Towards the theory of strong minimum in calculus of variations and optimal control: a view from variational analysis

The paper offers a self-contained account of the theory of first and second order necessary conditions for optimal control problems (with state constraints) based on new principles coming from variational analysis. The key element of the theory is reduction of the problem to unconstrained minimizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations Jg. 59; H. 2
1. Verfasser: Ioffe, A. D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2020
Springer Nature B.V
Schlagworte:
ISSN:0944-2669, 1432-0835
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The paper offers a self-contained account of the theory of first and second order necessary conditions for optimal control problems (with state constraints) based on new principles coming from variational analysis. The key element of the theory is reduction of the problem to unconstrained minimization of a Bolza-type functional with necessarily non-differentiable integrand and off-integral term. This allows to substantially shorten and simplify the proofs and to get new results not detected earlier by traditional variational techniques. This includes a totally new and easily verifiable second order necessary condition for a strong minimum in the classical problem of calculus of variations. The condition is a consequence of a new and more general second order necessary condition for optimal control problems with state constraints. Simple examples show that the new conditions may work when all known necessary conditions fail.
AbstractList The paper offers a self-contained account of the theory of first and second order necessary conditions for optimal control problems (with state constraints) based on new principles coming from variational analysis. The key element of the theory is reduction of the problem to unconstrained minimization of a Bolza-type functional with necessarily non-differentiable integrand and off-integral term. This allows to substantially shorten and simplify the proofs and to get new results not detected earlier by traditional variational techniques. This includes a totally new and easily verifiable second order necessary condition for a strong minimum in the classical problem of calculus of variations. The condition is a consequence of a new and more general second order necessary condition for optimal control problems with state constraints. Simple examples show that the new conditions may work when all known necessary conditions fail.
ArticleNumber 83
Author Ioffe, A. D.
Author_xml – sequence: 1
  givenname: A. D.
  surname: Ioffe
  fullname: Ioffe, A. D.
  email: alexander.ioffe38@gmail.com
  organization: Department of Mathematics, Technion
BookMark eNp9kE1rGzEQhkVIILabP5CToOdtR1-72txKaNNCIJf0vIwVKZHZlRxJG-N_X9kuBHLIYTQHPc_w8i7JeYjBEnLN4BsD6L5nAMXbBjg0wDrRNvyMLJgUvAEt1DlZQC9lw9u2vyTLnDcATGkuF6Q8xh2mp0zLiz1MTHsaHc0lxfBMJx_8NE_UB2pwNPM458PvGyaPxceQKYYnGrfFTzhSE0PVxhuK9M3bHXUpTu9sBbA---zzF3LhcMz26v9ekb-_fj7e_m7uH-7-3P64b4xgfWlMx10LtoMOAY1bC1Rtx9forDRKgZGdkKZFJrgwWhqhNHInlHQ94xrNWqzI19PdbYqvs81l2MQ51RB54EJrwXSr-krpE2VSzDlZNxhfjpFLQj8ODIZDx8Op46F2PBw7rjdWhH9Qt6lWkfafS-Ik5QqHZ5veU31i_QPJHZKC
CitedBy_id crossref_primary_10_1016_j_aml_2021_107199
crossref_primary_10_1007_s00526_024_02795_5
Cites_doi 10.1007/s10957-019-01485-z
10.1137/130917417
10.1090/crmp/002/04
10.1137/17M1160604
10.1137/0317019
10.1016/j.jde.2017.02.013
10.1090/mmono/180
10.1007/978-3-319-64277-2
10.1007/BFb0087685
10.1007/s10013-020-00397-0
10.1070/SM8721
10.1137/0314067
10.1007/s10958-012-0824-1
10.1287/moor.9.2.159
10.1090/S0002-9947-97-01795-9
10.1016/j.na.2006.08.046
10.1007/s10957-020-01647-4
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00526-020-01736-2
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-0835
ExternalDocumentID 10_1007_s00526_020_01736_2
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7Z
Z88
Z8T
Z92
ZMTXR
ZWQNP
~EX
88I
8AO
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ABUWG
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c319t-c72f60e707a0acfb3a5672bafe4c550c4734c6a1323c84c358a2f354f9128acb3
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526626200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0944-2669
IngestDate Wed Sep 17 23:55:58 EDT 2025
Tue Nov 18 22:36:32 EST 2025
Sat Nov 29 06:45:36 EST 2025
Fri Feb 21 02:35:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 49J53
49K05
49K15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c72f60e707a0acfb3a5672bafe4c550c4734c6a1323c84c358a2f354f9128acb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2388318659
PQPubID 32028
ParticipantIDs proquest_journals_2388318659
crossref_citationtrail_10_1007_s00526_020_01736_2
crossref_primary_10_1007_s00526_020_01736_2
springer_journals_10_1007_s00526_020_01736_2
PublicationCentury 2000
PublicationDate 20200400
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 4
  year: 2020
  text: 20200400
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Calculus of variations and partial differential equations
PublicationTitleAbbrev Calc. Var
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References FrankowskaHOsmolovskiiNPStrong local minimizers in optimal control. Problems with state constraints: second order necessary conditionsSIAM J. Control Optim.2018562353237638177551393.49016
IoffeADOn generalized Bolza problem and its application to dynamic optimizationJ. Optim. Theory Appl.201918228530939613601420.49027
Ioffe, A.D.: Elementary proof of the Pontryagin maximum principle. Vietnam J. Math. https://doi.org/10.1007/s10013-020-00397-0
Buttazzo, G.: Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Resarch Notes in Mathematics, vol. 207. Pitman (1989)
IoffeADNecessary and sufficient conditions for a local minimum 1–3SIAM J. Control Optim.1979172452885250250417.49027
VinterRBOptimal Control2000BaselBirkhauser0952.49001
MordukhovichBSVariational Analysis and Generalized Differentiation2006BerlinSpringer
ClarkeFHThe maximum principle under minimal hypothesesSIAM J. Contol Optim.197614107810914154530344.49009
IoffeADVariational Analysis of Regular Mappings2017BerlinSpringer1381.49001
OsmolovskiiNPNecessary second-order conditions for a strong local minimum in a problem with endpoint and control constraintsJ. Optim. Theory Appl.20201851164081239
PontryaginLSBoltyanskiiVGGamkrelidzeRVMishchenkoEFThe Mathemetical Theory of Optimal Processes, Fizmatgiz 19611964OxfordPergamon Press(in Russian)
MilyutinAAOsmolovskiiNPCalculus of Variations and Optimal Control1998ProvidenceAMS
IoffeADEuler-Lagrange and Hamiltonian formalisms in dynamic optimizationTrans. Am. Math. Soc.19973492871290013897790876.49024
GamkrelidzeRVOn some extremal problems in the theory of differential equations with applications to the theory of optimal controlSIAM J. Control196531061281929370296.49009
IoffeADNecessary conditions in nonsmooth optimizationMath. Oper. Res.198491591897422540548.90088
PalesZZeidanVFirst and second order optimality conditions in optimal control with pure state constraintsNonlinear Anal. TMA200767250625261130.49018
Dubovitzkii, A.Y., Milyutin, A.A.: Problems for extremum under constraints. Zh. Vychisl. Matematiki i Mat. Fiziki 5(3), 395–453 (1965) (in Russian; English translation, USSR Comput. Math. Math. Physics, 5 (1965))
Castaing, C., Valadier, M.: Convex analysis and measurable multifunctions. Lecture Notes in Mathematics, vol. 580. Springer (1977)
ClarkeFHOptimization and Nonsmooth Analysis1983HobokenWiley0582.49001
Loewen, P.D.: Optimal control via nonsmooth analysis. CRM Proceedings and Lecture Notes, vol. 2. AMS (1993)
Avakov, E.P., Magaril-Il’yaev, G.G.: Controllability and necessary optimality conditions of second order in optimal control. Matem. Sbornik 208, 3–37 (2017) (in Russian; English translation, Sb. Matem. 208 (2017), 585–619)
OsmolovskiiNPNecessary quadratic conditions of extremum for discontinuous control in optimal control problems with mixed constraintsJ. Math. Sci.201218343557731739641263.49001
VinterRBThe Hamiltonian inclusion for nonconvex velocity setsSIAM J. Control Optim.2014521237125031915871304.49045
FrankowskaHHoehenerDPointwise second order necessary optimality conditions and second order sensitivity relations in optimal controlJ. Differ. Equ.20172625735577236245371373.49023
1736_CR2
1736_CR3
AD Ioffe (1736_CR11) 1984; 9
BS Mordukhovich (1736_CR18) 2006
RB Vinter (1736_CR23) 2000
AD Ioffe (1736_CR13) 2017
RB Vinter (1736_CR24) 2014; 52
AD Ioffe (1736_CR14) 2019; 182
cr-split#-1736_CR6.1
cr-split#-1736_CR6.2
AD Ioffe (1736_CR12) 1997; 349
1736_CR16
1736_CR15
AA Milyutin (1736_CR17) 1998
cr-split#-1736_CR1.2
cr-split#-1736_CR1.1
H Frankowska (1736_CR8) 2018; 56
LS Pontryagin (1736_CR22) 1964
NP Osmolovskii (1736_CR19) 2012; 183
FH Clarke (1736_CR4) 1976; 14
FH Clarke (1736_CR5) 1983
AD Ioffe (1736_CR10) 1979; 17
RV Gamkrelidze (1736_CR9) 1965; 3
H Frankowska (1736_CR7) 2017; 262
Z Pales (1736_CR21) 2007; 67
NP Osmolovskii (1736_CR20) 2020; 185
References_xml – reference: FrankowskaHOsmolovskiiNPStrong local minimizers in optimal control. Problems with state constraints: second order necessary conditionsSIAM J. Control Optim.2018562353237638177551393.49016
– reference: Loewen, P.D.: Optimal control via nonsmooth analysis. CRM Proceedings and Lecture Notes, vol. 2. AMS (1993)
– reference: IoffeADNecessary and sufficient conditions for a local minimum 1–3SIAM J. Control Optim.1979172452885250250417.49027
– reference: GamkrelidzeRVOn some extremal problems in the theory of differential equations with applications to the theory of optimal controlSIAM J. Control196531061281929370296.49009
– reference: OsmolovskiiNPNecessary second-order conditions for a strong local minimum in a problem with endpoint and control constraintsJ. Optim. Theory Appl.20201851164081239
– reference: Castaing, C., Valadier, M.: Convex analysis and measurable multifunctions. Lecture Notes in Mathematics, vol. 580. Springer (1977)
– reference: VinterRBOptimal Control2000BaselBirkhauser0952.49001
– reference: VinterRBThe Hamiltonian inclusion for nonconvex velocity setsSIAM J. Control Optim.2014521237125031915871304.49045
– reference: Avakov, E.P., Magaril-Il’yaev, G.G.: Controllability and necessary optimality conditions of second order in optimal control. Matem. Sbornik 208, 3–37 (2017) (in Russian; English translation, Sb. Matem. 208 (2017), 585–619)
– reference: PalesZZeidanVFirst and second order optimality conditions in optimal control with pure state constraintsNonlinear Anal. TMA200767250625261130.49018
– reference: ClarkeFHOptimization and Nonsmooth Analysis1983HobokenWiley0582.49001
– reference: Dubovitzkii, A.Y., Milyutin, A.A.: Problems for extremum under constraints. Zh. Vychisl. Matematiki i Mat. Fiziki 5(3), 395–453 (1965) (in Russian; English translation, USSR Comput. Math. Math. Physics, 5 (1965))
– reference: IoffeADVariational Analysis of Regular Mappings2017BerlinSpringer1381.49001
– reference: PontryaginLSBoltyanskiiVGGamkrelidzeRVMishchenkoEFThe Mathemetical Theory of Optimal Processes, Fizmatgiz 19611964OxfordPergamon Press(in Russian)
– reference: IoffeADEuler-Lagrange and Hamiltonian formalisms in dynamic optimizationTrans. Am. Math. Soc.19973492871290013897790876.49024
– reference: Buttazzo, G.: Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Resarch Notes in Mathematics, vol. 207. Pitman (1989)
– reference: IoffeADNecessary conditions in nonsmooth optimizationMath. Oper. Res.198491591897422540548.90088
– reference: MilyutinAAOsmolovskiiNPCalculus of Variations and Optimal Control1998ProvidenceAMS
– reference: OsmolovskiiNPNecessary quadratic conditions of extremum for discontinuous control in optimal control problems with mixed constraintsJ. Math. Sci.201218343557731739641263.49001
– reference: FrankowskaHHoehenerDPointwise second order necessary optimality conditions and second order sensitivity relations in optimal controlJ. Differ. Equ.20172625735577236245371373.49023
– reference: MordukhovichBSVariational Analysis and Generalized Differentiation2006BerlinSpringer
– reference: IoffeADOn generalized Bolza problem and its application to dynamic optimizationJ. Optim. Theory Appl.201918228530939613601420.49027
– reference: ClarkeFHThe maximum principle under minimal hypothesesSIAM J. Contol Optim.197614107810914154530344.49009
– reference: Ioffe, A.D.: Elementary proof of the Pontryagin maximum principle. Vietnam J. Math. https://doi.org/10.1007/s10013-020-00397-0
– volume-title: Optimal Control
  year: 2000
  ident: 1736_CR23
– volume: 182
  start-page: 285
  year: 2019
  ident: 1736_CR14
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-019-01485-z
– volume: 52
  start-page: 1237
  year: 2014
  ident: 1736_CR24
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/130917417
– ident: 1736_CR16
  doi: 10.1090/crmp/002/04
– volume: 56
  start-page: 2353
  year: 2018
  ident: 1736_CR8
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/17M1160604
– volume: 17
  start-page: 245
  year: 1979
  ident: 1736_CR10
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0317019
– volume: 262
  start-page: 5735
  year: 2017
  ident: 1736_CR7
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2017.02.013
– volume-title: Calculus of Variations and Optimal Control
  year: 1998
  ident: 1736_CR17
  doi: 10.1090/mmono/180
– ident: #cr-split#-1736_CR6.1
– volume-title: Variational Analysis of Regular Mappings
  year: 2017
  ident: 1736_CR13
  doi: 10.1007/978-3-319-64277-2
– volume-title: Optimization and Nonsmooth Analysis
  year: 1983
  ident: 1736_CR5
– volume-title: The Mathemetical Theory of Optimal Processes, Fizmatgiz 1961
  year: 1964
  ident: 1736_CR22
– ident: 1736_CR3
  doi: 10.1007/BFb0087685
– volume: 3
  start-page: 106
  year: 1965
  ident: 1736_CR9
  publication-title: SIAM J. Control
– ident: 1736_CR15
  doi: 10.1007/s10013-020-00397-0
– ident: #cr-split#-1736_CR1.2
  doi: 10.1070/SM8721
– volume: 14
  start-page: 1078
  year: 1976
  ident: 1736_CR4
  publication-title: SIAM J. Contol Optim.
  doi: 10.1137/0314067
– volume: 183
  start-page: 435
  year: 2012
  ident: 1736_CR19
  publication-title: J. Math. Sci.
  doi: 10.1007/s10958-012-0824-1
– volume-title: Variational Analysis and Generalized Differentiation
  year: 2006
  ident: 1736_CR18
– volume: 9
  start-page: 159
  year: 1984
  ident: 1736_CR11
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.9.2.159
– volume: 349
  start-page: 2871
  year: 1997
  ident: 1736_CR12
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-97-01795-9
– volume: 67
  start-page: 2506
  year: 2007
  ident: 1736_CR21
  publication-title: Nonlinear Anal. TMA
  doi: 10.1016/j.na.2006.08.046
– ident: 1736_CR2
– ident: #cr-split#-1736_CR1.1
– volume: 185
  start-page: 1
  year: 2020
  ident: 1736_CR20
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-020-01647-4
– ident: #cr-split#-1736_CR6.2
SSID ssj0015824
Score 2.2483585
Snippet The paper offers a self-contained account of the theory of first and second order necessary conditions for optimal control problems (with state constraints)...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Analysis
Calculus of variations
Calculus of Variations and Optimal Control; Optimization
Control
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Optimal control
Optimization
Systems Theory
Theoretical
Title Towards the theory of strong minimum in calculus of variations and optimal control: a view from variational analysis
URI https://link.springer.com/article/10.1007/s00526-020-01736-2
https://www.proquest.com/docview/2388318659
Volume 59
WOSCitedRecordID wos000526626200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0835
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8MwNMj0oAe_xemUHLxpoGuSpvUm4vDiEJ2yW0nTRAauk7Ub-O99ydIORQW9Nq9pyXt53x8InYFYUVnOE6JCHVgDJSRJkEdEZDrUhkmeB4thE6Lfj4fD5N4XhZV1tnsdknScuil2c61JiDV3gIpoRIDxroK4i-3AhofH5yZ2wGM3yhbsFkZA_CS-VOb7PT6Lo6WO-SUs6qRNb-t__7mNNr12ia8W5LCDVnSxizbumtas5R6qBi5RtsTwDLsyxnc8Mbi0LvEXbDuNjGdjPCowIM-6Bku7OgeLeuHaw7LI8QT4zBi-4_PcL7HENsKAba3KEhYApG95so-eejeD61viRy8QBXeyIkqEJgq0CIQMpDIZlTwSYSaNZgpsGsUEZSqSYMpSFTNFeSxDQzkzCcg7qTJ6gFrFpNCHCFMuhabS6p45A2sr7kpjuioG5mIiJngbdWsMpMr3JbfjMV7TpqOyO9EUTjR1J5qGbXTevPO26MrxK3SnRmzqb2iZgqoSAz-LeNJGFzUil8s_73b0N_BjtB46WrDJPh3UqqYzfYLW1LwaldNTR7kfAybnXQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-igvrgtzg_8-CbBrp8NK1vIoriHKJTfCtpmsjAdbJuA_97L1nboaigr801LbnLfeRyv0PoCMyKTjMRE01N4AIUSuIgC4lMDTWWK5EFk2YTst2Onp_ju7IorKhuu1cpSa-p62I3D01CXLgDUsRCAop3joPFcoj59w9Pde5ARL6VLcQtnID5ictSme_n-GyOpj7ml7SotzaXK__7z1W0XHqX-GwiDmtoxuTraOm2hmYtNtCw4y_KFhieYV_G-I77FhfuSPwFO6SR3qiHuzkG5rmjwcKNjiGinhztYZVnuA96pgffKe-5n2KFXYYBu1qVKS0QqBLyZBM9Xl50zq9I2XqBaNiTQ6IltWFgZCBVoLRNmRKhpKmyhmuIaTSXjOtQQSjLdMQ1E5GilgluY7B3SqdsC83m_dxsI8yEkoYp53tmHKKtqKmsbeoIlIsNuRQN1Kw4kOgSl9y1x3hNakRlv6IJrGjiVzShDXRcv_M2QeX4lXqvYmxS7tAiAVclAn0WiriBTipGTod_nm3nb-SHaOGqc9tKWtftm120SL1cuIs_e2h2OBiZfTSvx8NuMTjwUvwB48XqQQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRfTBb3F-5sE3DeuapGl9E3Uo6hD8wLeSpokMXDfWKvjfe0m7TkUF8bVJ05K73N0v94XQPqgVlaQ8IsrXngUoPom8NCAi0b42TPLUK5tNiG43fHyMbj5k8bto97FLssxpsFWasqI1TE2rTnxzZUqIhT7AUTQgIISnmQ2kt3j99qH2I_DQtbUFDMMIqKKoSpv5fo3Pqmlib35xkTrN01n8_z8voYXK6sTHJZssoymdraD567pka76KijsXQJtjeIZdeuMbHhic26vyJ2wrkPRf-riXYSCqvTLM7egrIO3yyg_LLMUDkD99-E4V_36EJbaeB2xzWCZzYYKsSqGsofvO2d3JOalaMhAFZ7UgSvgm8LTwhPSkMgmVPBB-Io1mCrCOYoIyFUiAuFSFTFEeSt9QzkwEelCqhK6jRjbI9AbClEuhqbQ2acoAhYVtaUxbhSB0TMAEb6L2mBqxquqV27YZz3FdadntaAw7Grsdjf0mOqjfGZbVOn6dvT0mclyd3DwGEyYEORfwqIkOx0SdDP-82ubfpu-h2ZvTTnx10b3cQnO-YwsbD7SNGsXoRe-gGfVa9PLRrmPod2A-8yU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+the+theory+of+strong+minimum+in+calculus+of+variations+and+optimal+control%3A+a+view+from+variational+analysis&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Ioffe%2C+A+D&rft.date=2020-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=59&rft.issue=2&rft_id=info:doi/10.1007%2Fs00526-020-01736-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon