Unconditional Convergence of a Fast Two-Level Linearized Algorithm for Semilinear Subdiffusion Equations

A fast two-level linearized scheme with nonuniform time-steps is constructed and analyzed for an initial-boundary-value problem of semilinear subdiffusion equations. The two-level fast L1 formula of the Caputo derivative is derived based on the sum-of-exponentials technique. The resulting fast algor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scientific computing Ročník 80; číslo 1; s. 1 - 25
Hlavní autoři: Liao, Hong-lin, Yan, Yonggui, Zhang, Jiwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2019
Springer Nature B.V
Témata:
ISSN:0885-7474, 1573-7691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A fast two-level linearized scheme with nonuniform time-steps is constructed and analyzed for an initial-boundary-value problem of semilinear subdiffusion equations. The two-level fast L1 formula of the Caputo derivative is derived based on the sum-of-exponentials technique. The resulting fast algorithm is computationally efficient in long-time simulations or small time-steps because it significantly reduces the computational cost O ( M N 2 ) and storage O ( MN ) for the standard L1 formula to O ( M N log N ) and O ( M log N ) , respectively, for M grid points in space and N levels in time. The nonuniform time mesh would be graded to handle the typical singularity of the solution near the time t = 0 , and Newton linearization is used to approximate the nonlinearity term. Our analysis relies on three tools: a recently developed discrete fractional Grönwall inequality, a global consistency analysis and a discrete H 2 energy method. A sharp error estimate reflecting the regularity of solution is established without any restriction on the relative diameters of the temporal and spatial mesh sizes. Numerical examples are provided to demonstrate the effectiveness of our approach and the sharpness of error analysis.
AbstractList A fast two-level linearized scheme with nonuniform time-steps is constructed and analyzed for an initial-boundary-value problem of semilinear subdiffusion equations. The two-level fast L1 formula of the Caputo derivative is derived based on the sum-of-exponentials technique. The resulting fast algorithm is computationally efficient in long-time simulations or small time-steps because it significantly reduces the computational cost O(MN2) and storage O(MN) for the standard L1 formula to O(MNlogN) and O(MlogN), respectively, for M grid points in space and N levels in time. The nonuniform time mesh would be graded to handle the typical singularity of the solution near the time t=0, and Newton linearization is used to approximate the nonlinearity term. Our analysis relies on three tools: a recently developed discrete fractional Grönwall inequality, a global consistency analysis and a discrete H2 energy method. A sharp error estimate reflecting the regularity of solution is established without any restriction on the relative diameters of the temporal and spatial mesh sizes. Numerical examples are provided to demonstrate the effectiveness of our approach and the sharpness of error analysis.
A fast two-level linearized scheme with nonuniform time-steps is constructed and analyzed for an initial-boundary-value problem of semilinear subdiffusion equations. The two-level fast L1 formula of the Caputo derivative is derived based on the sum-of-exponentials technique. The resulting fast algorithm is computationally efficient in long-time simulations or small time-steps because it significantly reduces the computational cost O ( M N 2 ) and storage O ( MN ) for the standard L1 formula to O ( M N log N ) and O ( M log N ) , respectively, for M grid points in space and N levels in time. The nonuniform time mesh would be graded to handle the typical singularity of the solution near the time t = 0 , and Newton linearization is used to approximate the nonlinearity term. Our analysis relies on three tools: a recently developed discrete fractional Grönwall inequality, a global consistency analysis and a discrete H 2 energy method. A sharp error estimate reflecting the regularity of solution is established without any restriction on the relative diameters of the temporal and spatial mesh sizes. Numerical examples are provided to demonstrate the effectiveness of our approach and the sharpness of error analysis.
Author Liao, Hong-lin
Yan, Yonggui
Zhang, Jiwei
Author_xml – sequence: 1
  givenname: Hong-lin
  orcidid: 0000-0003-0777-6832
  surname: Liao
  fullname: Liao, Hong-lin
  organization: Department of Mathematics, Nanjing University of Aeronautics and Astronautics
– sequence: 2
  givenname: Yonggui
  surname: Yan
  fullname: Yan, Yonggui
  organization: Beijing Computational Science Research Center (CSRC)
– sequence: 3
  givenname: Jiwei
  orcidid: 0000-0002-4493-7431
  surname: Zhang
  fullname: Zhang, Jiwei
  email: jiweizhang@whu.edu.cn
  organization: School of Mathematics and Statistics, and Hubei Key Laboratory of Computational Science, Wuhan University
BookMark eNp9kEFPwjAYhhuDiYD-AU9NPFfbdVvXIyGgJks8AOemdC2UjBbaDaO_3sFMTDxw6uF7n_fr94zAwHmnAXgk-JlgzF4iwZxkCBOOMOYJQ_gGDEnGKGI5JwMwxEWRIZay9A6MYtzhLlXwZAi2K6e8q2xjvZM1nHp30mGjndLQGyjhXMYGLj89KvVJ17C0Tstgv3UFJ_XGB9ts99D4ABd6b-vLEC7adWWNaWNXCWfHVp674z24NbKO-uH3HYPVfLacvqHy4_V9OimRooQ3SLFcZUzR3BSpkuvcqIzqXCeUp5xWFZdZQWSSVlWeFFQxalhOc86NVERywxkdg6e-9xD8sdWxETvfhu62KBJOCkrSzleXSvqUCj7GoI04BLuX4UsQLM5GRW9UdEbFxajAHVT8g5RtLtc1Qdr6Okp7NHZ73EaHv19doX4ATHaN3w
CitedBy_id crossref_primary_10_1007_s10915_022_01803_0
crossref_primary_10_1016_j_apnum_2024_04_008
crossref_primary_10_1016_j_cam_2022_114448
crossref_primary_10_1016_j_camwa_2021_12_012
crossref_primary_10_1080_00207160_2022_2119080
crossref_primary_10_1007_s11075_019_00722_w
crossref_primary_10_1016_j_camwa_2022_01_007
crossref_primary_10_1007_s10915_022_01948_y
crossref_primary_10_1007_s40314_023_02409_4
crossref_primary_10_1016_j_cnsns_2024_107830
crossref_primary_10_1016_j_amc_2021_125985
crossref_primary_10_1016_j_cnsns_2024_108120
crossref_primary_10_1016_j_jcp_2020_109473
crossref_primary_10_1007_s11075_020_00920_x
crossref_primary_10_3390_math9020183
crossref_primary_10_1002_num_22583
crossref_primary_10_1016_j_aml_2021_107805
crossref_primary_10_1016_j_camwa_2020_11_015
crossref_primary_10_1016_j_physd_2024_134194
crossref_primary_10_1016_j_camwa_2025_07_031
crossref_primary_10_1007_s10915_020_01350_6
crossref_primary_10_1016_j_jcp_2022_111467
crossref_primary_10_1137_19M1259675
crossref_primary_10_1137_20M1384105
crossref_primary_10_1007_s13540_023_00231_7
crossref_primary_10_1016_j_amc_2019_124598
crossref_primary_10_1007_s42967_023_00295_5
crossref_primary_10_1088_1402_4896_ad95c4
crossref_primary_10_1007_s10915_020_01308_8
crossref_primary_10_1007_s10915_021_01661_2
crossref_primary_10_1007_s13540_022_00022_6
crossref_primary_10_1007_s12190_021_01609_7
crossref_primary_10_1016_j_apnum_2019_11_012
crossref_primary_10_1007_s11075_019_00817_4
crossref_primary_10_1080_00207160_2024_2410453
crossref_primary_10_1007_s10915_021_01721_7
crossref_primary_10_1016_j_apnum_2020_09_006
crossref_primary_10_1007_s40314_019_0889_2
crossref_primary_10_1016_j_matcom_2023_03_013
crossref_primary_10_1007_s10092_023_00508_6
crossref_primary_10_1007_s10255_022_1102_8
crossref_primary_10_1007_s12190_023_01969_2
crossref_primary_10_3390_fractalfract8110675
crossref_primary_10_1007_s10915_023_02186_6
crossref_primary_10_1007_s12190_024_02120_5
crossref_primary_10_1016_j_apnum_2022_02_017
crossref_primary_10_1016_j_cam_2022_114702
crossref_primary_10_1088_1742_6596_2905_1_012026
crossref_primary_10_1016_j_camwa_2024_10_023
crossref_primary_10_1016_j_cam_2024_115952
crossref_primary_10_1515_ijnsns_2021_0100
crossref_primary_10_1016_j_camwa_2020_04_031
crossref_primary_10_1016_j_cnsns_2024_108586
crossref_primary_10_1007_s10915_021_01527_7
crossref_primary_10_1007_s11075_020_01014_4
crossref_primary_10_1007_s11075_024_01968_9
crossref_primary_10_1115_1_4068581
crossref_primary_10_1007_s10444_024_10116_9
crossref_primary_10_1002_num_22441
crossref_primary_10_1007_s00009_024_02617_0
crossref_primary_10_1007_s11075_021_01205_7
crossref_primary_10_1016_j_aml_2019_106111
crossref_primary_10_1007_s10915_022_01835_6
crossref_primary_10_1016_j_cam_2023_115647
crossref_primary_10_1007_s10444_020_09780_4
crossref_primary_10_1007_s10444_020_09782_2
crossref_primary_10_1007_s10915_020_01290_1
crossref_primary_10_1007_s11075_021_01121_w
crossref_primary_10_1088_1402_4896_ad302d
crossref_primary_10_1007_s10915_022_02000_9
crossref_primary_10_1007_s11075_022_01359_y
crossref_primary_10_1016_j_cam_2023_115287
crossref_primary_10_1016_j_camwa_2023_08_020
crossref_primary_10_1016_j_cnsns_2020_105366
crossref_primary_10_1002_mma_8623
crossref_primary_10_1007_s10092_023_00543_3
crossref_primary_10_1016_j_camwa_2024_11_001
crossref_primary_10_1007_s10915_024_02616_z
crossref_primary_10_1016_j_apnum_2021_12_013
crossref_primary_10_1007_s11075_020_00971_0
crossref_primary_10_1088_1742_6596_1324_1_012030
crossref_primary_10_1002_num_22656
Cites_doi 10.1016/j.jcp.2010.05.015
10.4208/cicp.OA-2017-0019
10.1137/080714907
10.1016/j.jcp.2014.02.008
10.4208/cicp.OA-2016-0136
10.1137/17M1131829
10.1007/s00211-006-0045-y
10.1017/CBO9780511543234
10.1016/j.jcp.2014.11.034
10.1137/15M1043960
10.1137/16M1089320
10.4208/cicp.080313.051213s
10.1137/120871821
10.1137/080736533
10.1137/120870505
10.1093/imanum/drn075
10.1137/16M1175742
10.1137/16M1082329
10.1002/num.20414
10.1090/S0025-5718-09-02234-0
10.1016/j.jcp.2016.04.039
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10915-019-00927-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
EndPage 25
ExternalDocumentID 10_1007_s10915_019_00927_0
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11372354
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: NSAF
  grantid: U1530401
– fundername: National Natural Science Foundation of China
  grantid: 11771035; 91430216
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFFNX
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
EJD
HF~
H~9
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
VH1
ZWQNP
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-c76c57c36f84cab6fc53e6e239493dd9a581a24dd6283c73f763699fac1a9f973
IEDL.DBID RSV
ISICitedReferencesCount 96
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468983100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Wed Nov 05 03:33:17 EST 2025
Tue Nov 18 22:40:11 EST 2025
Sat Nov 29 01:56:25 EST 2025
Fri Feb 21 02:36:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Semilinear subdiffusion equation
energy method
Discrete
Discrete fractional Grönwall inequality
Two-level L1 formula
Unconditional convergence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c76c57c36f84cab6fc53e6e239493dd9a581a24dd6283c73f763699fac1a9f973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4493-7431
0000-0003-0777-6832
PQID 2918314007
PQPubID 2043771
PageCount 25
ParticipantIDs proquest_journals_2918314007
crossref_primary_10_1007_s10915_019_00927_0
crossref_citationtrail_10_1007_s10915_019_00927_0
springer_journals_10_1007_s10915_019_00927_0
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Liao, Sun, Shi (CR12) 2010; 40
McLean, Mustapha (CR16) 2007; 105
Zhang, Sun, Liao (CR23) 2014; 265
Li, Wang, Sun (CR8) 2014; 15
Liao, McLean, Zhang (CR15) 2019; 57
Mustapha, Mustapha (CR19) 2010; 30
Jiang, Zhang, Zhang, Zhang (CR4) 2017; 21
Brunner, Ling, Yamamoto (CR3) 2010; 229
Brunner (CR2) 2004
Li, Sun (CR7) 2013; 51
Li (CR10) 2010; 31
Li, Sun (CR6) 2013; 10
Li, Yi, Chen (CR9) 2016; 316
Stynes, O’Riordan, Gracia (CR20) 2017; 55
Yan, Sun, Zhang (CR22) 2017; 22
Baffet, Hesthaven (CR1) 2017; 55
McLean (CR17) 2012; 34
Mustapha, McLean (CR18) 2009; 78
Liao, Sun (CR13) 2010; 26
Xu, Hesthaven, Chen (CR21) 2015; 293
Liao, Sun, Shi (CR11) 2010; 47
Jin, Li, Zhou (CR5) 2018; 56
Liao, Li, Zhang (CR14) 2018; 56
H Brunner (927_CR2) 2004
K Mustapha (927_CR19) 2010; 30
YN Zhang (927_CR23) 2014; 265
H-L Liao (927_CR13) 2010; 26
H-L Liao (927_CR14) 2018; 56
B Li (927_CR7) 2013; 51
Y Yan (927_CR22) 2017; 22
Q Xu (927_CR21) 2015; 293
W McLean (927_CR16) 2007; 105
K Mustapha (927_CR18) 2009; 78
B Li (927_CR8) 2014; 15
H Brunner (927_CR3) 2010; 229
S Jiang (927_CR4) 2017; 21
B Li (927_CR6) 2013; 10
D Baffet (927_CR1) 2017; 55
H-L Liao (927_CR11) 2010; 47
J Li (927_CR10) 2010; 31
H-L Liao (927_CR12) 2010; 40
W McLean (927_CR17) 2012; 34
M Stynes (927_CR20) 2017; 55
B Jin (927_CR5) 2018; 56
C Li (927_CR9) 2016; 316
H-L Liao (927_CR15) 2019; 57
References_xml – volume: 229
  start-page: 6613
  year: 2010
  end-page: 6622
  ident: CR3
  article-title: Numerical simulations of 2D fractional subdiffusion problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.05.015
– volume: 22
  start-page: 1028
  year: 2017
  end-page: 1048
  ident: CR22
  article-title: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2017-0019
– volume: 47
  start-page: 4381
  issue: 6
  year: 2010
  end-page: 4401
  ident: CR11
  article-title: Error estimate of fourth-order compact scheme for solving linear Schrödinger equations
  publication-title: SIAM. J. Numer. Anal.
  doi: 10.1137/080714907
– volume: 265
  start-page: 195
  year: 2014
  end-page: 210
  ident: CR23
  article-title: Finite difference methods for the time fractional diffusion equation on nonuniform meshes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.02.008
– volume: 21
  start-page: 650
  issue: 3
  year: 2017
  end-page: 678
  ident: CR4
  article-title: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2016-0136
– volume: 56
  start-page: 1112
  issue: 2
  year: 2018
  end-page: 1133
  ident: CR14
  article-title: Sharp error estimate of nonuniform L1 formula for linear reaction–subdiffusion equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/17M1131829
– volume: 105
  start-page: 481
  year: 2007
  end-page: 510
  ident: CR16
  article-title: A second-order accurate numerical method for a fractional wave equation
  publication-title: Numer. Math.
  doi: 10.1007/s00211-006-0045-y
– year: 2004
  ident: CR2
  publication-title: Collocation Methods for Volterra Integral and Related Functional Differential Equations
  doi: 10.1017/CBO9780511543234
– volume: 293
  start-page: 173
  issue: C
  year: 2015
  end-page: 183
  ident: CR21
  article-title: A parareal method for time-fractional differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.11.034
– volume: 55
  start-page: 496
  issue: 2
  year: 2017
  end-page: 520
  ident: CR1
  article-title: A kernel compression scheme for fractional differential equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/15M1043960
– volume: 56
  start-page: 1
  issue: 1
  year: 2018
  end-page: 23
  ident: CR5
  article-title: Numerical analysis of nonlinear subdiffusion equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1089320
– volume: 15
  start-page: 1141
  year: 2014
  end-page: 1158
  ident: CR8
  article-title: The stability and convergence of fully discrete Galerkin FEMs for porous medium flows
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.080313.051213s
– volume: 51
  start-page: 1959
  year: 2013
  end-page: 1977
  ident: CR7
  article-title: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/120871821
– volume: 31
  start-page: 4696
  year: 2010
  end-page: 4714
  ident: CR10
  article-title: A fast time stepping method for evaluating fractional integrals
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/080736533
– volume: 34
  start-page: A3039
  year: 2012
  end-page: A3056
  ident: CR17
  article-title: Fast summation by interval clustering for an evolution equation with memory
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/120870505
– volume: 30
  start-page: 555
  issue: 2
  year: 2010
  end-page: 578
  ident: CR19
  article-title: A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drn075
– volume: 57
  start-page: 218
  issue: 1
  year: 2019
  end-page: 237
  ident: CR15
  article-title: A discrete Grönwall inequality with application to numerical schemes for reaction–subdiffusion problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1175742
– volume: 55
  start-page: 1057
  issue: 2
  year: 2017
  end-page: 1079
  ident: CR20
  article-title: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1082329
– volume: 26
  start-page: 37
  year: 2010
  end-page: 60
  ident: CR13
  article-title: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations
  publication-title: Numer. Methods PDEs
  doi: 10.1002/num.20414
– volume: 78
  start-page: 1975
  issue: 268
  year: 2009
  end-page: 1995
  ident: CR18
  article-title: Discontinuous Galerkin method for an evolution equation with a memory term of positive type
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-09-02234-0
– volume: 40
  start-page: 827
  issue: 9
  year: 2010
  end-page: 842
  ident: CR12
  article-title: Maximum norm error analysis of explicit schemes for two-dimensional nonlinear Schrödinger equations
  publication-title: Sci. China Math.
– volume: 10
  start-page: 622
  year: 2013
  end-page: 633
  ident: CR6
  article-title: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations
  publication-title: Int. J. Numer. Anal. Model.
– volume: 316
  start-page: 614
  year: 2016
  end-page: 631
  ident: CR9
  article-title: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.04.039
– volume: 78
  start-page: 1975
  issue: 268
  year: 2009
  ident: 927_CR18
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-09-02234-0
– volume: 265
  start-page: 195
  year: 2014
  ident: 927_CR23
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.02.008
– volume: 34
  start-page: A3039
  year: 2012
  ident: 927_CR17
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/120870505
– volume: 47
  start-page: 4381
  issue: 6
  year: 2010
  ident: 927_CR11
  publication-title: SIAM. J. Numer. Anal.
  doi: 10.1137/080714907
– volume: 40
  start-page: 827
  issue: 9
  year: 2010
  ident: 927_CR12
  publication-title: Sci. China Math.
– volume: 56
  start-page: 1112
  issue: 2
  year: 2018
  ident: 927_CR14
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/17M1131829
– volume: 55
  start-page: 1057
  issue: 2
  year: 2017
  ident: 927_CR20
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1082329
– volume: 21
  start-page: 650
  issue: 3
  year: 2017
  ident: 927_CR4
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2016-0136
– volume: 56
  start-page: 1
  issue: 1
  year: 2018
  ident: 927_CR5
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1089320
– volume: 55
  start-page: 496
  issue: 2
  year: 2017
  ident: 927_CR1
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/15M1043960
– volume: 229
  start-page: 6613
  year: 2010
  ident: 927_CR3
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.05.015
– volume: 105
  start-page: 481
  year: 2007
  ident: 927_CR16
  publication-title: Numer. Math.
  doi: 10.1007/s00211-006-0045-y
– volume: 293
  start-page: 173
  issue: C
  year: 2015
  ident: 927_CR21
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.11.034
– volume: 31
  start-page: 4696
  year: 2010
  ident: 927_CR10
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/080736533
– volume: 316
  start-page: 614
  year: 2016
  ident: 927_CR9
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.04.039
– volume: 22
  start-page: 1028
  year: 2017
  ident: 927_CR22
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2017-0019
– volume: 15
  start-page: 1141
  year: 2014
  ident: 927_CR8
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.080313.051213s
– volume-title: Collocation Methods for Volterra Integral and Related Functional Differential Equations
  year: 2004
  ident: 927_CR2
  doi: 10.1017/CBO9780511543234
– volume: 57
  start-page: 218
  issue: 1
  year: 2019
  ident: 927_CR15
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1175742
– volume: 30
  start-page: 555
  issue: 2
  year: 2010
  ident: 927_CR19
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drn075
– volume: 26
  start-page: 37
  year: 2010
  ident: 927_CR13
  publication-title: Numer. Methods PDEs
  doi: 10.1002/num.20414
– volume: 10
  start-page: 622
  year: 2013
  ident: 927_CR6
  publication-title: Int. J. Numer. Anal. Model.
– volume: 51
  start-page: 1959
  year: 2013
  ident: 927_CR7
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/120871821
SSID ssj0009892
Score 2.5316834
Snippet A fast two-level linearized scheme with nonuniform time-steps is constructed and analyzed for an initial-boundary-value problem of semilinear subdiffusion...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Approximation
Boundary value problems
Computational efficiency
Computational Mathematics and Numerical Analysis
Energy methods
Error analysis
Finite element method
Formulas (mathematics)
Linearization
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Numerical analysis
Theoretical
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgQxEA1uBy_u4riRgwdFg6a3dE4yiIMHGQQXvDWZLDowi073KPj1VmUyNgp68Zzu6oZaUqlUvUfIgYtNpjXXLO9EKUuU4UxZdLzMCINw7MrPVzxci3Y7f3yUN6HgVoa2ymlM9IHaDDXWyE8jCcbHkcX7_OWVIWsU3q4GCo1ZMs8jCMJ4KStYDbqbe1JkcKSUQdqchKGZMDonObatSYawQ4Kdfd-Y6mzzxwWp33day__94xWyFDJO2pyYyCqZsYM1shp8uqSHAXj6aJ083w_gdGy6k_IgvcCGdD-baenQUUVbqqzo3fuQXWOnEYVjLLhJ98Ma2uw9wZer5z6FHJje2n635xcpxCWkYBljTY5evk5wxcsNct-6vLu4YoGJgWlw0YppkelU6DhzeaIVzgelsc0s0qrL2Bip0pyrKDEmg2xFi9hB1MqkdEpzJZ0U8SaZGwwHdotQEWuXgQxI3Fxi40iBtUjesUoqoVwnaRA-VUOhA0w5smX0ihpgGVVXgOoKr7rirEGOv955mYB0_Pn07lRfRXDYsqiV1SAnU43Xy79L2_5b2g5ZjLyRYYPvLpmrRmO7Rxb0W9UtR_veXD8Bc93wKg
  priority: 102
  providerName: ProQuest
Title Unconditional Convergence of a Fast Two-Level Linearized Algorithm for Semilinear Subdiffusion Equations
URI https://link.springer.com/article/10.1007/s10915-019-00927-0
https://www.proquest.com/docview/2918314007
Volume 80
WOSCitedRecordID wos000468983100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSzMxEB_81MPnwdenWB8lBw-KBtxnNkeVFkEtxRfiZUnzsAu11e6q4F_vJN21KvqBXvaSZFgyj8wkM78B2DSBiqX0JE06fkRDoTwqtFW8WDFl4diFq6-4OmGtVnJ9zdtlUVheZbtXT5LOUr8rduOeTTTj1AIFMYqB-lRk0WZsjH5-NYbaTVwrZFSfiKKzHJalMl_T-HgcjX3MT8-i7rRpzv3uP-dhtvQuyf5IHBZgQvcXYeb0DZo1X4SFUptzslVCTm__g-5lH-NilY0uBsmhTUV3VZmaDAwRpCnyglw8D-iJzTEiGMCigmQvWpH93u1gmBXdO4LeLznXd1nPDRK0SLb5yqO9jSONhxGieL4El83GxeERLXswUInKWVDJYhkxGcQmCaWwlUFRoGNtG6rzQCkuosQTfqhUjH6KZIFBexVzboT0BDfInGWY7A_6egUIC6SJkQa6bCbUgS9QTrjX0YILJkwnrIFXsSKVJUC57ZPRS8fQynZrU9za1G1tuleDnbc19yN4jv_OXq84nJaqmqc-R6vm2fbwNditODoe_p7a6s-mr8Ff3wmFTfVdh8li-Kg3YFo-FVk-rMPUQaPVPqvDn2NG8duObupOrF8BeWLugQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRK9AOVDLC3gA0ggsNjEiR0fKlTKrlp1WVWwRb0Frz_alba7bZO2oj-K38g4cYhAorceODsZycmb8dieeQ_gpWOGax1pmk3ilCbKRFRZ73jcCOPp2FXVX_FtKEaj7OBA7i3Bz6YXxpdVNjGxCtRmof0Z-ftYIvgir-L94eSUetUof7vaSGjUsNi1Py5xy1Zs7HzC__sqjgf98dY2DaoCVCPcSqoF16nQjLss0cr3uqTMcuslwiUzRqo0i1ScGMNx5dWCOfRALqVTOlLSScHQ7i1YTljC0w4sf-yP9r60NL9ZJcOMrptSTNST0KYTmvVk5AvlJPVER4L2_lwK2_z2ryvZaqUb3PvfvtF9uBtyarJZO8EqLNn5A1gNUasgrwO19puHcLQ_x_2_mdYHoGTLl9xX3aeWLBxRZKCKkowvF3Toa6kIbtRxNtMra8jm7BBnWh4dE8zyyVd7PJ1VgwQjrxeZOfenjqR_WjOnF49g_0Zm_Bg688XcPgEimHYcbWBq6hLLYoX-IKOJVVIJ5SZJF6Lmt-c6ELF7PZBZ3lJIe6jkCJW8gkre68Lb3--c1DQk1z693uAjDyGpyFtwdOFdg7B2-N_Wnl5v7QXc2R5_HubDndHuGqzEFcAR3b116JRn5_YZ3NYX5bQ4ex6chcD3m8beL5LITvc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5VUCF6gAaoGgrFhx5AYIV9en1EIVERaYR4idvK8aOsFDaQXVqpv56xd0NCBUiIs732yp4Zz9jzfQPwwwQqltKTNBn4EQ2F8qjQVvFixZSlYxcOX3HZY_1-cnXFT2ZQ_C7bffIkWWEaLEtTXrZulWnNAN-4Z5POOLWkQYxi0D4fYiRjk7pOzy6ntLuJK4uMqhRRdJzDGjbz_BhPj6apv_nfE6k7ebrL7__nz7BUe53koBKTBnzQ-Qp8-vVI2VqsQKPW8oJs11TUO6twfZHjJCqrLgxJ26aoO7SmJiNDBOmKoiTnf0e0Z3OPCAa2qDjZP63IwfD3aJyV1zcEvWJypm-yoWskaKlsUZZ7e0tHOncV03ixBhfdznn7J61rM1CJSltSyWIZMRnEJgmlsIihKNCxtoXWeaAUF1HiCT9UKkb_RbLAoB2LOTdCeoIbzoIvMJePcv0VCAukiXEMdOVMqANfoPxwb6AFF0yYQdgEb7ItqayJy239jGE6pVy2S5vi0qZuadP9Juw-fnNb0Xa82ntjsttprcJF6nO0dp4tG9-EvcnuTptfHm39bd23YOHksJv2jvrH32DRd_Jhs4E3YK4c3-tN-Cj_lFkx_u4k-wHZb_bf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unconditional+Convergence+of+a+Fast+Two-Level+Linearized+Algorithm+for+Semilinear+Subdiffusion+Equations&rft.jtitle=Journal+of+scientific+computing&rft.au=Liao%2C+Hong-lin&rft.au=Yan%2C+Yonggui&rft.au=Zhang%2C+Jiwei&rft.date=2019-07-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=80&rft.issue=1&rft.spage=1&rft.epage=25&rft_id=info:doi/10.1007%2Fs10915-019-00927-0&rft.externalDocID=10_1007_s10915_019_00927_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon