Deep reinforcement learning based task offloading and resource allocation strategy across multiple edge servers

In the mobile edge computing environment, multiple edge servers are often deployed in task-dense areas, however, the service coverage of these edge servers may overlap with each other. In such scenarios, users within the overlapping areas need to determine which server is chosen to offload the task....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Service oriented computing and applications Jg. 19; H. 3; S. 263 - 276
Hauptverfasser: Shi, Bing, Pan, Yuting, Huang, Lianzhen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.09.2025
Springer Nature B.V
Schlagworte:
ISSN:1863-2386, 1863-2394
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the mobile edge computing environment, multiple edge servers are often deployed in task-dense areas, however, the service coverage of these edge servers may overlap with each other. In such scenarios, users within the overlapping areas need to determine which server is chosen to offload the task. However, unreasonable decision of task offloading may result in imbalanced loads, thereby affecting the number of served users and the latency and energy consumption of user task offloading. Furthermore, the complexity of task offloading and resource allocation is further heightened by the dynamic arrival of user tasks. Therefore, it is crucial to design an effective task offloading and resource allocation strategy in an environment with multiple edge servers. In this paper, we propose a task offloading and resource allocation strategy aimed at meeting task latency requirements while maximizing the number of served users and minimizing the average energy consumption of all completed tasks. To timely obtain information about user tasks and the status of edge servers, we adopt a central controller to manage multiple edge servers. Then, we model the problem as a parameterized action Markov decision process and utilize the parameterized deep Q-network algorithm, a deep reinforcement learning algorithm, to solve it. Additionally, we conducted experiments to evaluate the performance of our proposed strategy against five benchmark strategies. The results demonstrate the superiority of our strategy in terms of the number of served users and the average energy consumption per task while meeting task latency constraints.
AbstractList In the mobile edge computing environment, multiple edge servers are often deployed in task-dense areas, however, the service coverage of these edge servers may overlap with each other. In such scenarios, users within the overlapping areas need to determine which server is chosen to offload the task. However, unreasonable decision of task offloading may result in imbalanced loads, thereby affecting the number of served users and the latency and energy consumption of user task offloading. Furthermore, the complexity of task offloading and resource allocation is further heightened by the dynamic arrival of user tasks. Therefore, it is crucial to design an effective task offloading and resource allocation strategy in an environment with multiple edge servers. In this paper, we propose a task offloading and resource allocation strategy aimed at meeting task latency requirements while maximizing the number of served users and minimizing the average energy consumption of all completed tasks. To timely obtain information about user tasks and the status of edge servers, we adopt a central controller to manage multiple edge servers. Then, we model the problem as a parameterized action Markov decision process and utilize the parameterized deep Q-network algorithm, a deep reinforcement learning algorithm, to solve it. Additionally, we conducted experiments to evaluate the performance of our proposed strategy against five benchmark strategies. The results demonstrate the superiority of our strategy in terms of the number of served users and the average energy consumption per task while meeting task latency constraints.
Author Shi, Bing
Huang, Lianzhen
Pan, Yuting
Author_xml – sequence: 1
  givenname: Bing
  orcidid: 0000-0002-2382-4104
  surname: Shi
  fullname: Shi, Bing
  email: bingshi@whut.edu.cn
  organization: School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Shenzhen Research Institute of Wuhan University of Technology
– sequence: 2
  givenname: Yuting
  surname: Pan
  fullname: Pan, Yuting
  organization: School of Computer Science and Artificial Intelligence, Wuhan University of Technology
– sequence: 3
  givenname: Lianzhen
  surname: Huang
  fullname: Huang, Lianzhen
  organization: School of Computer Science and Artificial Intelligence, Wuhan University of Technology
BookMark eNp9kElLBDEQhYMouP4BTwHPrdlMuo_iDoIXPYcslaHHnmRMMoL_3syMKHgwl0qK91VevUO0G1MEhE4pOaeEqItCqZK0I0x0hAg6dHIHHdBe8o7xQez-3Hu5j05KmZN2OFO9VAco3QAscYYxhpQdLCBWPIHJcYwzbE0Bj6spbziFMCXj110TfQNKWjU9NtOUnKljirjUbCrMPrFxOZWCF6upjssJMPgZ4AL5A3I5RnvBTAVOvusRer27fbl-6J6e7x-vr546x-lQOyfN4IV1sr3Aeg4cvFROBscskYEz7qmy3vjgZc8Gq7y1VgQrjSK9UIYfobPt3GVO7ysoVc-b4di-1JxdKiaEHERT9VvVxnGGoN1YN9u0XcZJU6LXCettwrolrDcJa9lQ9gdd5nFh8uf_EN9CpYnjDPKvq3-oL7tRk08
CitedBy_id crossref_primary_10_1109_TMC_2025_3573278
Cites_doi 10.1109/TVT.2016.2593486
10.1109/TWC.2021.3085319
10.1109/JIOT.2017.2750180
10.1109/TVT.2018.2881191
10.1109/JIOT.2018.2805263
10.1109/JIOT.2018.2868616
10.1109/TWC.2020.2993071
10.1109/TVT.2020.3013990
10.1109/TCOMM.2021.3058964
10.1109/TETC.2019.2902661
10.1109/MC.2017.3641638
10.1109/ICWS.2019.00041
10.1109/TCC.2019.2898657
10.1007/b102605
10.1109/MNET.2018.1700268
10.1109/TVT.2020.3003898
10.1609/aaai.v30i1.10226
10.1109/TWC.2021.3076201
10.1109/TII.2020.3001355
10.48550/arXiv.1810.06394
10.48550/arXiv.1511.04143
10.1109/TII.2022.3211622
10.1109/ICWS.2019.00035
10.1109/ICWS53863.2021.00052
10.1109/JIOT.2021.3084509
10.1145/3391198
10.1109/TCOMM.2018.2799937
10.1109/wcnc.2018.8377343
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11761-024-00419-6
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1863-2394
EndPage 276
ExternalDocumentID 10_1007_s11761_024_00419_6
GroupedDBID -Y2
.VR
06D
0R~
123
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40E
5VS
67Z
6NX
875
8TC
8UJ
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
ZMTXR
~A9
AAYXX
ABJCF
AFFHD
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c319t-c6a9d4bc6319ebd3e3ed67c6fc2b06f323d17bdadfd6829b7dbbb4fb6a70847a3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001270454200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-2386
IngestDate Sat Nov 29 03:16:55 EST 2025
Tue Nov 18 22:13:14 EST 2025
Sat Nov 29 07:32:54 EST 2025
Sat Sep 13 01:10:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Multiple edge servers
Deep reinforcement learning
Task offloading
Resource allocation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c6a9d4bc6319ebd3e3ed67c6fc2b06f323d17bdadfd6829b7dbbb4fb6a70847a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2382-4104
PQID 3257244694
PQPubID 2044172
PageCount 14
ParticipantIDs proquest_journals_3257244694
crossref_citationtrail_10_1007_s11761_024_00419_6
crossref_primary_10_1007_s11761_024_00419_6
springer_journals_10_1007_s11761_024_00419_6
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Service oriented computing and applications
PublicationTitleAbbrev SOCA
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References MS Elbamby (419_CR2) 2018; 32
L Qian (419_CR17) 2020; 17
J Yan (419_CR11) 2020; 19
Y Chen (419_CR9) 2019; 9
419_CR29
419_CR28
H Li (419_CR14) 2020; 69
419_CR25
X Ma (419_CR24) 2022; 19
419_CR26
419_CR21
X Lyu (419_CR8) 2016; 66
419_CR20
J Wang (419_CR5) 2019; 9
419_CR22
Y Dai (419_CR27) 2020; 69
N Abbas (419_CR4) 2017; 5
S Xia (419_CR16) 2021; 20
G Ananthanarayanan (419_CR1) 2017; 50
Z Ning (419_CR10) 2018; 6
Y Deng (419_CR15) 2021; 9
419_CR18
TX Tran (419_CR6) 2018; 68
H Gao (419_CR23) 2021; 21
G Premsankar (419_CR3) 2018; 5
F Fang (419_CR7) 2021; 69
S Bi (419_CR13) 2021; 20
X Lyu (419_CR19) 2018; 66
419_CR12
References_xml – volume: 66
  start-page: 3435
  issue: 4
  year: 2016
  ident: 419_CR8
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2016.2593486
– volume: 20
  start-page: 7519
  issue: 11
  year: 2021
  ident: 419_CR13
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/TWC.2021.3085319
– volume: 5
  start-page: 450
  issue: 1
  year: 2017
  ident: 419_CR4
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2017.2750180
– volume: 68
  start-page: 856
  issue: 1
  year: 2018
  ident: 419_CR6
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2018.2881191
– volume: 5
  start-page: 1275
  issue: 2
  year: 2018
  ident: 419_CR3
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2805263
– volume: 6
  start-page: 4804
  issue: 3
  year: 2018
  ident: 419_CR10
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2868616
– volume: 19
  start-page: 5404
  issue: 8
  year: 2020
  ident: 419_CR11
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/TWC.2020.2993071
– volume: 69
  start-page: 12175
  issue: 10
  year: 2020
  ident: 419_CR27
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.3013990
– volume: 69
  start-page: 3436
  issue: 5
  year: 2021
  ident: 419_CR7
  publication-title: IEEE Trans Commun
  doi: 10.1109/TCOMM.2021.3058964
– volume: 9
  start-page: 1529
  issue: 3
  year: 2019
  ident: 419_CR5
  publication-title: IEEE Trans Emerg Top Comput
  doi: 10.1109/TETC.2019.2902661
– volume: 50
  start-page: 58
  issue: 10
  year: 2017
  ident: 419_CR1
  publication-title: Computer
  doi: 10.1109/MC.2017.3641638
– ident: 419_CR20
  doi: 10.1109/ICWS.2019.00041
– volume: 9
  start-page: 1050
  issue: 3
  year: 2019
  ident: 419_CR9
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2019.2898657
– ident: 419_CR26
  doi: 10.1007/b102605
– volume: 32
  start-page: 78
  issue: 2
  year: 2018
  ident: 419_CR2
  publication-title: IEEE Netw
  doi: 10.1109/MNET.2018.1700268
– volume: 69
  start-page: 10214
  issue: 9
  year: 2020
  ident: 419_CR14
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.3003898
– ident: 419_CR22
  doi: 10.1609/aaai.v30i1.10226
– volume: 20
  start-page: 6743
  issue: 10
  year: 2021
  ident: 419_CR16
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/TWC.2021.3076201
– volume: 17
  start-page: 5688
  issue: 8
  year: 2020
  ident: 419_CR17
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2020.3001355
– ident: 419_CR25
  doi: 10.48550/arXiv.1810.06394
– ident: 419_CR28
  doi: 10.48550/arXiv.1511.04143
– volume: 19
  start-page: 2129
  issue: 2
  year: 2022
  ident: 419_CR24
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2022.3211622
– ident: 419_CR21
  doi: 10.1109/ICWS.2019.00035
– ident: 419_CR18
  doi: 10.1109/ICWS53863.2021.00052
– volume: 9
  start-page: 68
  issue: 1
  year: 2021
  ident: 419_CR15
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2021.3084509
– volume: 21
  start-page: 1
  issue: 1
  year: 2021
  ident: 419_CR23
  publication-title: ACM Trans Internet Technol TOIT
  doi: 10.1145/3391198
– volume: 66
  start-page: 2603
  issue: 6
  year: 2018
  ident: 419_CR19
  publication-title: IEEE Trans Commun
  doi: 10.1109/TCOMM.2018.2799937
– ident: 419_CR12
  doi: 10.1109/wcnc.2018.8377343
– ident: 419_CR29
  doi: 10.1109/JIOT.2018.2868616
SSID ssj0000327867
Score 2.3514097
Snippet In the mobile edge computing environment, multiple edge servers are often deployed in task-dense areas, however, the service coverage of these edge servers may...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 263
SubjectTerms Algorithms
Computation offloading
Computer Appl. in Administrative Data Processing
Computer Science
Computer Systems Organization and Communication Networks
Deep learning
e-Commerce/e-business
Edge computing
Energy consumption
Game theory
Heuristic
Internet of Things
IT in Business
Machine learning
Management of Computing and Information Systems
Markov processes
Mobile computing
Original Research Paper
Parameterization
Resource allocation
Servers
Software Engineering/Programming and Operating Systems
Title Deep reinforcement learning based task offloading and resource allocation strategy across multiple edge servers
URI https://link.springer.com/article/10.1007/s11761-024-00419-6
https://www.proquest.com/docview/3257244694
Volume 19
WOSCitedRecordID wos001270454200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PXhxfuJ0Sg7eNNA1XdIcRR0eZIgfY7eSTxGlHWsV_O9N0nRFUUFvLU1CmuTl9_Ley-8BcOwISGQihohpTFBCCbdPqUA6JnY9GWO095hOrul4nE6n7CZcCiubaPfGJel36vay28AeuZHFFORIohgiy2DFwl3qxPH2brKwrEQ4pqlPHTtICUYWk0i4LfN9M58RqVUzv3hGPeCMuv_r6gZYDwomPKtXxCZY0vkW6DbJG2CQ5W1QXGg9g3PtmVOlNxLCkELiETpsU7Di5TMsjHkpfKA95LmyFWpzP3QO-9rcB8ua4fYdcv-HsAlShM5WB53Z1-qYO-BhdHl_foVC9gUkrVhWSBLOVCIksW9aKKyxVoRKYmQsImJwjNWACsWVUSSNmaBKCJEYQTiNLORxvAs6eZHrPQANE9hwRofUZVtXOmVUYSHioTEJSaKkBwbNDGQyUJO7DBkvWUuq7EY0syOa-RHNSA-cLOrMamKOX0v3m4nNgpCWGbbbldVuCLMdOG0msv38c2v7fyt-ANZilzXYR6b1Qaeav-pDsCrfqqdyfuQX7wdU_eqC
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BX1xXnE6NQ--aaBruqR5FHUoziE6x95KriKOdaxV8N-bpO2GooK-tTQJbW7f6Tkn3wfAsSMgkZFoI6YxQREl3F7FAumQ2PlkjNE-Yjro0l4vHg7ZXXkoLKuy3auQpN-p54fdWvaXG1lMQY4kiiGyCJYii1guke_-YTDzrAQ4pLGXjm3FBCOLSaQ8LfN9M58RaW5mfomMesDp1P_3qutgrTQw4VkxIzbAgh5vgnol3gDLtbwF0gutJ3CqPXOq9E5CWEpIPEGHbQrmPHuBqTGj1CfaQz5WtkLh7ocuYF-4-2BWMNy-Q-6_EFZJitD56qBz-1obcxs8di7751eoVF9A0i7LHEnCmYqEJPZOC4U11opQSYwMRUAMDrFqUaG4MorEIRNUCSEiIwingYU8jndAbZyO9S6AhglsOKNt6tTWlY4ZVViIsG1MRKIgaoBWNQKJLKnJnULGKJmTKrseTWyPJr5HE9IAJ7M6k4KY49fSzWpgk3KRZgm225W1bgizL3BaDeT88c-t7f2t-BFYuerfdpPude9mH6yGTkHYZ6k1QS2fvuoDsCzf8udseugn8gda3e1m
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RXxxXnE6NQ--adjWdEnzKM6hOMZAHXsruYo4urFWwX9vkrabigriW0uTkGvPybl8HwCnDoBEhqKNmMYEhZRw-xQJpANi95MxRnuP6bBH-_1oNGKDD1n8Ptq9dEnmOQ0OpSnJGlNlGovEt5a9fiMrX5ADjGKILIOV0JEGufv63XBuZWnigEaeRrYVEYysfCJF5sz3zXyWTguV84uX1AufbvX_3d4EG4XiCS_ynbIFlnSyDaolqQMszvgOmHS0nsKZ9oiq0hsPYUEt8QidzFMw4-kznBgznvgAfMgTZSvkbgDoHPm5GRCmOfLtG-R-tLAMXoTOhgedOdjqnrvgoXt1f3mNClYGJO1xzZAknKlQSGLftFBYY60IlcTIQDSJwQFWLSoUV0aRKGCCKiFEaAThtGlFIcd7oJJMEr0PoGECG85omzoWdqUjRhUWImgbE5KwGdZAq1yNWBaQ5Y45YxwvwJbdjMZ2RmM_ozGpgbN5nWkO2PFr6Xq5yHFxeNMY29-Y1XoIsx04Lxd18fnn1g7-VvwErA063bh30789BOuBIxb2wWt1UMlmL_oIrMrX7CmdHfs9_Q7qZ_ZK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+reinforcement+learning+based+task+offloading+and+resource+allocation+strategy+across+multiple+edge+servers&rft.jtitle=Service+oriented+computing+and+applications&rft.au=Shi%2C+Bing&rft.au=Pan%2C+Yuting&rft.au=Huang%2C+Lianzhen&rft.date=2025-09-01&rft.pub=Springer+London&rft.issn=1863-2386&rft.eissn=1863-2394&rft.volume=19&rft.issue=3&rft.spage=263&rft.epage=276&rft_id=info:doi/10.1007%2Fs11761-024-00419-6&rft.externalDocID=10_1007_s11761_024_00419_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2386&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2386&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2386&client=summon