A novel image retrieval technique based on semi supervised clustering

Traditionally Content-Based Image Retrieval (CBIR) problems investigate the occurrence of images matching to a user-submitted query image or a sketch drawn by the user within a large image collection. However, there is often limited support for retrieving semantically similar images from large datab...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 80; číslo 28-29; s. 35741 - 35769
Hlavní autoři: S, Nisha Chandran, Gangodkar, Durgaprasad
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2021
Springer Nature B.V
Témata:
ISSN:1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Traditionally Content-Based Image Retrieval (CBIR) problems investigate the occurrence of images matching to a user-submitted query image or a sketch drawn by the user within a large image collection. However, there is often limited support for retrieving semantically similar images from large databases, matching the user’s perception. In this paper, we try to address this semantic gap problem in CBIR by performing a clustering-based retrieval. In the proposed approach we first perform a continuous probabilistic semi-supervised clustering to group similar images to form macro clusters. Macro clusters so formed, ensures class-wise similarity instead of semantic similarity. To retrieve the semantically matching images from these macro clusters formed, the CBIR method is adopted using a cluster within-cluster approach. The key idea is that the macro clusters formed during the initial phase of classification are further classified into micro clusters based on the decision tree approach. For retrieval, as the first step, the macro cluster matching to the user’s query is found. In the next step, to ensure semantic similarity the image is classified to the matching micro cluster. The proposed method is experimentally evaluated first on Wang database which contains complex and diverse images with varying fine details. Further, the experiments are repeated on the Ponce group database and Corel 5K database. The experimental results obtained demonstrate the effectiveness of the proposed approach.
AbstractList Traditionally Content-Based Image Retrieval (CBIR) problems investigate the occurrence of images matching to a user-submitted query image or a sketch drawn by the user within a large image collection. However, there is often limited support for retrieving semantically similar images from large databases, matching the user’s perception. In this paper, we try to address this semantic gap problem in CBIR by performing a clustering-based retrieval. In the proposed approach we first perform a continuous probabilistic semi-supervised clustering to group similar images to form macro clusters. Macro clusters so formed, ensures class-wise similarity instead of semantic similarity. To retrieve the semantically matching images from these macro clusters formed, the CBIR method is adopted using a cluster within-cluster approach. The key idea is that the macro clusters formed during the initial phase of classification are further classified into micro clusters based on the decision tree approach. For retrieval, as the first step, the macro cluster matching to the user’s query is found. In the next step, to ensure semantic similarity the image is classified to the matching micro cluster. The proposed method is experimentally evaluated first on Wang database which contains complex and diverse images with varying fine details. Further, the experiments are repeated on the Ponce group database and Corel 5K database. The experimental results obtained demonstrate the effectiveness of the proposed approach.
Author S, Nisha Chandran
Gangodkar, Durgaprasad
Author_xml – sequence: 1
  givenname: Nisha Chandran
  orcidid: 0000-0002-0558-5496
  surname: S
  fullname: S, Nisha Chandran
  email: nisha.unnikrishnan@gmail.com
  organization: School of Computing, Graphic Era Hill University
– sequence: 2
  givenname: Durgaprasad
  surname: Gangodkar
  fullname: Gangodkar, Durgaprasad
  organization: Dept. of CSE, Graphic Era University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6szyX4eS6kfUPCi55BmZ2vKNluT3YL_3tQVBA89ZQjzzLzzzNjEdY4Yu0W4R4DiISBCKhIQmCBmsZIXbIpZIZOiEDiJtSwhKTLAKzYLYQeAeSbSKVstuOuO1HK711vinnpv6ahb3pP5cPZzIL7RgWreOR5ob3kYDuSP9vRl2iH05K3bXrPLRreBbn7fOXt_XL0tn5P169PLcrFOjMSqT0xeU1PnILFpyipH1HJTV3WFG9A6BqqRhEgLk8u0ARBQijojkiQBZFkJI-fsbpx78F2MFnq16wbv4kolckjzrMKqjF1i7DK-C8FTow4-nue_FII66VKjLhV1qR9dSkao_AcZ2-vedq732rbnUTmi4XCSQf4v1RnqG7jDgDI
CitedBy_id crossref_primary_10_3390_axioms12060535
crossref_primary_10_3390_math11010175
Cites_doi 10.1007/3-540-45113-7_21
10.1109/34.895972
10.1155/2019/9658350
10.1109/83.817596
10.1145/244130.244151
10.1109/TIP.2009.2035882
10.1109/69.755615
10.1109/ICASSP.2005.1416495
10.1109/TKDE.2002.1033769
10.1016/j.patcog.2007.12.003
10.1142/S0219622009003363
10.1142/S0219622011004634
10.1007/s10844-013-0257-4
10.1145/973264.973295
10.1007/BF00123143
10.1007/s12517-014-1584-7
10.1016/j.knosys.2014.10.009
10.1142/S0219622007002496
10.1007/s11042-019-7321-1
10.1007/s11042-017-4664-3
10.1016/j.ijleo.2015.05.002
10.1007/0-387-25465-X_15
10.1145/354756.354775
10.1109/2.410146
10.1109/76.718510
10.1007/3-540-45783-6_20
10.1016/j.jvcir.2016.03.008
10.1109/TIP.2008.2007385
10.1109/DICTA.2012.6411665
10.1145/2647868.2654948
10.1016/j.ins.2013.08.043
10.1109/TPAMI.2002.1023800
10.1109/ACV.1996.572008
10.1109/34.955109
10.1016/j.cviu.2005.09.012
10.1016/S0262-8856(96)01114-6
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-021-11542-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 35769
ExternalDocumentID 10_1007_s11042_021_11542_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-c6defd6031ff89611a3bd9d91b0aa165d1e2247c634f002082d5ee3e3003892c3
IEDL.DBID M0C
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000722157500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Wed Nov 05 01:10:18 EST 2025
Tue Nov 18 21:05:58 EST 2025
Sat Nov 29 06:20:13 EST 2025
Fri Feb 21 02:47:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28-29
Keywords Kullback -Leibler distance
Gaussian mixture modeling
Clustering
Decision trees
CBIR
Micro clusters
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c6defd6031ff89611a3bd9d91b0aa165d1e2247c634f002082d5ee3e3003892c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0558-5496
PQID 2604659198
PQPubID 54626
PageCount 29
ParticipantIDs proquest_journals_2604659198
crossref_primary_10_1007_s11042_021_11542_3
crossref_citationtrail_10_1007_s11042_021_11542_3
springer_journals_10_1007_s11042_021_11542_3
PublicationCentury 2000
PublicationDate 20211100
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 20211100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Latif A, Rasheed A, Sajid U, Ahmed J, Ali N, Ratyal NI, Zafar B, Dar SH, Sajid M, Khalil T (2019) Content-based image retrieval and feature extraction: a comprehensive review, Mathematical Problems in Engineering
Karakos D, Khudanpur S, Eisner J, Priebe CE (2005) Unsupervised classification via decision trees: An information-theoretic perspective, in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, (ICASSP’05). Pennsylvania, USA , v-1081
Wan J, Wang D, Hoi SCH, Wu P, Zhu J, Zhang Y, Li J (2014) Deep learning for content-based image retrieval: A comprehensive study, in Proc. 22nd ACM Int. Conf. on Multimedia, Orlando, Florida, USA, pp. 157–166
Jain AK, Dubes RC (1988) Algorithms for clustering data Prentice-Hall, Inc
GuoJMWuMFImproved block truncation coding based on the void-and-cluster dithering approachIEEE Trans Image Process2009181211213274174410.1109/TIP.2008.2007385
Rokach L, Maimon LO (2005) Clustering methods, Data mining and knowledge discovery handbook Springer, pp. 321-352
CarsonCBelongieSGreenspanHMalikJBlobworld: Image segmentation using expectation-maximization and its application to image queryingIEEE Trans Pattern Anal Machine Intell20022481026103810.1109/TPAMI.2002.1023800
AjorlooHLakdashtiAA feature relevance estimation method for content-based image retrievalInt J Inf Technol Decis Mak2011100593396110.1142/S0219622011004634
RaoMBRaoBPGovardhanACTDCIRS: content based image retrieval system based on dominant color and texture featuresInt J Comput Appl20111864046
MontazerGAGivekiDContent based image retrieval system using clustered scale invariant feature transformsOptik-International Journal for Light and Electron Optics2015126181695169910.1016/j.ijleo.2015.05.002
Huang T, Mehrotra S, Ramchandran K (1996) Multimedia analysis and retrieval system (MARS) project, in Proc. 33rd Annual Clinic on Library Applications of Data Processing- Digital Image Access and Retrieva, University of Illinois, Urbana-Champaign, pp. 100-117
ShrivastavaNTyagiVContent based image retrieval based on relative locations of multiple regions of interest using selective regions matchingInf Sci201425921222410.1016/j.ins.2013.08.043
LiuYZhangDLuGRegion-based image retrieval with high-level semantics using decision tree learningPattern Recogn20084182554257010.1016/j.patcog.2007.12.003
Liu B, Xia Y, Yu PS (2000) Clustering through decision tree construction, in Proc. Ninth Int. Conf. on Information and knowledge management (CIKM) McLean, VA, USA, pp. 20–29
Wangdatabase [Online] Available: http://wang.ist.psu.edu/docs/related.html
Afifi AJ, Ashour WM (2012) Content-based image retrieval using invariant color and texture features, in Proc IEEE Int Conf Dig Image Comp Tech Appl (DICTA), Fremantle, Australia, pp. 1–6
PentlandAPPicardRWScarloffSPhotobook: Content-based manipulation for image databasesInt J Comput Vis199618323325410.1007/BF00123143
Pass G, Zabih R (1996) Histogram refinement for content-based image retrieval, in Proc. 3rd IEEE Workshop on Applications of Computer Vision (WACV’96), Sarasota, Florida, USA
Rui Y, Huang TS, Ortega M, Mehrotra S (1998) Relevance feedback: a power tool for interactive content-based image retrieval, IEEE Trans Circ Syst Vid Tech 8(5):644-655
ParkSSSeoKKJangDSFuzzy art-based image clustering method for content-based image retrievalInt J Inf Technol Decis Mak200760221323310.1142/S0219622007002496
Ponce group birds and butterflies database [Online] Available: http://www-cvr.ai.uiuc.edu/ponce-grp/data
FlicknerMSawhneyHNiblackWAshleyJHuangQDomBGorkaniMHafnerJLeeDPetkovicDSteeleDQuery by image and video content: The QBIC systemComputer1995289233210.1109/2.410146
Sheikholeslami G, Chang W, Zhang A (2002) SemQuery: semantic clustering and querying on heterogeneous features for visual data, IEEE Trans Knowl Data Eng 14(5):988–1002
Jing F, Li M, Zhang L, Zhang HJ, Zhang B (2003) Learning in region-based image retrieval. Image and Video Retrieval, pp. 199–204
ChandranSNGangodkarDMittalAA semi-supervised probabilistic model for clustering large databases of complex imagesMultimedia Tools and Applications20177621219372195910.1007/s11042-017-4664-3
Kundu MK, Chowdhury M, Buló SR (2015) A graph-based relevance feedback mechanism in content-based image retrieval. Knowl-Based Syst 73:254–264
AslandoganYAYuCTTechniques and systems for image and video retrievalIEEE Trans Knowl Data Eng1999111566310.1109/69.755615
Yikun Y, Shengjie J, Jinrong H, Bisheng X, Jiabo L, Ru X (2020) Image retrieval via learning content-based deep quality model towards big data, Future Generation Computer Systems
Chen Y, Wang JZ, Krovetz R (2003) Content-based image retrieval by clustering, in Proc. 5th ACM SIGMM Int. workshop on Multimedia Information Retrieval, Berkeley, CA, USA, pp. 193–200
SmeuldersAWWorringMSantiniSGuptaAJainRContent-based image retrieval at the end of the early yearIEEE Trans Pattern Anal Mach Intell200022121349138010.1109/34.895972
WangJZLiJWiederholdGSIMPLIcity: Semantics-sensitive integrated matching for picture libraries, IEEE TransPattern Anal Mach Intell200123994796310.1109/34.955109
SezavarAFarsiHMohamadzadehSContent-based image retrieval by combining convolutional neural networks and sparse representationMultimed Tools Appl201978208952091210.1007/s11042-019-7321-1
De Marsicoi M, Cinque L, Levialdi S (1997) Indexing pictorial documents by their content: a survey of current techniques. Image Vis Comp 15(2):119-141
Smith JR, Chang SF (1996) VisualSEEK: A fully automated content-based image query system, in Proc. fourth ACM Int. Conf. on Multimedia, Boston, Massachusetts, USA
CoxIJMillerMLMinkaTPPapathomasTVYianilosPNThe Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experimentsIEEE Trans Image Process200091203710.1109/83.817596
Fei-FeiLFergusRPeronaPLearning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categoriesComput Vis Image Underst20071061597010.1016/j.cviu.2005.09.012
Tai XY, Wang LD, Chen Q, Fuji R, Kenji KK (2009) A New Method Of Medical Image Retrieval Based On Color–Texture Correlogram and Gti Mode. Int J Info Tech Dec Making 8(2):239–248
WangXYLiangLLLiWYLiDMYangHYA new SVM-based relevance feedback image retrieval using probabilistic feature and weighted kernel functionJ Vis Commun Image Represent20163825627510.1016/j.jvcir.2016.03.008
Ma WY, Manjunath BS (1997) Netra: A toolbox for navigating large image databases, in Proc. IEEE Int Conf Image Proc, Santa Barbara, California 1:568-571
Goldberger J, Greenspan H, Gordon S (2002) Unsupervised image clustering using the information bottleneck method. Patt Recogn, pp. 158–165
ZhuSZouLFangBContent based image retrieval via a transductive modelJ Intell Inf Syst20144219510910.1007/s10844-013-0257-4
Town C, Sinclair D (2000) Content based image retrieval using semantic visual categories, Society of Manufacturing Engineers
YounusZSMohamadDSabaTAlkawazMHRehmanAAl-RodhaanMAl-DhelaanAContent-based image retrieval using PSO and K-means clustering algorithmArab J Geosci2015886211622410.1007/s12517-014-1584-7
ZhangBGaoYLiuJLocal derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptorIEEE Trans Image Processing2010192533544272977410.1109/TIP.2009.2035882
Corel 5K Dataset [Online] Available: www.ci.gxnu.edu.cn/cbir/Dataset.aspx
L Fei-Fei (11542_CR10) 2007; 106
YA Aslandogan (11542_CR3) 1999; 11
11542_CR14
11542_CR36
JM Guo (11542_CR13) 2009; 18
11542_CR15
11542_CR37
11542_CR12
11542_CR35
MB Rao (11542_CR28) 2011; 18
11542_CR32
11542_CR30
S Zhu (11542_CR44) 2014; 42
M Flickner (11542_CR11) 1995; 28
GA Montazer (11542_CR23) 2015; 126
11542_CR29
XY Wang (11542_CR39) 2016; 38
JZ Wang (11542_CR40) 2001; 23
AP Pentland (11542_CR26) 1996; 18
11542_CR27
C Carson (11542_CR4) 2002; 24
AW Smeulders (11542_CR34) 2000; 22
IJ Cox (11542_CR8) 2000; 9
11542_CR25
Y Liu (11542_CR21) 2008; 41
11542_CR22
11542_CR41
11542_CR20
SS Park (11542_CR24) 2007; 6
N Shrivastava (11542_CR33) 2014; 259
11542_CR42
11542_CR1
SN Chandran (11542_CR5) 2017; 76
ZS Younus (11542_CR43) 2015; 8
11542_CR18
11542_CR19
11542_CR16
11542_CR38
11542_CR17
H Ajorloo (11542_CR2) 2011; 10
11542_CR7
B Zhang (11542_CR45) 2010; 19
11542_CR9
A Sezavar (11542_CR31) 2019; 78
11542_CR6
References_xml – reference: ZhuSZouLFangBContent based image retrieval via a transductive modelJ Intell Inf Syst20144219510910.1007/s10844-013-0257-4
– reference: PentlandAPPicardRWScarloffSPhotobook: Content-based manipulation for image databasesInt J Comput Vis199618323325410.1007/BF00123143
– reference: Fei-FeiLFergusRPeronaPLearning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categoriesComput Vis Image Underst20071061597010.1016/j.cviu.2005.09.012
– reference: Sheikholeslami G, Chang W, Zhang A (2002) SemQuery: semantic clustering and querying on heterogeneous features for visual data, IEEE Trans Knowl Data Eng 14(5):988–1002
– reference: MontazerGAGivekiDContent based image retrieval system using clustered scale invariant feature transformsOptik-International Journal for Light and Electron Optics2015126181695169910.1016/j.ijleo.2015.05.002
– reference: Ponce group birds and butterflies database [Online] Available: http://www-cvr.ai.uiuc.edu/ponce-grp/data/
– reference: AslandoganYAYuCTTechniques and systems for image and video retrievalIEEE Trans Knowl Data Eng1999111566310.1109/69.755615
– reference: Ma WY, Manjunath BS (1997) Netra: A toolbox for navigating large image databases, in Proc. IEEE Int Conf Image Proc, Santa Barbara, California 1:568-571
– reference: Smith JR, Chang SF (1996) VisualSEEK: A fully automated content-based image query system, in Proc. fourth ACM Int. Conf. on Multimedia, Boston, Massachusetts, USA
– reference: FlicknerMSawhneyHNiblackWAshleyJHuangQDomBGorkaniMHafnerJLeeDPetkovicDSteeleDQuery by image and video content: The QBIC systemComputer1995289233210.1109/2.410146
– reference: ZhangBGaoYLiuJLocal derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptorIEEE Trans Image Processing2010192533544272977410.1109/TIP.2009.2035882
– reference: ParkSSSeoKKJangDSFuzzy art-based image clustering method for content-based image retrievalInt J Inf Technol Decis Mak200760221323310.1142/S0219622007002496
– reference: Jing F, Li M, Zhang L, Zhang HJ, Zhang B (2003) Learning in region-based image retrieval. Image and Video Retrieval, pp. 199–204
– reference: YounusZSMohamadDSabaTAlkawazMHRehmanAAl-RodhaanMAl-DhelaanAContent-based image retrieval using PSO and K-means clustering algorithmArab J Geosci2015886211622410.1007/s12517-014-1584-7
– reference: RaoMBRaoBPGovardhanACTDCIRS: content based image retrieval system based on dominant color and texture featuresInt J Comput Appl20111864046
– reference: GuoJMWuMFImproved block truncation coding based on the void-and-cluster dithering approachIEEE Trans Image Process2009181211213274174410.1109/TIP.2008.2007385
– reference: Corel 5K Dataset [Online] Available: www.ci.gxnu.edu.cn/cbir/Dataset.aspx
– reference: Wangdatabase [Online] Available: http://wang.ist.psu.edu/docs/related.html
– reference: Yikun Y, Shengjie J, Jinrong H, Bisheng X, Jiabo L, Ru X (2020) Image retrieval via learning content-based deep quality model towards big data, Future Generation Computer Systems
– reference: WangXYLiangLLLiWYLiDMYangHYA new SVM-based relevance feedback image retrieval using probabilistic feature and weighted kernel functionJ Vis Commun Image Represent20163825627510.1016/j.jvcir.2016.03.008
– reference: Tai XY, Wang LD, Chen Q, Fuji R, Kenji KK (2009) A New Method Of Medical Image Retrieval Based On Color–Texture Correlogram and Gti Mode. Int J Info Tech Dec Making 8(2):239–248
– reference: AjorlooHLakdashtiAA feature relevance estimation method for content-based image retrievalInt J Inf Technol Decis Mak2011100593396110.1142/S0219622011004634
– reference: ChandranSNGangodkarDMittalAA semi-supervised probabilistic model for clustering large databases of complex imagesMultimedia Tools and Applications20177621219372195910.1007/s11042-017-4664-3
– reference: De Marsicoi M, Cinque L, Levialdi S (1997) Indexing pictorial documents by their content: a survey of current techniques. Image Vis Comp 15(2):119-141
– reference: ShrivastavaNTyagiVContent based image retrieval based on relative locations of multiple regions of interest using selective regions matchingInf Sci201425921222410.1016/j.ins.2013.08.043
– reference: Afifi AJ, Ashour WM (2012) Content-based image retrieval using invariant color and texture features, in Proc IEEE Int Conf Dig Image Comp Tech Appl (DICTA), Fremantle, Australia, pp. 1–6
– reference: Latif A, Rasheed A, Sajid U, Ahmed J, Ali N, Ratyal NI, Zafar B, Dar SH, Sajid M, Khalil T (2019) Content-based image retrieval and feature extraction: a comprehensive review, Mathematical Problems in Engineering
– reference: Pass G, Zabih R (1996) Histogram refinement for content-based image retrieval, in Proc. 3rd IEEE Workshop on Applications of Computer Vision (WACV’96), Sarasota, Florida, USA
– reference: CoxIJMillerMLMinkaTPPapathomasTVYianilosPNThe Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experimentsIEEE Trans Image Process200091203710.1109/83.817596
– reference: Rui Y, Huang TS, Ortega M, Mehrotra S (1998) Relevance feedback: a power tool for interactive content-based image retrieval, IEEE Trans Circ Syst Vid Tech 8(5):644-655
– reference: WangJZLiJWiederholdGSIMPLIcity: Semantics-sensitive integrated matching for picture libraries, IEEE TransPattern Anal Mach Intell200123994796310.1109/34.955109
– reference: Kundu MK, Chowdhury M, Buló SR (2015) A graph-based relevance feedback mechanism in content-based image retrieval. Knowl-Based Syst 73:254–264
– reference: Wan J, Wang D, Hoi SCH, Wu P, Zhu J, Zhang Y, Li J (2014) Deep learning for content-based image retrieval: A comprehensive study, in Proc. 22nd ACM Int. Conf. on Multimedia, Orlando, Florida, USA, pp. 157–166
– reference: SmeuldersAWWorringMSantiniSGuptaAJainRContent-based image retrieval at the end of the early yearIEEE Trans Pattern Anal Mach Intell200022121349138010.1109/34.895972
– reference: Huang T, Mehrotra S, Ramchandran K (1996) Multimedia analysis and retrieval system (MARS) project, in Proc. 33rd Annual Clinic on Library Applications of Data Processing- Digital Image Access and Retrieva, University of Illinois, Urbana-Champaign, pp. 100-117
– reference: Goldberger J, Greenspan H, Gordon S (2002) Unsupervised image clustering using the information bottleneck method. Patt Recogn, pp. 158–165
– reference: Town C, Sinclair D (2000) Content based image retrieval using semantic visual categories, Society of Manufacturing Engineers
– reference: Chen Y, Wang JZ, Krovetz R (2003) Content-based image retrieval by clustering, in Proc. 5th ACM SIGMM Int. workshop on Multimedia Information Retrieval, Berkeley, CA, USA, pp. 193–200
– reference: Karakos D, Khudanpur S, Eisner J, Priebe CE (2005) Unsupervised classification via decision trees: An information-theoretic perspective, in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, (ICASSP’05). Pennsylvania, USA , v-1081
– reference: Rokach L, Maimon LO (2005) Clustering methods, Data mining and knowledge discovery handbook Springer, pp. 321-352
– reference: Jain AK, Dubes RC (1988) Algorithms for clustering data Prentice-Hall, Inc
– reference: LiuYZhangDLuGRegion-based image retrieval with high-level semantics using decision tree learningPattern Recogn20084182554257010.1016/j.patcog.2007.12.003
– reference: CarsonCBelongieSGreenspanHMalikJBlobworld: Image segmentation using expectation-maximization and its application to image queryingIEEE Trans Pattern Anal Machine Intell20022481026103810.1109/TPAMI.2002.1023800
– reference: SezavarAFarsiHMohamadzadehSContent-based image retrieval by combining convolutional neural networks and sparse representationMultimed Tools Appl201978208952091210.1007/s11042-019-7321-1
– reference: Liu B, Xia Y, Yu PS (2000) Clustering through decision tree construction, in Proc. Ninth Int. Conf. on Information and knowledge management (CIKM) McLean, VA, USA, pp. 20–29
– ident: 11542_CR16
  doi: 10.1007/3-540-45113-7_21
– volume: 22
  start-page: 1349
  issue: 12
  year: 2000
  ident: 11542_CR34
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.895972
– ident: 11542_CR19
  doi: 10.1155/2019/9658350
– volume: 9
  start-page: 20
  issue: 1
  year: 2000
  ident: 11542_CR8
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.817596
– ident: 11542_CR35
  doi: 10.1145/244130.244151
– volume: 19
  start-page: 533
  issue: 2
  year: 2010
  ident: 11542_CR45
  publication-title: IEEE Trans Image Processing
  doi: 10.1109/TIP.2009.2035882
– volume: 11
  start-page: 56
  issue: 1
  year: 1999
  ident: 11542_CR3
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/69.755615
– ident: 11542_CR17
  doi: 10.1109/ICASSP.2005.1416495
– ident: 11542_CR32
  doi: 10.1109/TKDE.2002.1033769
– volume: 41
  start-page: 2554
  issue: 8
  year: 2008
  ident: 11542_CR21
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2007.12.003
– ident: 11542_CR36
  doi: 10.1142/S0219622009003363
– ident: 11542_CR15
– ident: 11542_CR41
– volume: 10
  start-page: 933
  issue: 05
  year: 2011
  ident: 11542_CR2
  publication-title: Int J Inf Technol Decis Mak
  doi: 10.1142/S0219622011004634
– volume: 42
  start-page: 95
  issue: 1
  year: 2014
  ident: 11542_CR44
  publication-title: J Intell Inf Syst
  doi: 10.1007/s10844-013-0257-4
– ident: 11542_CR6
  doi: 10.1145/973264.973295
– ident: 11542_CR22
– volume: 18
  start-page: 233
  issue: 3
  year: 1996
  ident: 11542_CR26
  publication-title: Int J Comput Vis
  doi: 10.1007/BF00123143
– volume: 8
  start-page: 6211
  issue: 8
  year: 2015
  ident: 11542_CR43
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-014-1584-7
– ident: 11542_CR18
  doi: 10.1016/j.knosys.2014.10.009
– volume: 6
  start-page: 213
  issue: 02
  year: 2007
  ident: 11542_CR24
  publication-title: Int J Inf Technol Decis Mak
  doi: 10.1142/S0219622007002496
– ident: 11542_CR27
– volume: 78
  start-page: 20895
  year: 2019
  ident: 11542_CR31
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7321-1
– volume: 76
  start-page: 21937
  issue: 21
  year: 2017
  ident: 11542_CR5
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-017-4664-3
– volume: 126
  start-page: 1695
  issue: 18
  year: 2015
  ident: 11542_CR23
  publication-title: Optik-International Journal for Light and Electron Optics
  doi: 10.1016/j.ijleo.2015.05.002
– ident: 11542_CR29
  doi: 10.1007/0-387-25465-X_15
– ident: 11542_CR20
  doi: 10.1145/354756.354775
– volume: 28
  start-page: 23
  issue: 9
  year: 1995
  ident: 11542_CR11
  publication-title: Computer
  doi: 10.1109/2.410146
– ident: 11542_CR30
  doi: 10.1109/76.718510
– ident: 11542_CR12
  doi: 10.1007/3-540-45783-6_20
– volume: 38
  start-page: 256
  year: 2016
  ident: 11542_CR39
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2016.03.008
– volume: 18
  start-page: 211
  issue: 1
  year: 2009
  ident: 11542_CR13
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2008.2007385
– ident: 11542_CR14
– ident: 11542_CR42
– ident: 11542_CR1
  doi: 10.1109/DICTA.2012.6411665
– ident: 11542_CR37
– ident: 11542_CR38
  doi: 10.1145/2647868.2654948
– volume: 259
  start-page: 212
  year: 2014
  ident: 11542_CR33
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.08.043
– volume: 24
  start-page: 1026
  issue: 8
  year: 2002
  ident: 11542_CR4
  publication-title: IEEE Trans Pattern Anal Machine Intell
  doi: 10.1109/TPAMI.2002.1023800
– ident: 11542_CR7
– ident: 11542_CR25
  doi: 10.1109/ACV.1996.572008
– volume: 18
  start-page: 40
  issue: 6
  year: 2011
  ident: 11542_CR28
  publication-title: Int J Comput Appl
– volume: 23
  start-page: 947
  issue: 9
  year: 2001
  ident: 11542_CR40
  publication-title: Pattern Anal Mach Intell
  doi: 10.1109/34.955109
– volume: 106
  start-page: 59
  issue: 1
  year: 2007
  ident: 11542_CR10
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2005.09.012
– ident: 11542_CR9
  doi: 10.1016/S0262-8856(96)01114-6
SSID ssj0016524
Score 2.288947
Snippet Traditionally Content-Based Image Retrieval (CBIR) problems investigate the occurrence of images matching to a user-submitted query image or a sketch drawn by...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35741
SubjectTerms 1166: Advances of machine learning in data analytics and visual information processing
Clustering
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Decision trees
Image management
Image retrieval
Matching
Multimedia Information Systems
Semantics
Similarity
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejB6VScTsnBmwaaps2S45ANDzLEL3YraT5gsHVj3fb3m2TppqKCXtv0Ed5nysv7_QC4jokwIjcR0oZSlHBmkBBJjqjvKWHXGPODwg_tfp8NBvwxDIWV1W33qiXpM_Vm2A27URJ3pcBByMSIbIMdW-6YI2x4en5b9w5oGqhsWYRsPcRhVOZ7GZ_L0eaM-aUt6qtNr_6_fR6Cg3C6hJ2VOxyBLV00QL1iboAhkBtg_wMM4THodmAxWeoRHI5tdoEzT7JlPRCuAV6hK3YKTgpY6vEQloupSzHukRwtHNSClXMCXnvdl7t7FOgVkLRxN0eSKm2UY5k2hnGKsSC54orjPBLCalFhbet7W1KSGM_lGatUa6KJ6ybyWJJTUCsmhT4D0B0jJY11lBieaJHzOOfGjSIaljKqWBPgSsuZDNjjjgJjlG1Qk53WMqu1zGstI01ws_5mukLe-HV1qzJeFqKwzOy_WkJTjrndwG1lrM3rn6Wd_235BdiLV_ZGEW6B2ny20JdgVy7nw3J25b3zHVvG26k
  priority: 102
  providerName: Springer Nature
Title A novel image retrieval technique based on semi supervised clustering
URI https://link.springer.com/article/10.1007/s11042-021-11542-3
https://www.proquest.com/docview/2604659198
Volume 80
WOSCitedRecordID wos000722157500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Link Journals
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6R0EM5FEiLSIHIh96o1fU-nPUJAQpCAtKIFkh7We36IUUKu2k2ye-vZ-NNoFJz4WJpX9bKM54ZezzfB_DFD1KTZsaj2nBOQxEbmqZhRnmVU2KYGKsKhW-7_X48HIqB23Ar3bHK2iZWhloVEvfIv9m4O-SRsGvks8kfiqxRmF11FBoN2MbIBo_03XmXqywCjxypbexR6xmZK5pZls4xLEzBAwoISOPT4LVjWkeb_yRIK79ztfvWP96DDy7iJOdLFdmHLZ23YLdmcyBucrdg5wU04UfonZO8WOgxGT1bi0OmFfGW1UqyAn0l6AAVKXJS6ucRKecTNDt4S47nCL9g-_kED1e9n5fX1FEuUGnn4oxKrrRRyDxtTCw4Y2mQKaEEy7w0teOpmLY-vyt5EJqK39NXkdaBDjDDKHwZHEAzL3J9CARDS8l97YVGhDrNhJ8Jg-WJJo5iruI2sHq8E-nwyJEWY5yskZRRRomVUVLJKAnacLr6ZrJE49j49nEtmMTNzDJZS6UNX2vRrh__v7fPm3s7gvf-Upuox46hOZvO9Qm8k4vZqJx2oNF9-tWB7Ytef3Bvr266tFPpKrb-d9sOot-2vf_x-Bf6A-xP
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RUKlwgJaCSKGwh_bUrvDu2hvvoUKIgkBJox6oxM219yFFSpwQJ0H8qf7G7viRtJXKjQNXP0ay95uHPTvfB_CBi9SlmQuodVLSUMWOpmmYUVn2lBg2xspB4V6n349vb9X3NfjVzMLgtsomJpaB2ow1_iM_8XV3KCPlv5FPJ3cUVaOwu9pIaFSw6NqHe__JVny5_urX9yPnlxc351e0VhWg2sNtRrU01hkUV3YuVpKxVGRGGcWyIE2ZjAyzPq11tBShKyUsuYmsFVZgE01xLbzdF7AeiriDftXt0GXXQka1iG4cUJ-JWT2kU43qMRyEwQ0RSIDDqfg7Ea6q238asmWeu9x-bm_oNWzVFTU5q1zgDazZfAe2G7UKUgevHdj8g3rxLVyckXy8sEMyGPmISqalsJj3OrIktSWY4A0Z56SwowEp5hMMq3hID-dIL-Ht7MKPJ3m0PWjl49zuA8HSWUtug9Cp0KaZ4plyOH7p4iiWJm4Da9Y30TXfOsp-DJMVUzRiIvGYSEpMJKINn5b3TCq2kUevPmyAkNSRp0hWKGjD5wZKq9P_t_bucWvH8Orq5lsv6V33uwewwSsk04AdQms2ndv38FIvZoNielT6BIGfTw2x3zcTQZM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5RqCo4AIVWhOce6AlWeNf2xntACAERCBTlABLqxdj7kCIFJ8QJiL_Gr2PHj6RFghsHrn6MZPvbmVnPzPcB7HI_sUlqPWqsEDSQkaVJEqRUFDUlhoWxYlD4qtluR7e3sjMDL_UsDLZV1j6xcNS6r_Af-YHLuwMRSrdHPrBVW0TntHU0eKCoIIWV1lpOo4TIpXl-ctu3_PDi1H3rP5y3zq5PzmmlMECVg96IKqGN1Si0bG0kBWOJn2qpJUu9JGEi1My4ENdUwg9sIWfJdWiMb3wsqEmufGf3G8w13R4T2wk74d9JBUOElaBu5FEXlVk1sFOO7TEcisHmCCTD4dT_PyhOM903xdki5rWWvvLbWobFKtMmx-XS-AkzJluBpVrFglRObQUW_qFkXIWzY5L1H02PdO-dpyXDQnDMrUYyIbslGPg16WckN_ddko8H6G7xkOqNkXbC2fkFN5_yaL9hNutnZg0IptRKcOMFVgYmSSVPpcWxTBuFkdBRA1j9rWNV8bCjHEgvnjJIIz5ih4-4wEfsN2Bvcs-gZCH58OrNGhRx5ZHyeIqIBuzXsJqeft_a-sfWduCHQ1Z8ddG-3IB5XoKaemwTZkfDsdmC7-px1M2H28XyIHD32Qh7Be8RSrc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+image+retrieval+technique+based+on+semi+supervised+clustering&rft.jtitle=Multimedia+tools+and+applications&rft.au=S+Nisha+Chandran&rft.au=Durgaprasad%2C+Gangodkar&rft.date=2021-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=28-29&rft.spage=35741&rft.epage=35769&rft_id=info:doi/10.1007%2Fs11042-021-11542-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon