An Axiomatic Approach to Time-Dependent Shortest Path Oracles

Computing shortest paths in networks that exhibit a time-dependent metric is a core routine for many applications, with route planning in road networks being a prime example. In this work, we present an axiomatic approach which shows that for directed networks that satisfy certain properties we can...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithmica Ročník 84; číslo 3; s. 815 - 870
Hlavní autori: Kontogiannis, Spyros, Wagner, Dorothea, Zaroliagis, Christos
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.03.2022
Springer Nature B.V
Predmet:
ISSN:0178-4617, 1432-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Computing shortest paths in networks that exhibit a time-dependent metric is a core routine for many applications, with route planning in road networks being a prime example. In this work, we present an axiomatic approach which shows that for directed networks that satisfy certain properties we can provide time-dependent distance oracles that provably exhibit subquadratic preprocessing time and space (independent of the metric’s amount of disconcavity), query time sublinear on the network size or the actual Dijkstra rank of the query at hand (measuring the distance ordering of the destination from the origin), and small stretch factor (approximation error).
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-021-00922-8