Non-monotone submodular function maximization under k-system constraint

The problems of maximizing constrained monotone submodular functions have many practical applications, most recently in the context of combinatorial optimization, operations research, economics and especially machine learning, with constant approximation algorithms known under a variety of constrain...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial optimization Vol. 41; no. 1; pp. 128 - 142
Main Authors: Shi, Majun, Yang, Zishen, Kim, Donghyun, Wang, Wei
Format: Journal Article
Language:English
Published: New York Springer US 01.01.2021
Springer Nature B.V
Subjects:
ISSN:1382-6905, 1573-2886
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The problems of maximizing constrained monotone submodular functions have many practical applications, most recently in the context of combinatorial optimization, operations research, economics and especially machine learning, with constant approximation algorithms known under a variety of constraints. Unfortunately, non-monotone submodular functions maximization is less well studied; the first approximation algorithm for the non-monotone case was studied by Feige et al. (Proceedings of the 48th IEEE symposium on foundations of computer science (FOCS’07), 2007) about unconstrained non-monotone submodular maximization in 2007. In this paper, we extend the work of Lee et al. (Proceedings of the 41st ACM-SIAM symposium on theory of computing (STOC’09), pp 323–332, 2009) for maximizing a non-monotone submodular function under k -matroid constraint to k -system constraint. We first propose a Modified-Greedy algorithm that works no worse than that of Gupta et al. (Proceedings of the 6th international workshop on internet and network economics (WINE’10), vol 6484, pp 246–257, 2010). Based on this, then we provide the NMSFMk algorithm for maximizing a non-monotone submodular function subject to k -system constraint (which generalizes the k -matroid constraint), using Modified-Greedy algorithm combined with USFM algorithm (USFM algorithm is the random linear time 1/2-approximation algorithm proposed by Buchbinder et al. (Proceedings of the 53rd IEEE symposium on foundations of computer science (FOCS’12), pp 649–658, 2012) for unconstrained non-monotone submodular function maximization problem.) iteratively. Finally, we show that NMSFMk algorithm achieves a 1 2 k + 3 + 1 / k -approximation ratio with running time of O ( nmk ) (where m is the size of largest set returned by the NMSFMk algorithm), which beats the existing algorithms in many aspects.
AbstractList The problems of maximizing constrained monotone submodular functions have many practical applications, most recently in the context of combinatorial optimization, operations research, economics and especially machine learning, with constant approximation algorithms known under a variety of constraints. Unfortunately, non-monotone submodular functions maximization is less well studied; the first approximation algorithm for the non-monotone case was studied by Feige et al. (Proceedings of the 48th IEEE symposium on foundations of computer science (FOCS’07), 2007) about unconstrained non-monotone submodular maximization in 2007. In this paper, we extend the work of Lee et al. (Proceedings of the 41st ACM-SIAM symposium on theory of computing (STOC’09), pp 323–332, 2009) for maximizing a non-monotone submodular function under k -matroid constraint to k -system constraint. We first propose a Modified-Greedy algorithm that works no worse than that of Gupta et al. (Proceedings of the 6th international workshop on internet and network economics (WINE’10), vol 6484, pp 246–257, 2010). Based on this, then we provide the NMSFMk algorithm for maximizing a non-monotone submodular function subject to k -system constraint (which generalizes the k -matroid constraint), using Modified-Greedy algorithm combined with USFM algorithm (USFM algorithm is the random linear time 1/2-approximation algorithm proposed by Buchbinder et al. (Proceedings of the 53rd IEEE symposium on foundations of computer science (FOCS’12), pp 649–658, 2012) for unconstrained non-monotone submodular function maximization problem.) iteratively. Finally, we show that NMSFMk algorithm achieves a 1 2 k + 3 + 1 / k -approximation ratio with running time of O ( nmk ) (where m is the size of largest set returned by the NMSFMk algorithm), which beats the existing algorithms in many aspects.
The problems of maximizing constrained monotone submodular functions have many practical applications, most recently in the context of combinatorial optimization, operations research, economics and especially machine learning, with constant approximation algorithms known under a variety of constraints. Unfortunately, non-monotone submodular functions maximization is less well studied; the first approximation algorithm for the non-monotone case was studied by Feige et al. (Proceedings of the 48th IEEE symposium on foundations of computer science (FOCS’07), 2007) about unconstrained non-monotone submodular maximization in 2007. In this paper, we extend the work of Lee et al. (Proceedings of the 41st ACM-SIAM symposium on theory of computing (STOC’09), pp 323–332, 2009) for maximizing a non-monotone submodular function under k-matroid constraint to k-system constraint. We first propose a Modified-Greedy algorithm that works no worse than that of Gupta et al. (Proceedings of the 6th international workshop on internet and network economics (WINE’10), vol 6484, pp 246–257, 2010). Based on this, then we provide the NMSFMk algorithm for maximizing a non-monotone submodular function subject to k-system constraint (which generalizes the k-matroid constraint), using Modified-Greedy algorithm combined with USFM algorithm (USFM algorithm is the random linear time 1/2-approximation algorithm proposed by Buchbinder et al. (Proceedings of the 53rd IEEE symposium on foundations of computer science (FOCS’12), pp 649–658, 2012) for unconstrained non-monotone submodular function maximization problem.) iteratively. Finally, we show that NMSFMk algorithm achieves a 12k+3+1/k-approximation ratio with running time of O(nmk) (where m is the size of largest set returned by the NMSFMk algorithm), which beats the existing algorithms in many aspects.
Author Kim, Donghyun
Wang, Wei
Yang, Zishen
Shi, Majun
Author_xml – sequence: 1
  givenname: Majun
  surname: Shi
  fullname: Shi, Majun
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University
– sequence: 2
  givenname: Zishen
  surname: Yang
  fullname: Yang, Zishen
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University
– sequence: 3
  givenname: Donghyun
  surname: Kim
  fullname: Kim, Donghyun
  organization: Department of Computer Science, Georgia State University
– sequence: 4
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  email: wang_weiw@xjtu.edu.cn
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University
BookMark eNp9kEFLAzEQhYMo2Fb_gKcFz9HJJrubHKVoFYpe9Byy2US2dpOaZMH6601bQfDQ07yB901e3hSdOu8MQlcEbghAcxsJ8IZjKAED1E2J6QmakKqhuOS8Ps2a8hLXAqpzNI1xBQBZswlaPHuHB-98ygeLOLaD78a1CoUdnU69d8Wgvvqh_1b7ZXSdCcUHjtuYzFBo72IKqnfpAp1ZtY7m8nfO0NvD_ev8ES9fFk_zuyXWlIiEdd12otG2UrZhVQvACIjKCKFyPkYt76yGSoumM7wFwTipsyBGKFtXHTd0hq4PdzfBf44mJrnyY3D5SVkyDsAZZSK7-MGlg48xGCt1n_Y_2KVdSwJyV5s81CZzbXJfm6QZLf-hm9APKmyPQ_QAxWx27yb8pTpC_QAoxYLP
CitedBy_id crossref_primary_10_1007_s10957_022_02145_5
Cites_doi 10.1137/090750020
10.1007/BF01588971
10.1137/080733991
10.1016/S0020-0190(99)00031-9
10.1145/3184990
10.1007/BFb0121195
10.1137/130920277
10.1016/S0167-6377(03)00062-2
10.1137/1.9781611973402.106
10.1145/1374376.1374389
10.1109/FOCS.2009.24
10.1109/FOCS.2007.4389516
10.1109/FOCS.2012.73
10.1007/978-3-540-72792-7_15
10.1145/1536414.1536459
10.1137/1.9781611973068.60
10.1109/FOCS.2011.46
10.1007/978-3-642-17572-5_20
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s10878-020-00672-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Economics
Computer Science
EISSN 1573-2886
EndPage 142
ExternalDocumentID 10_1007_s10878_020_00672_3
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11971376
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c319t-c6bd97cf5af745b0041095e99a38243f8dfc05c97de8b094816e8b1e9af65d8e3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589978900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-6905
IngestDate Thu Sep 18 00:02:12 EDT 2025
Sat Nov 29 04:54:34 EST 2025
Tue Nov 18 22:40:00 EST 2025
Fri Feb 21 02:48:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Modified-Greedy algorithm
system
Submodular maximization
NMSFMk algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c6bd97cf5af745b0041095e99a38243f8dfc05c97de8b094816e8b1e9af65d8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2480084349
PQPubID 2043856
PageCount 15
ParticipantIDs proquest_journals_2480084349
crossref_citationtrail_10_1007_s10878_020_00672_3
crossref_primary_10_1007_s10878_020_00672_3
springer_journals_10_1007_s10878_020_00672_3
PublicationCentury 2000
PublicationDate 20210100
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 1
  year: 2021
  text: 20210100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR2
CR3
CR6
CR5
CR8
CR19
CR7
Filmus, Ward (CR10) 2013; 43
CR17
CR9
CR14
CR13
CR24
Fisher, Nemhauser, Wolsey (CR11) 1978; 8
CR23
Nemhauser, Wolsey, Fisher (CR21) 1978; 14
Lee, Mirrokni, Nagarajan, Sviridenko (CR18) 2010; 23
CR20
Sviridenko (CR22) 2004; 32
Khuller, Moss, Naor (CR15) 1999; 70
Fujishige (CR12) 2005
Calinescu, Chekuri, Pál, Vondrák (CR4) 2011; 40
Krause, Singh, Guestrin (CR16) 2008; 9
Buchbinder, Feldman (CR1) 2018; 14
672_CR3
672_CR17
672_CR2
672_CR14
G Calinescu (672_CR4) 2011; 40
672_CR19
672_CR9
672_CR8
672_CR7
A Krause (672_CR16) 2008; 9
672_CR6
S Fujishige (672_CR12) 2005
S Khuller (672_CR15) 1999; 70
M Sviridenko (672_CR22) 2004; 32
672_CR5
GL Nemhauser (672_CR21) 1978; 14
ML Fisher (672_CR11) 1978; 8
J Lee (672_CR18) 2010; 23
Y Filmus (672_CR10) 2013; 43
672_CR20
N Buchbinder (672_CR1) 2018; 14
672_CR23
672_CR13
672_CR24
References_xml – volume: 9
  start-page: 235
  issue: 3
  year: 2008
  end-page: 284
  ident: CR16
  article-title: Near-optimal sensor placements in gaussian processes: theory, efficient algorithms and empirical studies
  publication-title: J Mach Learn Res
– ident: CR19
– volume: 23
  start-page: 2053
  year: 2010
  end-page: 2078
  ident: CR18
  article-title: Maximizing non-monotone submodular functions under matroid or knapsack constraints
  publication-title: SIAM J Discrete Math
  doi: 10.1137/090750020
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  end-page: 294
  ident: CR21
  article-title: An analysis of approximations for maximizing submodular set functions-I
  publication-title: Math Program
  doi: 10.1007/BF01588971
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  end-page: 1766
  ident: CR4
  article-title: Maximizing a monotone submodular function subject to a matroid constraint
  publication-title: SIAM J Comput
  doi: 10.1137/080733991
– ident: CR3
– ident: CR14
– ident: CR2
– ident: CR17
– ident: CR13
– volume: 70
  start-page: 39
  issue: 1
  year: 1999
  end-page: 45
  ident: CR15
  article-title: The budgeted maximum coverage problem
  publication-title: Inf Process Lett
  doi: 10.1016/S0020-0190(99)00031-9
– ident: CR9
– volume: 14
  start-page: 1
  year: 2018
  end-page: 20
  ident: CR1
  article-title: Deterministic algorithms for submodular maximization problems
  publication-title: ACM Trans Algorithms
  doi: 10.1145/3184990
– volume: 8
  start-page: 73
  year: 1978
  end-page: 87
  ident: CR11
  article-title: An analysis of approximations for maximizing submodular set functions-II
  publication-title: Math Prog Study
  doi: 10.1007/BFb0121195
– ident: CR6
– volume: 43
  start-page: 514
  issue: 2
  year: 2013
  end-page: 542
  ident: CR10
  article-title: Monotone submodular maximization over a matroid via non-oblivious local search
  publication-title: SIAM J Comput
  doi: 10.1137/130920277
– ident: CR5
– ident: CR7
– ident: CR8
– volume: 32
  start-page: 41
  issue: 1
  year: 2004
  end-page: 43
  ident: CR22
  article-title: A note on maximizing a submodular set function subject to a knapsack constraint
  publication-title: Oper Res Lett
  doi: 10.1016/S0167-6377(03)00062-2
– year: 2005
  ident: CR12
  publication-title: Submodular functions and optimization
– ident: CR24
– ident: CR23
– ident: CR20
– volume: 14
  start-page: 1
  year: 2018
  ident: 672_CR1
  publication-title: ACM Trans Algorithms
  doi: 10.1145/3184990
– ident: 672_CR3
  doi: 10.1137/1.9781611973402.106
– volume-title: Submodular functions and optimization
  year: 2005
  ident: 672_CR12
– ident: 672_CR23
  doi: 10.1145/1374376.1374389
– ident: 672_CR24
  doi: 10.1109/FOCS.2009.24
– volume: 23
  start-page: 2053
  year: 2010
  ident: 672_CR18
  publication-title: SIAM J Discrete Math
  doi: 10.1137/090750020
– ident: 672_CR7
  doi: 10.1109/FOCS.2007.4389516
– ident: 672_CR2
  doi: 10.1109/FOCS.2012.73
– ident: 672_CR5
  doi: 10.1007/978-3-540-72792-7_15
– ident: 672_CR8
– ident: 672_CR6
– ident: 672_CR19
  doi: 10.1145/1536414.1536459
– ident: 672_CR20
– volume: 43
  start-page: 514
  issue: 2
  year: 2013
  ident: 672_CR10
  publication-title: SIAM J Comput
  doi: 10.1137/130920277
– volume: 70
  start-page: 39
  issue: 1
  year: 1999
  ident: 672_CR15
  publication-title: Inf Process Lett
  doi: 10.1016/S0020-0190(99)00031-9
– ident: 672_CR17
  doi: 10.1137/1.9781611973068.60
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  ident: 672_CR21
  publication-title: Math Program
  doi: 10.1007/BF01588971
– volume: 32
  start-page: 41
  issue: 1
  year: 2004
  ident: 672_CR22
  publication-title: Oper Res Lett
  doi: 10.1016/S0167-6377(03)00062-2
– ident: 672_CR9
  doi: 10.1109/FOCS.2011.46
– volume: 8
  start-page: 73
  year: 1978
  ident: 672_CR11
  publication-title: Math Prog Study
  doi: 10.1007/BFb0121195
– ident: 672_CR13
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  ident: 672_CR4
  publication-title: SIAM J Comput
  doi: 10.1137/080733991
– volume: 9
  start-page: 235
  issue: 3
  year: 2008
  ident: 672_CR16
  publication-title: J Mach Learn Res
– ident: 672_CR14
  doi: 10.1007/978-3-642-17572-5_20
SSID ssj0009054
Score 2.2364795
Snippet The problems of maximizing constrained monotone submodular functions have many practical applications, most recently in the context of combinatorial...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128
SubjectTerms Algorithms
Approximation
Combinatorial analysis
Combinatorics
Computer science
Constraints
Convex and Discrete Geometry
Economics
Foundations
Greedy algorithms
Machine learning
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Maximization
Operations research
Operations Research/Decision Theory
Optimization
Run time (computers)
Theory of Computation
Title Non-monotone submodular function maximization under k-system constraint
URI https://link.springer.com/article/10.1007/s10878-020-00672-3
https://www.proquest.com/docview/2480084349
Volume 41
WOSCitedRecordID wos000589978900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-LqKj1400DfSY8irh50EV_sraRpAov7kG0Vf74zfWxXUUFvLZ2EMEn6TR7fNwDHSjsINCYgNo5gfsptJl3axLFlmCDeYsRREIWvea8n-v3otiKFZfVt9_pIsvhTz5HdBKnBusSEDrnLvEVYQrgTlLDh7v6pkdq1gzKVLcaOuPYLKqrM93V8hqMmxvxyLFqgTXf9f-3cgLUqurTOyuGwCQt6vAWrc5qD-HYzE2rNtuGyNxkzHIkT0uS2MgTHSUoXUy3CO-ozayTfB6OKrGkR42xqPbNS_9lSFFxSjol8Bx67Fw_nV6zKrcAUTrqcqTBJI65MIA33A5q7DgZbOookus33jEiNsgMV8VSLxCZJlxAfHB1JEwap0N4utMbYsj1ifaOdxMjCE7jO5mFiOJYjbORCy5C3waldHKtKeJzaNowbyWRyWYwuiwuXxV4bTmZlXkrZjV-tO3XPxdUUzGLXF5QswPOjNpzWPdV8_rm2_b-ZH8CKS_dcim2ZDrTy6as-hGX1lg-y6VExND8AwKTbgg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBuzivffBNA70nfRRxTtyK6JS9hTRNYeg2Wav48z2nl3WKCvrW0pMQTpJ-J5fvO4ScKG0B0CQesnE4dWNmUmnjJo4p_QjwFiKOnCjcYWHI-_3gtiSFpdVt9-pIMv9Tz5DdOKrB2siE9plNnXmy4AJioWL-3f1jLbVrekUqW4gdYe3nlVSZ7-v4DEd1jPnlWDRHm9ba_9q5TlbL6NI4L4bDBpnTo02yMqM5CG_dqVBrukWuwvGIwkgcoya3kQI4jmO8mGog3mGfGUP5PhiWZE0DGWcT44kW-s-GwuASc0xk2-Shddm7aNMytwJVMOkyqvwoDphKPJkw18O5a0GwpYNAgttcJ-FxokxPBSzWPDJR0sWHB0sHMvG9mGtnhzRG0LJdZH2DnYTIwuGwzmZ-lDAoh9jIuJY-axKrcrFQpfA4tu1Z1JLJ6DIBLhO5y4TTJKfTMi-F7Mav1gdVz4lyCqbCdjkmC3DcoEnOqp6qP_9c297fzI_JUrvX7YjOdXizT5ZtvPOSb9EckEY2edWHZFG9ZYN0cpQP0w8T4N5m
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzid2gffNKz3pI-iTsVZBl7YW0jTFoauG2sVf77n9LJOUUF8a2gSwknCd5Kc7zuEHKvIAKCJHWTjcGqHTKfSxEscXboB4C14HDlRuMt8n_f7Xm-GxZ9Hu1dPkgWnAVWakqw9DuP2DPGNozKsiaxol5nUmicLNgbS43n9_qmW3dWdIq0t-JFwDnRK2sz3fXyGptrf_PJEmiNPZ-3_Y14nq6XXqZ0Vy2SDzEXJJlmZ0SKE0t1UwDXdIlf-KKGwQkeo1a2lAJqjEANWNcRBnEttKN8Hw5LEqSETbaI900IXWlPodGLuiWybPHYuH86vaZlzgSrYjBlVbhB6TMWOjJnt4J42wAmLPE-CCW0r5mGsdEd5LIx4oKPUiwsfRuTJ2HVCHlk7pJHAyHaRDQ71JHgcFofzN3ODmEE7xEzGI-myJjEqcwtVCpLj2F5ELaWMJhNgMpGbTFhNcjJtMy7kOH6t3apmUZRbMxWmzTGJgGV7TXJazVr9--fe9v5W_Ygs9S46onvj3-6TZRNDYfKbmxZpZJPX6IAsqrdskE4O8xX7AW0050o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-monotone+submodular+function+maximization+under+k-system+constraint&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Shi%2C+Majun&rft.au=Yang%2C+Zishen&rft.au=Kim%2C+Donghyun&rft.au=Wang%2C+Wei&rft.date=2021-01-01&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=41&rft.issue=1&rft.spage=128&rft.epage=142&rft_id=info:doi/10.1007%2Fs10878-020-00672-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10878_020_00672_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon