An Axiomatic Approach to Time-Dependent Shortest Path Oracles

Computing shortest paths in networks that exhibit a time-dependent metric is a core routine for many applications, with route planning in road networks being a prime example. In this work, we present an axiomatic approach which shows that for directed networks that satisfy certain properties we can...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 84; číslo 3; s. 815 - 870
Hlavní autoři: Kontogiannis, Spyros, Wagner, Dorothea, Zaroliagis, Christos
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2022
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Computing shortest paths in networks that exhibit a time-dependent metric is a core routine for many applications, with route planning in road networks being a prime example. In this work, we present an axiomatic approach which shows that for directed networks that satisfy certain properties we can provide time-dependent distance oracles that provably exhibit subquadratic preprocessing time and space (independent of the metric’s amount of disconcavity), query time sublinear on the network size or the actual Dijkstra rank of the query at hand (measuring the distance ordering of the destination from the origin), and small stretch factor (approximation error).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-021-00922-8