A novel image retrieval technique based on semi supervised clustering
Traditionally Content-Based Image Retrieval (CBIR) problems investigate the occurrence of images matching to a user-submitted query image or a sketch drawn by the user within a large image collection. However, there is often limited support for retrieving semantically similar images from large datab...
Saved in:
| Published in: | Multimedia tools and applications Vol. 80; no. 28-29; pp. 35741 - 35769 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.11.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1380-7501, 1573-7721 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Traditionally Content-Based Image Retrieval (CBIR) problems investigate the occurrence of images matching to a user-submitted query image or a sketch drawn by the user within a large image collection. However, there is often limited support for retrieving semantically similar images from large databases, matching the user’s perception. In this paper, we try to address this semantic gap problem in CBIR by performing a clustering-based retrieval. In the proposed approach we first perform a continuous probabilistic semi-supervised clustering to group similar images to form macro clusters. Macro clusters so formed, ensures class-wise similarity instead of semantic similarity. To retrieve the semantically matching images from these macro clusters formed, the CBIR method is adopted using a cluster within-cluster approach. The key idea is that the macro clusters formed during the initial phase of classification are further classified into micro clusters based on the decision tree approach. For retrieval, as the first step, the macro cluster matching to the user’s query is found. In the next step, to ensure semantic similarity the image is classified to the matching micro cluster. The proposed method is experimentally evaluated first on Wang database which contains complex and diverse images with varying fine details. Further, the experiments are repeated on the Ponce group database and Corel 5K database. The experimental results obtained demonstrate the effectiveness of the proposed approach. |
|---|---|
| AbstractList | Traditionally Content-Based Image Retrieval (CBIR) problems investigate the occurrence of images matching to a user-submitted query image or a sketch drawn by the user within a large image collection. However, there is often limited support for retrieving semantically similar images from large databases, matching the user’s perception. In this paper, we try to address this semantic gap problem in CBIR by performing a clustering-based retrieval. In the proposed approach we first perform a continuous probabilistic semi-supervised clustering to group similar images to form macro clusters. Macro clusters so formed, ensures class-wise similarity instead of semantic similarity. To retrieve the semantically matching images from these macro clusters formed, the CBIR method is adopted using a cluster within-cluster approach. The key idea is that the macro clusters formed during the initial phase of classification are further classified into micro clusters based on the decision tree approach. For retrieval, as the first step, the macro cluster matching to the user’s query is found. In the next step, to ensure semantic similarity the image is classified to the matching micro cluster. The proposed method is experimentally evaluated first on Wang database which contains complex and diverse images with varying fine details. Further, the experiments are repeated on the Ponce group database and Corel 5K database. The experimental results obtained demonstrate the effectiveness of the proposed approach. |
| Author | S, Nisha Chandran Gangodkar, Durgaprasad |
| Author_xml | – sequence: 1 givenname: Nisha Chandran orcidid: 0000-0002-0558-5496 surname: S fullname: S, Nisha Chandran email: nisha.unnikrishnan@gmail.com organization: School of Computing, Graphic Era Hill University – sequence: 2 givenname: Durgaprasad surname: Gangodkar fullname: Gangodkar, Durgaprasad organization: Dept. of CSE, Graphic Era University |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6szyX4eS6kfUPCi55BmZ2vKNluT3YL_3tQVBA89ZQjzzLzzzNjEdY4Yu0W4R4DiISBCKhIQmCBmsZIXbIpZIZOiEDiJtSwhKTLAKzYLYQeAeSbSKVstuOuO1HK711vinnpv6ahb3pP5cPZzIL7RgWreOR5ob3kYDuSP9vRl2iH05K3bXrPLRreBbn7fOXt_XL0tn5P169PLcrFOjMSqT0xeU1PnILFpyipH1HJTV3WFG9A6BqqRhEgLk8u0ARBQijojkiQBZFkJI-fsbpx78F2MFnq16wbv4kolckjzrMKqjF1i7DK-C8FTow4-nue_FII66VKjLhV1qR9dSkao_AcZ2-vedq732rbnUTmi4XCSQf4v1RnqG7jDgDI |
| CitedBy_id | crossref_primary_10_3390_axioms12060535 crossref_primary_10_3390_math11010175 |
| Cites_doi | 10.1007/3-540-45113-7_21 10.1109/34.895972 10.1155/2019/9658350 10.1109/83.817596 10.1145/244130.244151 10.1109/TIP.2009.2035882 10.1109/69.755615 10.1109/ICASSP.2005.1416495 10.1109/TKDE.2002.1033769 10.1016/j.patcog.2007.12.003 10.1142/S0219622009003363 10.1142/S0219622011004634 10.1007/s10844-013-0257-4 10.1145/973264.973295 10.1007/BF00123143 10.1007/s12517-014-1584-7 10.1016/j.knosys.2014.10.009 10.1142/S0219622007002496 10.1007/s11042-019-7321-1 10.1007/s11042-017-4664-3 10.1016/j.ijleo.2015.05.002 10.1007/0-387-25465-X_15 10.1145/354756.354775 10.1109/2.410146 10.1109/76.718510 10.1007/3-540-45783-6_20 10.1016/j.jvcir.2016.03.008 10.1109/TIP.2008.2007385 10.1109/DICTA.2012.6411665 10.1145/2647868.2654948 10.1016/j.ins.2013.08.043 10.1109/TPAMI.2002.1023800 10.1109/ACV.1996.572008 10.1109/34.955109 10.1016/j.cviu.2005.09.012 10.1016/S0262-8856(96)01114-6 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s11042-021-11542-3 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 35769 |
| ExternalDocumentID | 10_1007_s11042_021_11542_3 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-c6defd6031ff89611a3bd9d91b0aa165d1e2247c634f002082d5ee3e3003892c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000722157500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Wed Nov 05 01:10:18 EST 2025 Tue Nov 18 21:05:58 EST 2025 Sat Nov 29 06:20:13 EST 2025 Fri Feb 21 02:47:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 28-29 |
| Keywords | Kullback -Leibler distance Gaussian mixture modeling Clustering Decision trees CBIR Micro clusters |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-c6defd6031ff89611a3bd9d91b0aa165d1e2247c634f002082d5ee3e3003892c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0558-5496 |
| PQID | 2604659198 |
| PQPubID | 54626 |
| PageCount | 29 |
| ParticipantIDs | proquest_journals_2604659198 crossref_primary_10_1007_s11042_021_11542_3 crossref_citationtrail_10_1007_s11042_021_11542_3 springer_journals_10_1007_s11042_021_11542_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20211100 2021-11-00 20211101 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 20211100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Latif A, Rasheed A, Sajid U, Ahmed J, Ali N, Ratyal NI, Zafar B, Dar SH, Sajid M, Khalil T (2019) Content-based image retrieval and feature extraction: a comprehensive review, Mathematical Problems in Engineering Karakos D, Khudanpur S, Eisner J, Priebe CE (2005) Unsupervised classification via decision trees: An information-theoretic perspective, in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, (ICASSP’05). Pennsylvania, USA , v-1081 Wan J, Wang D, Hoi SCH, Wu P, Zhu J, Zhang Y, Li J (2014) Deep learning for content-based image retrieval: A comprehensive study, in Proc. 22nd ACM Int. Conf. on Multimedia, Orlando, Florida, USA, pp. 157–166 Jain AK, Dubes RC (1988) Algorithms for clustering data Prentice-Hall, Inc GuoJMWuMFImproved block truncation coding based on the void-and-cluster dithering approachIEEE Trans Image Process2009181211213274174410.1109/TIP.2008.2007385 Rokach L, Maimon LO (2005) Clustering methods, Data mining and knowledge discovery handbook Springer, pp. 321-352 CarsonCBelongieSGreenspanHMalikJBlobworld: Image segmentation using expectation-maximization and its application to image queryingIEEE Trans Pattern Anal Machine Intell20022481026103810.1109/TPAMI.2002.1023800 AjorlooHLakdashtiAA feature relevance estimation method for content-based image retrievalInt J Inf Technol Decis Mak2011100593396110.1142/S0219622011004634 RaoMBRaoBPGovardhanACTDCIRS: content based image retrieval system based on dominant color and texture featuresInt J Comput Appl20111864046 MontazerGAGivekiDContent based image retrieval system using clustered scale invariant feature transformsOptik-International Journal for Light and Electron Optics2015126181695169910.1016/j.ijleo.2015.05.002 Huang T, Mehrotra S, Ramchandran K (1996) Multimedia analysis and retrieval system (MARS) project, in Proc. 33rd Annual Clinic on Library Applications of Data Processing- Digital Image Access and Retrieva, University of Illinois, Urbana-Champaign, pp. 100-117 ShrivastavaNTyagiVContent based image retrieval based on relative locations of multiple regions of interest using selective regions matchingInf Sci201425921222410.1016/j.ins.2013.08.043 LiuYZhangDLuGRegion-based image retrieval with high-level semantics using decision tree learningPattern Recogn20084182554257010.1016/j.patcog.2007.12.003 Liu B, Xia Y, Yu PS (2000) Clustering through decision tree construction, in Proc. Ninth Int. Conf. on Information and knowledge management (CIKM) McLean, VA, USA, pp. 20–29 Wangdatabase [Online] Available: http://wang.ist.psu.edu/docs/related.html Afifi AJ, Ashour WM (2012) Content-based image retrieval using invariant color and texture features, in Proc IEEE Int Conf Dig Image Comp Tech Appl (DICTA), Fremantle, Australia, pp. 1–6 PentlandAPPicardRWScarloffSPhotobook: Content-based manipulation for image databasesInt J Comput Vis199618323325410.1007/BF00123143 Pass G, Zabih R (1996) Histogram refinement for content-based image retrieval, in Proc. 3rd IEEE Workshop on Applications of Computer Vision (WACV’96), Sarasota, Florida, USA Rui Y, Huang TS, Ortega M, Mehrotra S (1998) Relevance feedback: a power tool for interactive content-based image retrieval, IEEE Trans Circ Syst Vid Tech 8(5):644-655 ParkSSSeoKKJangDSFuzzy art-based image clustering method for content-based image retrievalInt J Inf Technol Decis Mak200760221323310.1142/S0219622007002496 Ponce group birds and butterflies database [Online] Available: http://www-cvr.ai.uiuc.edu/ponce-grp/data FlicknerMSawhneyHNiblackWAshleyJHuangQDomBGorkaniMHafnerJLeeDPetkovicDSteeleDQuery by image and video content: The QBIC systemComputer1995289233210.1109/2.410146 Sheikholeslami G, Chang W, Zhang A (2002) SemQuery: semantic clustering and querying on heterogeneous features for visual data, IEEE Trans Knowl Data Eng 14(5):988–1002 Jing F, Li M, Zhang L, Zhang HJ, Zhang B (2003) Learning in region-based image retrieval. Image and Video Retrieval, pp. 199–204 ChandranSNGangodkarDMittalAA semi-supervised probabilistic model for clustering large databases of complex imagesMultimedia Tools and Applications20177621219372195910.1007/s11042-017-4664-3 Kundu MK, Chowdhury M, Buló SR (2015) A graph-based relevance feedback mechanism in content-based image retrieval. Knowl-Based Syst 73:254–264 AslandoganYAYuCTTechniques and systems for image and video retrievalIEEE Trans Knowl Data Eng1999111566310.1109/69.755615 Yikun Y, Shengjie J, Jinrong H, Bisheng X, Jiabo L, Ru X (2020) Image retrieval via learning content-based deep quality model towards big data, Future Generation Computer Systems Chen Y, Wang JZ, Krovetz R (2003) Content-based image retrieval by clustering, in Proc. 5th ACM SIGMM Int. workshop on Multimedia Information Retrieval, Berkeley, CA, USA, pp. 193–200 SmeuldersAWWorringMSantiniSGuptaAJainRContent-based image retrieval at the end of the early yearIEEE Trans Pattern Anal Mach Intell200022121349138010.1109/34.895972 WangJZLiJWiederholdGSIMPLIcity: Semantics-sensitive integrated matching for picture libraries, IEEE TransPattern Anal Mach Intell200123994796310.1109/34.955109 SezavarAFarsiHMohamadzadehSContent-based image retrieval by combining convolutional neural networks and sparse representationMultimed Tools Appl201978208952091210.1007/s11042-019-7321-1 De Marsicoi M, Cinque L, Levialdi S (1997) Indexing pictorial documents by their content: a survey of current techniques. Image Vis Comp 15(2):119-141 Smith JR, Chang SF (1996) VisualSEEK: A fully automated content-based image query system, in Proc. fourth ACM Int. Conf. on Multimedia, Boston, Massachusetts, USA CoxIJMillerMLMinkaTPPapathomasTVYianilosPNThe Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experimentsIEEE Trans Image Process200091203710.1109/83.817596 Fei-FeiLFergusRPeronaPLearning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categoriesComput Vis Image Underst20071061597010.1016/j.cviu.2005.09.012 Tai XY, Wang LD, Chen Q, Fuji R, Kenji KK (2009) A New Method Of Medical Image Retrieval Based On Color–Texture Correlogram and Gti Mode. Int J Info Tech Dec Making 8(2):239–248 WangXYLiangLLLiWYLiDMYangHYA new SVM-based relevance feedback image retrieval using probabilistic feature and weighted kernel functionJ Vis Commun Image Represent20163825627510.1016/j.jvcir.2016.03.008 Ma WY, Manjunath BS (1997) Netra: A toolbox for navigating large image databases, in Proc. IEEE Int Conf Image Proc, Santa Barbara, California 1:568-571 Goldberger J, Greenspan H, Gordon S (2002) Unsupervised image clustering using the information bottleneck method. Patt Recogn, pp. 158–165 ZhuSZouLFangBContent based image retrieval via a transductive modelJ Intell Inf Syst20144219510910.1007/s10844-013-0257-4 Town C, Sinclair D (2000) Content based image retrieval using semantic visual categories, Society of Manufacturing Engineers YounusZSMohamadDSabaTAlkawazMHRehmanAAl-RodhaanMAl-DhelaanAContent-based image retrieval using PSO and K-means clustering algorithmArab J Geosci2015886211622410.1007/s12517-014-1584-7 ZhangBGaoYLiuJLocal derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptorIEEE Trans Image Processing2010192533544272977410.1109/TIP.2009.2035882 Corel 5K Dataset [Online] Available: www.ci.gxnu.edu.cn/cbir/Dataset.aspx L Fei-Fei (11542_CR10) 2007; 106 YA Aslandogan (11542_CR3) 1999; 11 11542_CR14 11542_CR36 JM Guo (11542_CR13) 2009; 18 11542_CR15 11542_CR37 11542_CR12 11542_CR35 MB Rao (11542_CR28) 2011; 18 11542_CR32 11542_CR30 S Zhu (11542_CR44) 2014; 42 M Flickner (11542_CR11) 1995; 28 GA Montazer (11542_CR23) 2015; 126 11542_CR29 XY Wang (11542_CR39) 2016; 38 JZ Wang (11542_CR40) 2001; 23 AP Pentland (11542_CR26) 1996; 18 11542_CR27 C Carson (11542_CR4) 2002; 24 AW Smeulders (11542_CR34) 2000; 22 IJ Cox (11542_CR8) 2000; 9 11542_CR25 Y Liu (11542_CR21) 2008; 41 11542_CR22 11542_CR41 11542_CR20 SS Park (11542_CR24) 2007; 6 N Shrivastava (11542_CR33) 2014; 259 11542_CR42 11542_CR1 SN Chandran (11542_CR5) 2017; 76 ZS Younus (11542_CR43) 2015; 8 11542_CR18 11542_CR19 11542_CR16 11542_CR38 11542_CR17 H Ajorloo (11542_CR2) 2011; 10 11542_CR7 B Zhang (11542_CR45) 2010; 19 11542_CR9 A Sezavar (11542_CR31) 2019; 78 11542_CR6 |
| References_xml | – reference: ZhuSZouLFangBContent based image retrieval via a transductive modelJ Intell Inf Syst20144219510910.1007/s10844-013-0257-4 – reference: PentlandAPPicardRWScarloffSPhotobook: Content-based manipulation for image databasesInt J Comput Vis199618323325410.1007/BF00123143 – reference: Fei-FeiLFergusRPeronaPLearning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categoriesComput Vis Image Underst20071061597010.1016/j.cviu.2005.09.012 – reference: Sheikholeslami G, Chang W, Zhang A (2002) SemQuery: semantic clustering and querying on heterogeneous features for visual data, IEEE Trans Knowl Data Eng 14(5):988–1002 – reference: MontazerGAGivekiDContent based image retrieval system using clustered scale invariant feature transformsOptik-International Journal for Light and Electron Optics2015126181695169910.1016/j.ijleo.2015.05.002 – reference: Ponce group birds and butterflies database [Online] Available: http://www-cvr.ai.uiuc.edu/ponce-grp/data/ – reference: AslandoganYAYuCTTechniques and systems for image and video retrievalIEEE Trans Knowl Data Eng1999111566310.1109/69.755615 – reference: Ma WY, Manjunath BS (1997) Netra: A toolbox for navigating large image databases, in Proc. IEEE Int Conf Image Proc, Santa Barbara, California 1:568-571 – reference: Smith JR, Chang SF (1996) VisualSEEK: A fully automated content-based image query system, in Proc. fourth ACM Int. Conf. on Multimedia, Boston, Massachusetts, USA – reference: FlicknerMSawhneyHNiblackWAshleyJHuangQDomBGorkaniMHafnerJLeeDPetkovicDSteeleDQuery by image and video content: The QBIC systemComputer1995289233210.1109/2.410146 – reference: ZhangBGaoYLiuJLocal derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptorIEEE Trans Image Processing2010192533544272977410.1109/TIP.2009.2035882 – reference: ParkSSSeoKKJangDSFuzzy art-based image clustering method for content-based image retrievalInt J Inf Technol Decis Mak200760221323310.1142/S0219622007002496 – reference: Jing F, Li M, Zhang L, Zhang HJ, Zhang B (2003) Learning in region-based image retrieval. Image and Video Retrieval, pp. 199–204 – reference: YounusZSMohamadDSabaTAlkawazMHRehmanAAl-RodhaanMAl-DhelaanAContent-based image retrieval using PSO and K-means clustering algorithmArab J Geosci2015886211622410.1007/s12517-014-1584-7 – reference: RaoMBRaoBPGovardhanACTDCIRS: content based image retrieval system based on dominant color and texture featuresInt J Comput Appl20111864046 – reference: GuoJMWuMFImproved block truncation coding based on the void-and-cluster dithering approachIEEE Trans Image Process2009181211213274174410.1109/TIP.2008.2007385 – reference: Corel 5K Dataset [Online] Available: www.ci.gxnu.edu.cn/cbir/Dataset.aspx – reference: Wangdatabase [Online] Available: http://wang.ist.psu.edu/docs/related.html – reference: Yikun Y, Shengjie J, Jinrong H, Bisheng X, Jiabo L, Ru X (2020) Image retrieval via learning content-based deep quality model towards big data, Future Generation Computer Systems – reference: WangXYLiangLLLiWYLiDMYangHYA new SVM-based relevance feedback image retrieval using probabilistic feature and weighted kernel functionJ Vis Commun Image Represent20163825627510.1016/j.jvcir.2016.03.008 – reference: Tai XY, Wang LD, Chen Q, Fuji R, Kenji KK (2009) A New Method Of Medical Image Retrieval Based On Color–Texture Correlogram and Gti Mode. Int J Info Tech Dec Making 8(2):239–248 – reference: AjorlooHLakdashtiAA feature relevance estimation method for content-based image retrievalInt J Inf Technol Decis Mak2011100593396110.1142/S0219622011004634 – reference: ChandranSNGangodkarDMittalAA semi-supervised probabilistic model for clustering large databases of complex imagesMultimedia Tools and Applications20177621219372195910.1007/s11042-017-4664-3 – reference: De Marsicoi M, Cinque L, Levialdi S (1997) Indexing pictorial documents by their content: a survey of current techniques. Image Vis Comp 15(2):119-141 – reference: ShrivastavaNTyagiVContent based image retrieval based on relative locations of multiple regions of interest using selective regions matchingInf Sci201425921222410.1016/j.ins.2013.08.043 – reference: Afifi AJ, Ashour WM (2012) Content-based image retrieval using invariant color and texture features, in Proc IEEE Int Conf Dig Image Comp Tech Appl (DICTA), Fremantle, Australia, pp. 1–6 – reference: Latif A, Rasheed A, Sajid U, Ahmed J, Ali N, Ratyal NI, Zafar B, Dar SH, Sajid M, Khalil T (2019) Content-based image retrieval and feature extraction: a comprehensive review, Mathematical Problems in Engineering – reference: Pass G, Zabih R (1996) Histogram refinement for content-based image retrieval, in Proc. 3rd IEEE Workshop on Applications of Computer Vision (WACV’96), Sarasota, Florida, USA – reference: CoxIJMillerMLMinkaTPPapathomasTVYianilosPNThe Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experimentsIEEE Trans Image Process200091203710.1109/83.817596 – reference: Rui Y, Huang TS, Ortega M, Mehrotra S (1998) Relevance feedback: a power tool for interactive content-based image retrieval, IEEE Trans Circ Syst Vid Tech 8(5):644-655 – reference: WangJZLiJWiederholdGSIMPLIcity: Semantics-sensitive integrated matching for picture libraries, IEEE TransPattern Anal Mach Intell200123994796310.1109/34.955109 – reference: Kundu MK, Chowdhury M, Buló SR (2015) A graph-based relevance feedback mechanism in content-based image retrieval. Knowl-Based Syst 73:254–264 – reference: Wan J, Wang D, Hoi SCH, Wu P, Zhu J, Zhang Y, Li J (2014) Deep learning for content-based image retrieval: A comprehensive study, in Proc. 22nd ACM Int. Conf. on Multimedia, Orlando, Florida, USA, pp. 157–166 – reference: SmeuldersAWWorringMSantiniSGuptaAJainRContent-based image retrieval at the end of the early yearIEEE Trans Pattern Anal Mach Intell200022121349138010.1109/34.895972 – reference: Huang T, Mehrotra S, Ramchandran K (1996) Multimedia analysis and retrieval system (MARS) project, in Proc. 33rd Annual Clinic on Library Applications of Data Processing- Digital Image Access and Retrieva, University of Illinois, Urbana-Champaign, pp. 100-117 – reference: Goldberger J, Greenspan H, Gordon S (2002) Unsupervised image clustering using the information bottleneck method. Patt Recogn, pp. 158–165 – reference: Town C, Sinclair D (2000) Content based image retrieval using semantic visual categories, Society of Manufacturing Engineers – reference: Chen Y, Wang JZ, Krovetz R (2003) Content-based image retrieval by clustering, in Proc. 5th ACM SIGMM Int. workshop on Multimedia Information Retrieval, Berkeley, CA, USA, pp. 193–200 – reference: Karakos D, Khudanpur S, Eisner J, Priebe CE (2005) Unsupervised classification via decision trees: An information-theoretic perspective, in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, (ICASSP’05). Pennsylvania, USA , v-1081 – reference: Rokach L, Maimon LO (2005) Clustering methods, Data mining and knowledge discovery handbook Springer, pp. 321-352 – reference: Jain AK, Dubes RC (1988) Algorithms for clustering data Prentice-Hall, Inc – reference: LiuYZhangDLuGRegion-based image retrieval with high-level semantics using decision tree learningPattern Recogn20084182554257010.1016/j.patcog.2007.12.003 – reference: CarsonCBelongieSGreenspanHMalikJBlobworld: Image segmentation using expectation-maximization and its application to image queryingIEEE Trans Pattern Anal Machine Intell20022481026103810.1109/TPAMI.2002.1023800 – reference: SezavarAFarsiHMohamadzadehSContent-based image retrieval by combining convolutional neural networks and sparse representationMultimed Tools Appl201978208952091210.1007/s11042-019-7321-1 – reference: Liu B, Xia Y, Yu PS (2000) Clustering through decision tree construction, in Proc. Ninth Int. Conf. on Information and knowledge management (CIKM) McLean, VA, USA, pp. 20–29 – ident: 11542_CR16 doi: 10.1007/3-540-45113-7_21 – volume: 22 start-page: 1349 issue: 12 year: 2000 ident: 11542_CR34 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.895972 – ident: 11542_CR19 doi: 10.1155/2019/9658350 – volume: 9 start-page: 20 issue: 1 year: 2000 ident: 11542_CR8 publication-title: IEEE Trans Image Process doi: 10.1109/83.817596 – ident: 11542_CR35 doi: 10.1145/244130.244151 – volume: 19 start-page: 533 issue: 2 year: 2010 ident: 11542_CR45 publication-title: IEEE Trans Image Processing doi: 10.1109/TIP.2009.2035882 – volume: 11 start-page: 56 issue: 1 year: 1999 ident: 11542_CR3 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/69.755615 – ident: 11542_CR17 doi: 10.1109/ICASSP.2005.1416495 – ident: 11542_CR32 doi: 10.1109/TKDE.2002.1033769 – volume: 41 start-page: 2554 issue: 8 year: 2008 ident: 11542_CR21 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2007.12.003 – ident: 11542_CR36 doi: 10.1142/S0219622009003363 – ident: 11542_CR15 – ident: 11542_CR41 – volume: 10 start-page: 933 issue: 05 year: 2011 ident: 11542_CR2 publication-title: Int J Inf Technol Decis Mak doi: 10.1142/S0219622011004634 – volume: 42 start-page: 95 issue: 1 year: 2014 ident: 11542_CR44 publication-title: J Intell Inf Syst doi: 10.1007/s10844-013-0257-4 – ident: 11542_CR6 doi: 10.1145/973264.973295 – ident: 11542_CR22 – volume: 18 start-page: 233 issue: 3 year: 1996 ident: 11542_CR26 publication-title: Int J Comput Vis doi: 10.1007/BF00123143 – volume: 8 start-page: 6211 issue: 8 year: 2015 ident: 11542_CR43 publication-title: Arab J Geosci doi: 10.1007/s12517-014-1584-7 – ident: 11542_CR18 doi: 10.1016/j.knosys.2014.10.009 – volume: 6 start-page: 213 issue: 02 year: 2007 ident: 11542_CR24 publication-title: Int J Inf Technol Decis Mak doi: 10.1142/S0219622007002496 – ident: 11542_CR27 – volume: 78 start-page: 20895 year: 2019 ident: 11542_CR31 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7321-1 – volume: 76 start-page: 21937 issue: 21 year: 2017 ident: 11542_CR5 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-017-4664-3 – volume: 126 start-page: 1695 issue: 18 year: 2015 ident: 11542_CR23 publication-title: Optik-International Journal for Light and Electron Optics doi: 10.1016/j.ijleo.2015.05.002 – ident: 11542_CR29 doi: 10.1007/0-387-25465-X_15 – ident: 11542_CR20 doi: 10.1145/354756.354775 – volume: 28 start-page: 23 issue: 9 year: 1995 ident: 11542_CR11 publication-title: Computer doi: 10.1109/2.410146 – ident: 11542_CR30 doi: 10.1109/76.718510 – ident: 11542_CR12 doi: 10.1007/3-540-45783-6_20 – volume: 38 start-page: 256 year: 2016 ident: 11542_CR39 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2016.03.008 – volume: 18 start-page: 211 issue: 1 year: 2009 ident: 11542_CR13 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2008.2007385 – ident: 11542_CR14 – ident: 11542_CR42 – ident: 11542_CR1 doi: 10.1109/DICTA.2012.6411665 – ident: 11542_CR37 – ident: 11542_CR38 doi: 10.1145/2647868.2654948 – volume: 259 start-page: 212 year: 2014 ident: 11542_CR33 publication-title: Inf Sci doi: 10.1016/j.ins.2013.08.043 – volume: 24 start-page: 1026 issue: 8 year: 2002 ident: 11542_CR4 publication-title: IEEE Trans Pattern Anal Machine Intell doi: 10.1109/TPAMI.2002.1023800 – ident: 11542_CR7 – ident: 11542_CR25 doi: 10.1109/ACV.1996.572008 – volume: 18 start-page: 40 issue: 6 year: 2011 ident: 11542_CR28 publication-title: Int J Comput Appl – volume: 23 start-page: 947 issue: 9 year: 2001 ident: 11542_CR40 publication-title: Pattern Anal Mach Intell doi: 10.1109/34.955109 – volume: 106 start-page: 59 issue: 1 year: 2007 ident: 11542_CR10 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2005.09.012 – ident: 11542_CR9 doi: 10.1016/S0262-8856(96)01114-6 |
| SSID | ssj0016524 |
| Score | 2.288947 |
| Snippet | Traditionally Content-Based Image Retrieval (CBIR) problems investigate the occurrence of images matching to a user-submitted query image or a sketch drawn by... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 35741 |
| SubjectTerms | 1166: Advances of machine learning in data analytics and visual information processing Clustering Computer Communication Networks Computer Science Data Structures and Information Theory Decision trees Image management Image retrieval Matching Multimedia Information Systems Semantics Similarity Special Purpose and Application-Based Systems |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGH6j6EEPoqgRRdODN21cP9jHyRAC8SLxoAm3ZbRdQgIDGfD77Ts6piZy8bqPZunzfq1v-zwA9wFPdRpGAfUT31CpJaNhat3dpjrJU2Z4GKpCbCIYDMLhMHpzC26521ZZxsQiUOuZwjXyJ1t3S78d2X_k5_knRdUo7K46CY19OMDKBrf0vXrdbRfBbztR29CjNjMyd2hmc3SO4cEU3KCAhDScip-Jqao2fzVIi7zTr__3i0_hxFWcpLMxkTPYM1kD6qWaA3HO3YDjb9SE59DrkGy2NhMyntqIQxaF8Ja1SrIlfSWYADWZZSQ30zHJV3MMO3hJTVZIv2DHuYCPfu-9-0Kd5AJV1heXVPnapBqVp1OLoM9YIkY60hEbeUli51Nb9LgMlC9kWuh7ct02RhiBHcaIK3EJtWyWmSsgURJhE1AKLgJpn0mQuEclEkuWdjgKm8DK-Y6V4yNHWYxJXDEpI0axxSguMIpFEx6278w3bBw7n26VwMTOM_O4QqUJjyW01e2_R7vePdoNHPGNNVGPtaC2XKzMLRyq9XKcL-4Ku_wCtT3k3Q priority: 102 providerName: ProQuest |
| Title | A novel image retrieval technique based on semi supervised clustering |
| URI | https://link.springer.com/article/10.1007/s11042-021-11542-3 https://www.proquest.com/docview/2604659198 |
| Volume | 80 |
| WOSCitedRecordID | wos000722157500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD54e9AH7-J15ME3DSyXtsmjykQQ5_CuL6VLUhhsnaybv9-Trt1UVNCXQNs0hHPJSTg53wdwGPHUpkpHNExCR6WVjKoU3R1DneQpc1wpU5BNRM2menrSrbIoLK9uu1cpyWKlnha7MV9K4q8UeAgZTsUszGO4U56w4eb2YZI7CIOSylbVKcZDVpbKfD_G53A03WN-SYsW0eZ85X_zXIXlcndJTsbmsAYzLluHlYq5gZSOvA5LH2AIN6BxQrL-m-uSTg9XFzIoSLbQAskE4JX4YGdJPyO563VIPnr1S4x_ZbojD7WA42zC_Xnj7uyClvQK1KDfDakJrUutZ5lOUVshY4loW201a9eTBKVoUVNcRiYUMi24PLkNnBNO-Gyi5kZswVzWz9w2EJ1on_CTgotIYp_Eg_SYRPrtSaDaagdYJeXYlNjjngKjG09Rk73UYpRaXEgtFjtwNPnndYy88Wvv_Up5cemFeYxnNRkGmmmcwHGlrOnnn0fb_Vv3PVjkY33TOtuHueFg5A5gwbwNO_mgBrPR43MN5k8bzdYNPl1GFNur-plv-TW2reClVtjwO5ST4PY |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6FggQc6AtESoE9wKldNfuwvT5UVVQSJUoacQhSb66zu5YipXaIkyL-FL-RHT8SikRuOXC116O195vHenbmA_gU8MQkKgyoH_uWSiMZVYlTd-fqJE-Y5UrpgmwiGI3U7W34tQG_6loYPFZZ28TCUJtM4z_yCxd3S98L3R75av6dImsUZldrCo0SFgP784fbsuWX_S9ufT9z3u2Mr3u0YhWg2sFtSbVvbGKQXDlxk_QZi8XEhCZkk1YcM98zboJcBtoXMikoLLnxrBVWYBIt5Fo4uU_gqRQqQL0aBHSdtfC9ikRXtajzxKwq0ilL9RgWwuCBCGyAw6l47Ag30e1fCdnCz3X3_7cvdACvqoiatEsVOISGTY9gv2arIJXxOoKXf7RePIZOm6TZg52R6b2zqGRREIs5rSPrprYEHbwhWUpyez8l-WqOZhUv6dkK20s4Oa_h205e7Q3spVlq3wIJ4xCTnFJwEUg3JsbGRDqWGJJ5aqKawOr1jXTVbx1pP2bRplM0YiJymIgKTESiCWfrZ-Zlt5Gto09rIESV5cmjDQqacF5DaXP739JOtkv7CM9745thNOyPBu_gBS-RTFvsFPaWi5V9D8_0w3KaLz4UOkHgbtcQ-w3YmUCe |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5RQBUcyqOghvLYA5zaFdmHX4eqQkAEAkU5gIS4uM7uWooUnDROQP1r_XXM-JEAEtw4cLXXo7X3m5ldz-MD2A9katMwCrif-I5rqwUPU1R3dHVapsLJMDQF2UTQboc3N1FnDv7XtTCUVlnbxMJQ24Ghf-SHuO_WvhfhGfkwrdIiOiet38O_nBikKNJa02mUELlw_x7w-Jb_Oj_BtT6QsnV6dXzGK4YBbhB6Y25861JLRMspTtgXIlFdG9lIdJtJInzP4mSlDoyvdFrQWUrrOaecooBaJI1CuZ9gIcAzJqUTdrzbaQTD9ypC3bDJ0SuLqmCnLNsTVBRDyRHUDEdy9dwpzna6L4Kzhc9rrXzkr7UKX6qdNjsqVWMN5ly2Dis1iwWrjNo6LD9pyfgVTo9YNrh3fda7Q0vLRgXhGGojmza7ZeT4LRtkLHd3PZZPhmRu6ZLpT6jtBMrZgOt3ebVNmM8GmfsGLEoiCn5qJVWgcUxCDYtMommr5oXdsAGiXuvYVH3YiQ6kH886SBM-YsRHXOAjVg34MX1mWHYheXP0dg2KuLJIeTxDRAN-1rCa3X5d2tbb0vbgMyIrvjxvX3yHJVmCmjfFNsyPRxO3A4vmftzLR7uFejD4894IewSJo0nC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+image+retrieval+technique+based+on+semi+supervised+clustering&rft.jtitle=Multimedia+tools+and+applications&rft.au=S%2C+Nisha+Chandran&rft.au=Gangodkar%2C+Durgaprasad&rft.date=2021-11-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=28-29&rft.spage=35741&rft.epage=35769&rft_id=info:doi/10.1007%2Fs11042-021-11542-3&rft.externalDocID=10_1007_s11042_021_11542_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |