Non-monotone submodular function maximization under k-system constraint
The problems of maximizing constrained monotone submodular functions have many practical applications, most recently in the context of combinatorial optimization, operations research, economics and especially machine learning, with constant approximation algorithms known under a variety of constrain...
Saved in:
| Published in: | Journal of combinatorial optimization Vol. 41; no. 1; pp. 128 - 142 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.01.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1382-6905, 1573-2886 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The problems of maximizing constrained monotone submodular functions have many practical applications, most recently in the context of combinatorial optimization, operations research, economics and especially machine learning, with constant approximation algorithms known under a variety of constraints. Unfortunately, non-monotone submodular functions maximization is less well studied; the first approximation algorithm for the non-monotone case was studied by Feige et al. (Proceedings of the 48th IEEE symposium on foundations of computer science (FOCS’07), 2007) about unconstrained non-monotone submodular maximization in 2007. In this paper, we extend the work of Lee et al. (Proceedings of the 41st ACM-SIAM symposium on theory of computing (STOC’09), pp 323–332, 2009) for maximizing a non-monotone submodular function under
k
-matroid constraint to
k
-system constraint. We first propose a Modified-Greedy algorithm that works no worse than that of Gupta et al. (Proceedings of the 6th international workshop on internet and network economics (WINE’10), vol 6484, pp 246–257, 2010). Based on this, then we provide the NMSFMk algorithm for maximizing a non-monotone submodular function subject to
k
-system constraint (which generalizes the
k
-matroid constraint), using Modified-Greedy algorithm combined with USFM algorithm (USFM algorithm is the random linear time 1/2-approximation algorithm proposed by Buchbinder et al. (Proceedings of the 53rd IEEE symposium on foundations of computer science (FOCS’12), pp 649–658, 2012) for unconstrained non-monotone submodular function maximization problem.) iteratively. Finally, we show that NMSFMk algorithm achieves a
1
2
k
+
3
+
1
/
k
-approximation ratio with running time of
O
(
nmk
) (where
m
is the size of largest set returned by the NMSFMk algorithm), which beats the existing algorithms in many aspects. |
|---|---|
| AbstractList | The problems of maximizing constrained monotone submodular functions have many practical applications, most recently in the context of combinatorial optimization, operations research, economics and especially machine learning, with constant approximation algorithms known under a variety of constraints. Unfortunately, non-monotone submodular functions maximization is less well studied; the first approximation algorithm for the non-monotone case was studied by Feige et al. (Proceedings of the 48th IEEE symposium on foundations of computer science (FOCS’07), 2007) about unconstrained non-monotone submodular maximization in 2007. In this paper, we extend the work of Lee et al. (Proceedings of the 41st ACM-SIAM symposium on theory of computing (STOC’09), pp 323–332, 2009) for maximizing a non-monotone submodular function under
k
-matroid constraint to
k
-system constraint. We first propose a Modified-Greedy algorithm that works no worse than that of Gupta et al. (Proceedings of the 6th international workshop on internet and network economics (WINE’10), vol 6484, pp 246–257, 2010). Based on this, then we provide the NMSFMk algorithm for maximizing a non-monotone submodular function subject to
k
-system constraint (which generalizes the
k
-matroid constraint), using Modified-Greedy algorithm combined with USFM algorithm (USFM algorithm is the random linear time 1/2-approximation algorithm proposed by Buchbinder et al. (Proceedings of the 53rd IEEE symposium on foundations of computer science (FOCS’12), pp 649–658, 2012) for unconstrained non-monotone submodular function maximization problem.) iteratively. Finally, we show that NMSFMk algorithm achieves a
1
2
k
+
3
+
1
/
k
-approximation ratio with running time of
O
(
nmk
) (where
m
is the size of largest set returned by the NMSFMk algorithm), which beats the existing algorithms in many aspects. The problems of maximizing constrained monotone submodular functions have many practical applications, most recently in the context of combinatorial optimization, operations research, economics and especially machine learning, with constant approximation algorithms known under a variety of constraints. Unfortunately, non-monotone submodular functions maximization is less well studied; the first approximation algorithm for the non-monotone case was studied by Feige et al. (Proceedings of the 48th IEEE symposium on foundations of computer science (FOCS’07), 2007) about unconstrained non-monotone submodular maximization in 2007. In this paper, we extend the work of Lee et al. (Proceedings of the 41st ACM-SIAM symposium on theory of computing (STOC’09), pp 323–332, 2009) for maximizing a non-monotone submodular function under k-matroid constraint to k-system constraint. We first propose a Modified-Greedy algorithm that works no worse than that of Gupta et al. (Proceedings of the 6th international workshop on internet and network economics (WINE’10), vol 6484, pp 246–257, 2010). Based on this, then we provide the NMSFMk algorithm for maximizing a non-monotone submodular function subject to k-system constraint (which generalizes the k-matroid constraint), using Modified-Greedy algorithm combined with USFM algorithm (USFM algorithm is the random linear time 1/2-approximation algorithm proposed by Buchbinder et al. (Proceedings of the 53rd IEEE symposium on foundations of computer science (FOCS’12), pp 649–658, 2012) for unconstrained non-monotone submodular function maximization problem.) iteratively. Finally, we show that NMSFMk algorithm achieves a 12k+3+1/k-approximation ratio with running time of O(nmk) (where m is the size of largest set returned by the NMSFMk algorithm), which beats the existing algorithms in many aspects. |
| Author | Kim, Donghyun Wang, Wei Yang, Zishen Shi, Majun |
| Author_xml | – sequence: 1 givenname: Majun surname: Shi fullname: Shi, Majun organization: School of Mathematics and Statistics, Xi’an Jiaotong University – sequence: 2 givenname: Zishen surname: Yang fullname: Yang, Zishen organization: School of Mathematics and Statistics, Xi’an Jiaotong University – sequence: 3 givenname: Donghyun surname: Kim fullname: Kim, Donghyun organization: Department of Computer Science, Georgia State University – sequence: 4 givenname: Wei surname: Wang fullname: Wang, Wei email: wang_weiw@xjtu.edu.cn organization: School of Mathematics and Statistics, Xi’an Jiaotong University |
| BookMark | eNp9kEFLAzEQhYMo2Fb_gKcFz9HJJrubHKVoFYpe9Byy2US2dpOaZMH6601bQfDQ07yB901e3hSdOu8MQlcEbghAcxsJ8IZjKAED1E2J6QmakKqhuOS8Ps2a8hLXAqpzNI1xBQBZswlaPHuHB-98ygeLOLaD78a1CoUdnU69d8Wgvvqh_1b7ZXSdCcUHjtuYzFBo72IKqnfpAp1ZtY7m8nfO0NvD_ev8ES9fFk_zuyXWlIiEdd12otG2UrZhVQvACIjKCKFyPkYt76yGSoumM7wFwTipsyBGKFtXHTd0hq4PdzfBf44mJrnyY3D5SVkyDsAZZSK7-MGlg48xGCt1n_Y_2KVdSwJyV5s81CZzbXJfm6QZLf-hm9APKmyPQ_QAxWx27yb8pTpC_QAoxYLP |
| CitedBy_id | crossref_primary_10_1007_s10957_022_02145_5 |
| Cites_doi | 10.1137/090750020 10.1007/BF01588971 10.1137/080733991 10.1016/S0020-0190(99)00031-9 10.1145/3184990 10.1007/BFb0121195 10.1137/130920277 10.1016/S0167-6377(03)00062-2 10.1137/1.9781611973402.106 10.1145/1374376.1374389 10.1109/FOCS.2009.24 10.1109/FOCS.2007.4389516 10.1109/FOCS.2012.73 10.1007/978-3-540-72792-7_15 10.1145/1536414.1536459 10.1137/1.9781611973068.60 10.1109/FOCS.2011.46 10.1007/978-3-642-17572-5_20 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10878-020-00672-3 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Economics Computer Science |
| EISSN | 1573-2886 |
| EndPage | 142 |
| ExternalDocumentID | 10_1007_s10878_020_00672_3 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11971376 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c319t-c6bd97cf5af745b0041095e99a38243f8dfc05c97de8b094816e8b1e9af65d8e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589978900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-6905 |
| IngestDate | Thu Sep 18 00:02:12 EDT 2025 Sat Nov 29 04:54:34 EST 2025 Tue Nov 18 22:40:00 EST 2025 Fri Feb 21 02:48:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Modified-Greedy algorithm system Submodular maximization NMSFMk algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-c6bd97cf5af745b0041095e99a38243f8dfc05c97de8b094816e8b1e9af65d8e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2480084349 |
| PQPubID | 2043856 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2480084349 crossref_citationtrail_10_1007_s10878_020_00672_3 crossref_primary_10_1007_s10878_020_00672_3 springer_journals_10_1007_s10878_020_00672_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20210100 2021-01-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 1 year: 2021 text: 20210100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Journal of combinatorial optimization |
| PublicationTitleAbbrev | J Comb Optim |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | CR2 CR3 CR6 CR5 CR8 CR19 CR7 Filmus, Ward (CR10) 2013; 43 CR17 CR9 CR14 CR13 CR24 Fisher, Nemhauser, Wolsey (CR11) 1978; 8 CR23 Nemhauser, Wolsey, Fisher (CR21) 1978; 14 Lee, Mirrokni, Nagarajan, Sviridenko (CR18) 2010; 23 CR20 Sviridenko (CR22) 2004; 32 Khuller, Moss, Naor (CR15) 1999; 70 Fujishige (CR12) 2005 Calinescu, Chekuri, Pál, Vondrák (CR4) 2011; 40 Krause, Singh, Guestrin (CR16) 2008; 9 Buchbinder, Feldman (CR1) 2018; 14 672_CR3 672_CR17 672_CR2 672_CR14 G Calinescu (672_CR4) 2011; 40 672_CR19 672_CR9 672_CR8 672_CR7 A Krause (672_CR16) 2008; 9 672_CR6 S Fujishige (672_CR12) 2005 S Khuller (672_CR15) 1999; 70 M Sviridenko (672_CR22) 2004; 32 672_CR5 GL Nemhauser (672_CR21) 1978; 14 ML Fisher (672_CR11) 1978; 8 J Lee (672_CR18) 2010; 23 Y Filmus (672_CR10) 2013; 43 672_CR20 N Buchbinder (672_CR1) 2018; 14 672_CR23 672_CR13 672_CR24 |
| References_xml | – volume: 9 start-page: 235 issue: 3 year: 2008 end-page: 284 ident: CR16 article-title: Near-optimal sensor placements in gaussian processes: theory, efficient algorithms and empirical studies publication-title: J Mach Learn Res – ident: CR19 – volume: 23 start-page: 2053 year: 2010 end-page: 2078 ident: CR18 article-title: Maximizing non-monotone submodular functions under matroid or knapsack constraints publication-title: SIAM J Discrete Math doi: 10.1137/090750020 – volume: 14 start-page: 265 issue: 1 year: 1978 end-page: 294 ident: CR21 article-title: An analysis of approximations for maximizing submodular set functions-I publication-title: Math Program doi: 10.1007/BF01588971 – volume: 40 start-page: 1740 issue: 6 year: 2011 end-page: 1766 ident: CR4 article-title: Maximizing a monotone submodular function subject to a matroid constraint publication-title: SIAM J Comput doi: 10.1137/080733991 – ident: CR3 – ident: CR14 – ident: CR2 – ident: CR17 – ident: CR13 – volume: 70 start-page: 39 issue: 1 year: 1999 end-page: 45 ident: CR15 article-title: The budgeted maximum coverage problem publication-title: Inf Process Lett doi: 10.1016/S0020-0190(99)00031-9 – ident: CR9 – volume: 14 start-page: 1 year: 2018 end-page: 20 ident: CR1 article-title: Deterministic algorithms for submodular maximization problems publication-title: ACM Trans Algorithms doi: 10.1145/3184990 – volume: 8 start-page: 73 year: 1978 end-page: 87 ident: CR11 article-title: An analysis of approximations for maximizing submodular set functions-II publication-title: Math Prog Study doi: 10.1007/BFb0121195 – ident: CR6 – volume: 43 start-page: 514 issue: 2 year: 2013 end-page: 542 ident: CR10 article-title: Monotone submodular maximization over a matroid via non-oblivious local search publication-title: SIAM J Comput doi: 10.1137/130920277 – ident: CR5 – ident: CR7 – ident: CR8 – volume: 32 start-page: 41 issue: 1 year: 2004 end-page: 43 ident: CR22 article-title: A note on maximizing a submodular set function subject to a knapsack constraint publication-title: Oper Res Lett doi: 10.1016/S0167-6377(03)00062-2 – year: 2005 ident: CR12 publication-title: Submodular functions and optimization – ident: CR24 – ident: CR23 – ident: CR20 – volume: 14 start-page: 1 year: 2018 ident: 672_CR1 publication-title: ACM Trans Algorithms doi: 10.1145/3184990 – ident: 672_CR3 doi: 10.1137/1.9781611973402.106 – volume-title: Submodular functions and optimization year: 2005 ident: 672_CR12 – ident: 672_CR23 doi: 10.1145/1374376.1374389 – ident: 672_CR24 doi: 10.1109/FOCS.2009.24 – volume: 23 start-page: 2053 year: 2010 ident: 672_CR18 publication-title: SIAM J Discrete Math doi: 10.1137/090750020 – ident: 672_CR7 doi: 10.1109/FOCS.2007.4389516 – ident: 672_CR2 doi: 10.1109/FOCS.2012.73 – ident: 672_CR5 doi: 10.1007/978-3-540-72792-7_15 – ident: 672_CR8 – ident: 672_CR6 – ident: 672_CR19 doi: 10.1145/1536414.1536459 – ident: 672_CR20 – volume: 43 start-page: 514 issue: 2 year: 2013 ident: 672_CR10 publication-title: SIAM J Comput doi: 10.1137/130920277 – volume: 70 start-page: 39 issue: 1 year: 1999 ident: 672_CR15 publication-title: Inf Process Lett doi: 10.1016/S0020-0190(99)00031-9 – ident: 672_CR17 doi: 10.1137/1.9781611973068.60 – volume: 14 start-page: 265 issue: 1 year: 1978 ident: 672_CR21 publication-title: Math Program doi: 10.1007/BF01588971 – volume: 32 start-page: 41 issue: 1 year: 2004 ident: 672_CR22 publication-title: Oper Res Lett doi: 10.1016/S0167-6377(03)00062-2 – ident: 672_CR9 doi: 10.1109/FOCS.2011.46 – volume: 8 start-page: 73 year: 1978 ident: 672_CR11 publication-title: Math Prog Study doi: 10.1007/BFb0121195 – ident: 672_CR13 – volume: 40 start-page: 1740 issue: 6 year: 2011 ident: 672_CR4 publication-title: SIAM J Comput doi: 10.1137/080733991 – volume: 9 start-page: 235 issue: 3 year: 2008 ident: 672_CR16 publication-title: J Mach Learn Res – ident: 672_CR14 doi: 10.1007/978-3-642-17572-5_20 |
| SSID | ssj0009054 |
| Score | 2.2364795 |
| Snippet | The problems of maximizing constrained monotone submodular functions have many practical applications, most recently in the context of combinatorial... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 128 |
| SubjectTerms | Algorithms Approximation Combinatorial analysis Combinatorics Computer science Constraints Convex and Discrete Geometry Economics Foundations Greedy algorithms Machine learning Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Maximization Operations research Operations Research/Decision Theory Optimization Run time (computers) Theory of Computation |
| Title | Non-monotone submodular function maximization under k-system constraint |
| URI | https://link.springer.com/article/10.1007/s10878-020-00672-3 https://www.proquest.com/docview/2480084349 |
| Volume | 41 |
| WOSCitedRecordID | wos000589978900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2886 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009054 issn: 1382-6905 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-LqKj1400DfSY8irh50EV_sraRpAov7kG0Vf74zfWxXUUFvLZ2EMEn6TR7fNwDHSjsINCYgNo5gfsptJl3axLFlmCDeYsRREIWvea8n-v3otiKFZfVt9_pIsvhTz5HdBKnBusSEDrnLvEVYQrgTlLDh7v6pkdq1gzKVLcaOuPYLKqrM93V8hqMmxvxyLFqgTXf9f-3cgLUqurTOyuGwCQt6vAWrc5qD-HYzE2rNtuGyNxkzHIkT0uS2MgTHSUoXUy3CO-ozayTfB6OKrGkR42xqPbNS_9lSFFxSjol8Bx67Fw_nV6zKrcAUTrqcqTBJI65MIA33A5q7DgZbOookus33jEiNsgMV8VSLxCZJlxAfHB1JEwap0N4utMbYsj1ifaOdxMjCE7jO5mFiOJYjbORCy5C3waldHKtKeJzaNowbyWRyWYwuiwuXxV4bTmZlXkrZjV-tO3XPxdUUzGLXF5QswPOjNpzWPdV8_rm2_b-ZH8CKS_dcim2ZDrTy6as-hGX1lg-y6VExND8AwKTbgg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBuzivffBNA70nfRRxTtyK6JS9hTRNYeg2Wav48z2nl3WKCvrW0pMQTpJ-J5fvO4ScKG0B0CQesnE4dWNmUmnjJo4p_QjwFiKOnCjcYWHI-_3gtiSFpdVt9-pIMv9Tz5DdOKrB2siE9plNnXmy4AJioWL-3f1jLbVrekUqW4gdYe3nlVSZ7-v4DEd1jPnlWDRHm9ba_9q5TlbL6NI4L4bDBpnTo02yMqM5CG_dqVBrukWuwvGIwkgcoya3kQI4jmO8mGog3mGfGUP5PhiWZE0DGWcT44kW-s-GwuASc0xk2-Shddm7aNMytwJVMOkyqvwoDphKPJkw18O5a0GwpYNAgttcJ-FxokxPBSzWPDJR0sWHB0sHMvG9mGtnhzRG0LJdZH2DnYTIwuGwzmZ-lDAoh9jIuJY-axKrcrFQpfA4tu1Z1JLJ6DIBLhO5y4TTJKfTMi-F7Mav1gdVz4lyCqbCdjkmC3DcoEnOqp6qP_9c297fzI_JUrvX7YjOdXizT5ZtvPOSb9EckEY2edWHZFG9ZYN0cpQP0w8T4N5m |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzid2gffNKz3pI-iTsVZBl7YW0jTFoauG2sVf77n9LJOUUF8a2gSwknCd5Kc7zuEHKvIAKCJHWTjcGqHTKfSxEscXboB4C14HDlRuMt8n_f7Xm-GxZ9Hu1dPkgWnAVWakqw9DuP2DPGNozKsiaxol5nUmicLNgbS43n9_qmW3dWdIq0t-JFwDnRK2sz3fXyGptrf_PJEmiNPZ-3_Y14nq6XXqZ0Vy2SDzEXJJlmZ0SKE0t1UwDXdIlf-KKGwQkeo1a2lAJqjEANWNcRBnEttKN8Hw5LEqSETbaI900IXWlPodGLuiWybPHYuH86vaZlzgSrYjBlVbhB6TMWOjJnt4J42wAmLPE-CCW0r5mGsdEd5LIx4oKPUiwsfRuTJ2HVCHlk7pJHAyHaRDQ71JHgcFofzN3ODmEE7xEzGI-myJjEqcwtVCpLj2F5ELaWMJhNgMpGbTFhNcjJtMy7kOH6t3apmUZRbMxWmzTGJgGV7TXJazVr9--fe9v5W_Ygs9S46onvj3-6TZRNDYfKbmxZpZJPX6IAsqrdskE4O8xX7AW0050o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-monotone+submodular+function+maximization+under+k-system+constraint&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Shi%2C+Majun&rft.au=Yang%2C+Zishen&rft.au=Kim%2C+Donghyun&rft.au=Wang%2C+Wei&rft.date=2021-01-01&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=41&rft.issue=1&rft.spage=128&rft.epage=142&rft_id=info:doi/10.1007%2Fs10878-020-00672-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10878_020_00672_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon |