018 ident: 927_CR5 publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1089320 – volume: 55 start-page: 496 issue: 2 year: 2017 ident: 927_CR1 publication-title: SIAM J. Numer. Anal. doi: 10.1137/15M1043960 – volume: 229 start-page: 6613 year: 2010 ident: 927_CR3 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.05.015 – volume: 105 start-page: 481 year: 2007 ident: 927_CR16 publication-title: Numer. Math. doi: 10.1007/s00211-006-0045-y – volume: 293 start-page: 173 issue: C year: 2015 ident: 927_CR21 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.11.034 – volume: 31 start-page: 4696 year: 2010 ident: 927_CR10 publication-title: SIAM J. Sci. Comput. doi: 10.1137/080736533 – volume: 316 start-page: 614 year: 2016 ident: 927_CR9 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.04.039 – volume: 22 start-page: 1028 year: 2017 ident: 927_CR22 publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2017-0019 – volume: 15 start-page: 1141 year: 2014 ident: 927_CR8 publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.080313.051213s – volume-title: Collocation Methods for Volterra Integral and Related Functional Differential Equations year: 2004 ident: 927_CR2 doi: 10.1017/CBO9780511543234 – volume: 57 start-page: 218 issue: 1 year: 2019 ident: 927_CR15 publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1175742 – volume: 30 start-page: 555 issue: 2 year: 2010 ident: 927_CR19 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drn075 – volume: 26 start-page: 37 year: 2010 ident: 927_CR13 publication-title: Numer. Methods PDEs doi: 10.1002/num.20414 – volume: 10 start-page: 622 year: 2013 ident: 927_CR6 publication-title: Int. J. Numer. Anal. Model. – volume: 51 start-page: 1959 year: 2013 ident: 927_CR7 publication-title: SIAM J. Numer. Anal. doi: 10.1137/120871821 |
| SSID | ssj0009892 |
| Score | 2.5316834 |
| Snippet | A fast two-level linearized scheme with nonuniform time-steps is constructed and analyzed for an initial-boundary-value problem of semilinear subdiffusion... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Approximation Boundary value problems Computational efficiency Computational Mathematics and Numerical Analysis Energy methods Error analysis Finite element method Formulas (mathematics) Linearization Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Numerical analysis Theoretical |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgQxEA1uBy_u4riRgwdFg6a3dE4yiIMHGQQXvDWZLDowi073KPj1VmUyNgp68Zzu6oZaUqlUvUfIgYtNpjXXLO9EKUuU4UxZdLzMCINw7MrPVzxci3Y7f3yUN6HgVoa2ymlM9IHaDDXWyE8jCcbHkcX7_OWVIWsU3q4GCo1ZMs8jCMJ4KStYDbqbe1JkcKSUQdqchKGZMDonObatSYawQ4Kdfd-Y6mzzxwWp33day__94xWyFDJO2pyYyCqZsYM1shp8uqSHAXj6aJ083w_gdGy6k_IgvcCGdD-baenQUUVbqqzo3fuQXWOnEYVjLLhJ98Ma2uw9wZer5z6FHJje2n635xcpxCWkYBljTY5evk5wxcsNct-6vLu4YoGJgWlw0YppkelU6DhzeaIVzgelsc0s0qrL2Bip0pyrKDEmg2xFi9hB1MqkdEpzJZ0U8SaZGwwHdotQEWuXgQxI3Fxi40iBtUjesUoqoVwnaRA-VUOhA0w5smX0ihpgGVVXgOoKr7rirEGOv955mYB0_Pn07lRfRXDYsqiV1SAnU43Xy79L2_5b2g5ZjLyRYYPvLpmrRmO7Rxb0W9UtR_veXD8Bc93wKg priority: 102 providerName: ProQuest |
| Title | Unconditional Convergence of a Fast Two-Level Linearized Algorithm for Semilinear Subdiffusion Equations |
| URI | https://link.springer.com/article/10.1007/s10915-019-00927-0 https://www.proquest.com/docview/2918314007 |
| Volume | 80 |
| WOSCitedRecordID | wos000468983100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7691 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: P5Z dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7691 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: K7- dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7691 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSzMxEB_81MPnwdenWB8lBw-KBtxnNkeVFkEtxRfiZUnzsAu11e6q4F_vJN21KvqBXvaSZFgyj8wkM78B2DSBiqX0JE06fkRDoTwqtFW8WDFl4diFq6-4OmGtVnJ9zdtlUVheZbtXT5LOUr8rduOeTTTj1AIFMYqB-lRk0WZsjH5-NYbaTVwrZFSfiKKzHJalMl_T-HgcjX3MT8-i7rRpzv3uP-dhtvQuyf5IHBZgQvcXYeb0DZo1X4SFUptzslVCTm__g-5lH-NilY0uBsmhTUV3VZmaDAwRpCnyglw8D-iJzTEiGMCigmQvWpH93u1gmBXdO4LeLznXd1nPDRK0SLb5yqO9jSONhxGieL4El83GxeERLXswUInKWVDJYhkxGcQmCaWwlUFRoGNtG6rzQCkuosQTfqhUjH6KZIFBexVzboT0BDfInGWY7A_6egUIC6SJkQa6bCbUgS9QTrjX0YILJkwnrIFXsSKVJUC57ZPRS8fQynZrU9za1G1tuleDnbc19yN4jv_OXq84nJaqmqc-R6vm2fbwNditODoe_p7a6s-mr8Ff3wmFTfVdh8li-Kg3YFo-FVk-rMPUQaPVPqvDn2NG8duObupOrF8BeWLugQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRK9AOVDLC3gA0ggsNjEiR0fKlTKrlp1WVWwRb0Frz_alba7bZO2oj-K38g4cYhAorceODsZycmb8dieeQ_gpWOGax1pmk3ilCbKRFRZ73jcCOPp2FXVX_FtKEaj7OBA7i3Bz6YXxpdVNjGxCtRmof0Z-ftYIvgir-L94eSUetUof7vaSGjUsNi1Py5xy1Zs7HzC__sqjgf98dY2DaoCVCPcSqoF16nQjLss0cr3uqTMcuslwiUzRqo0i1ScGMNx5dWCOfRALqVTOlLSScHQ7i1YTljC0w4sf-yP9r60NL9ZJcOMrptSTNST0KYTmvVk5AvlJPVER4L2_lwK2_z2ryvZaqUb3PvfvtF9uBtyarJZO8EqLNn5A1gNUasgrwO19puHcLQ_x_2_mdYHoGTLl9xX3aeWLBxRZKCKkowvF3Toa6kIbtRxNtMra8jm7BBnWh4dE8zyyVd7PJ1VgwQjrxeZOfenjqR_WjOnF49g_0Zm_Bg688XcPgEimHYcbWBq6hLLYoX-IKOJVVIJ5SZJF6Lmt-c6ELF7PZBZ3lJIe6jkCJW8gkre68Lb3--c1DQk1z693uAjDyGpyFtwdOFdg7B2-N_Wnl5v7QXc2R5_HubDndHuGqzEFcAR3b116JRn5_YZ3NYX5bQ4ex6chcD3m8beL5LITvc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5VUCF6gAaoGgrFhx5AYIV9en1EIVERaYR4idvK8aOsFDaQXVqpv56xd0NCBUiIs732yp4Zz9jzfQPwwwQqltKTNBn4EQ2F8qjQVvFixZSlYxcOX3HZY_1-cnXFT2ZQ_C7bffIkWWEaLEtTXrZulWnNAN-4Z5POOLWkQYxi0D4fYiRjk7pOzy6ntLuJK4uMqhRRdJzDGjbz_BhPj6apv_nfE6k7ebrL7__nz7BUe53koBKTBnzQ-Qp8-vVI2VqsQKPW8oJs11TUO6twfZHjJCqrLgxJ26aoO7SmJiNDBOmKoiTnf0e0Z3OPCAa2qDjZP63IwfD3aJyV1zcEvWJypm-yoWskaKlsUZZ7e0tHOncV03ixBhfdznn7J61rM1CJSltSyWIZMRnEJgmlsIihKNCxtoXWeaAUF1HiCT9UKkb_RbLAoB2LOTdCeoIbzoIvMJePcv0VCAukiXEMdOVMqANfoPxwb6AFF0yYQdgEb7ItqayJy239jGE6pVy2S5vi0qZuadP9Juw-fnNb0Xa82ntjsttprcJF6nO0dp4tG9-EvcnuTptfHm39bd23YOHksJv2jvrH32DRd_Jhs4E3YK4c3-tN-Cj_lFkx_u4k-wHZb_bf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unconditional+Convergence+of+a+Fast+Two-Level+Linearized+Algorithm+for+Semilinear+Subdiffusion+Equations&rft.jtitle=Journal+of+scientific+computing&rft.au=Liao%2C+Hong-lin&rft.au=Yan%2C+Yonggui&rft.au=Zhang%2C+Jiwei&rft.date=2019-07-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=80&rft.issue=1&rft.spage=1&rft.epage=25&rft_id=info:doi/10.1007%2Fs10915-019-00927-0&rft.externalDocID=10_1007_s10915_019_00927_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |